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Abstract

Recent advances in variational auto-encoder
(VAE) have demonstrated the possibility of ap-
proximating the intractable posterior distribu-
tion with a variational distribution parameter-
ized by a neural network. To optimize the vari-
ational objective of VAE, the reparameteriza-
tion trick is commonly applied to obtain a low-
variance estimator of the gradient. The main
idea of the trick is to express the variational
distribution as a differentiable function of pa-
rameters and a random variable with a fixed
distribution. To extend the reparameterization
trick to inference involving discrete latent vari-
ables, a common approach is to use a contin-
uous relaxation of the categorical distribution
as the approximate posterior. However, when
applying continuous relaxation to the multivari-
ate cases, multiple variables are typically as-
sumed to be independent, making it suboptimal
in applications where modeling dependency is
crucial to the overall performance. In this work,
we propose a multivariate generalization of the
Relaxed Bernoulli distribution, which can be
reparameterized and can capture the correlation
between variables via a Gaussian copula. We
demonstrate its effectiveness in two tasks: den-
sity estimation with Bernoulli VAE and semi-
supervised multi-label classification.

1 INTRODUCTION

Variational inference (VI) is an optimization-based ap-
proach for approximating the intractable posterior distri-
bution of latent variables in complex probabilistic mod-
els (Jordan et al., 1999; Wainwright & Jordan, 2008).
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VI can be scaled to massive data sets using stochastic
optimization (Hoffman et al., 2013). With the rise of
deep learning, variational auto-encoder (VAE) serves as a
bridge between classical variational inference and deep
neural networks (Kingma & Welling, 2014; Rezende et al.,
2014). The essence of VAE is to employ a neural network
to parameterize a function that maps observed variables
to the variational parameters of the approximate poste-
rior. One of the most important techniques behind VAE
is the reparameterization trick. This trick represents the
sampling operation with a differentiable function of pa-
rameters and a random variable with a fixed base distribu-
tion, which can provide a low-variance gradient estimator
for the variational objective function of VAE. From the
computation graph perspective, this trick enables one to
construct stochastic nodes with random variables (Schul-
man et al., 2015), in which gradients can propagate from
samples to their parameters and parent nodes during the
backward computation.

However, when the latent variables are discrete, the repa-
rameterization trick becomes difficult to apply, as a dis-
crete random variable cannot be written as a differentiable
transformation of a parameter-independent base distribu-
tion. Recently, Maddison et al. (2017) and Jang et al.
(2017) propose the Concrete distribution to address this
issue. Concrete distribution is a continuous relaxation
of the categorical distribution, with which the reparame-
terization trick can be extended to models involving dis-
crete latent variables. This relaxation technique has been
widely used in many applications, including modeling
discrete semantic classes (Kingma et al., 2014), learning
discrete structures of graph (Franceschi et al., 2019), and
neural architecture search (Chang et al., 2019).

It is worth noting that, when this relaxation technique is
applied to the multivariate case (e.g., VAE with a multi-
variate discrete latent space), a common assumption made
in practice is to assume independence among all the latent
variables (Maddison et al., 2017; Jang et al., 2017). We
argue that this approach may not be suitable for certain



applications. For instance, when performing density esti-
mation with a discrete latent variable model, a factorized
posterior would ignore the spatial structure in images. An-
other example is multi-label learning, where the ground
truth label is often represented by a vector of Bernoulli
variables. It has been shown that capturing dependen-
cies among different labels can significantly improve the
performance (Gibaja & Ventura, 2015).

In this paper, we make an attempt to generalize the Con-
crete distribution to the multivariate case. We focus on a
special case of Concrete distribution: Relaxed Bernoulli.
We propose to combine the Gaussian copula and the Re-
laxed Bernoulli to create a continuous relaxation of the
multivariate Bernoulli distribution, which is referred to as
RelaxedMVB. It has the following two main advantages:
(1) RelaxedMVB can be reparameterized so that sampling
from this distribution is differentiable with respect to its
parameters; and (2) RelaxedMVB can capture the correla-
tion between multiple Relaxed Bernoulli variables. Our
contributions in this work can be summarized as follows:

1. We present RelaxedMVB, a reparameterizable relax-
ation of the multivariate Bernoulli distribution that
explicitly models the correlation structure.

2. We build a Bernoulli VAE with RelaxedMVB as the
approximate posterior for density estimation task on
the MNIST and Omniglot datasets. We show that
incorporating correlation into the variational posterior
significantly improves the performance.

3. We generalize the semi-supervised VAE (Kingma
et al., 2014) to the multi-label setting using Relaxed-
MVB. On the CelebA dataset (Liu et al., 2015), we
show that: (1) modeling label dependencies can im-
prove classification accuracy; and (2) our model is able
to well capture the underlying class structure of the
data.

2 RELATED WORK
Multivariate Bernoulli. Several approaches have been
proposed to model dependency among Bernoulli vari-
ables. Bernoulli mixtures (Bishop, 2006) model multiple
binary variables with a mixture of factorized Bernoulli
distribution. As such, although the binary variables are
independent within each mixture component, they be-
come dependent in the joint distribution. This distribution
has been used to capture the correlation between differ-
ent labels in the multi-label classification problem (Li
et al., 2016). Dai et al. (2013) propose the Multivari-
ate Bernoulli distribution, which can model higher order
interactions among variables instead of only pairwise in-
teractions. Arithmetic circuits (Darwiche, 2003) and sum-
product networks (Poon & Domingos, 2011) use rooted
acyclic directed graphs to specify the joint distribution of

multiple binary variables. However, these approaches all
aim at modeling multivariate Bernoulli in an exact man-
ner. The discontinuous nature of these distributions makes
them difficult to be reparameterized and to be integrated
into deep generative models.

Copula VI. Tran et al. (2015) use copula to augment the
mean-field variational inference for approximating the
posterior of continuous latent variables. Neural Gaus-
sian Copula VAE (Wang & Wang, 2019) incorporates the
Gaussian copula into VAE in order to address the poste-
rior collapse problem in the continuous latent space. Suh
& Choi (2016) adopt the Gaussian copula in the decoder
of VAE, which helps to model the dependency structure
in observed data. However, none of them can be directly
applied to inference involving discrete latent variables.

Structured discrete latent variable models. Construct-
ing latent variable models with structured discrete vari-
ables has been discussed in several recent works. For
example, Corro & Titov (2019) propose a structured dis-
crete latent variable model for semi-supervised depen-
dency parsing. Yin et al. (2018) introduce StructVAE, a
tree-structured discrete latent variable model for semantic
parsing. However, all these works aim at building models
with specific latent structures for particular applications,
while we focus on more general settings. Another ex-
ample is discrete VAE (Rolfe, 2017). The way that this
model accommodates the correlation between discrete
latent variables is substantially different from our model:
discrete VAE assumes an RBM prior and imposes an au-
toregressive hierarchy in the approximate posterior of dis-
crete latent variables. Moreover, discrete latent variables
in discrete VAE are augmented with a set of auxiliary
continuous random variables and the conditional distribu-
tion of the observations only depends on the continuous
latent space, while the observed variables in our model
are directly conditioned on discrete latent variables.

3 BACKGROUND
To provide the necessary background, we begin with a
short review of VAE and Relaxed Bernoulli distribution.

3.1 Variational Auto-Encoder (VAE)
Let x represent observed random variables and z denote
low-dimensional latent variables. The generative model
is defined as p(x, z) = pθ(x | z)p(z), where θ is a set of
model parameters such as weights and biases of a decoder
neural network. Given a training set X = {x1, . . . ,xN},
the model is trained by maximizing the marginal log-
likelihood with respect to θ:

log p(X)=

N∑
i=1

log p(xi)=

N∑
i=1

log

∫
pθ(xi | z)p(z)dz.

(1)



However, marginalization over the latent variable z is typ-
ically intractable. To sidestep this issue, VAE (Kingma &
Welling, 2014) employs a parametric variational distribu-
tion qφ(z | x), referred to as an encoder, to approximate
the true but intractable posterior pθ(z | x). A variational
lower-bound, also known as the evidence lower bound
(ELBO), is then maximized as a surrogate objective in-
stead of directly optimizing the marginal log-likelihood:

log p(x) ≥ L(x,θ,φ) = Eqφ(z|x)[log pθ(x | z)]

−KL(qφ(z | x) ‖ p(z)).
(2)

To apply gradient-based optimization methods, one has
to estimate the gradient of the first term in the ELBO,
i.e.,∇θ,φEqφ(z|x)[log pθ(x | z)]. Unbiased gradient with
respect to θ can be easily obtained with a Monte Carlo
gradient estimator, but unbiased gradient with respect toφ
is more difficult to compute. A reparameterization trick is
commonly applied, which aims to represent the sampling
routine z ∼ qφ(z | x) as a deterministic and differentiable
function z = fφ(ε,x) of an auxiliary random variable ε
with a parameter-independent base distribution q(ε). In
this way, the Monte Carlo estimation of the expectation
in Eq. (2) becomes differentiable with respect to φ. More
specifically, the gradient can be estimated by:

∂

∂φ
Eqφ(z|x)[log pθ(x | z)] = Eq(ε)

[
∂

∂φ
log pθ(x | fφ(ε,x))

]

≈
1

M

M∑
m=1

∂

∂φ
log pθ(x | fφ(εm,x)),

(3)
where ε1, . . . , εM

i.i.d.∼ q(ε). In many cases, the encoder
qφ(z | x) is assumed to take a simple form of fully fac-
torized Gaussian, i.e., for a d-dimensional latent variable,

qφ(z | x) =

d∏
j=1

qφ(zj | x) ∼ N (µφ(x),diag(σ2
φ(x)).

(4)

To reparameterize z ∼ qφ(z | x), one only needs to draw
a standard d-dimensional Gaussian random vector and
then perform an affine transformation. If the prior p(z) is
also assumed to be a Gaussian, the KL divergence term
in Eq. (2) can be computed analytically. In addition to
the Gaussian distribution, the reparameterization trick can
also be generalized to distributions in the location-scale
family or distributions with a tractable inverse cumulative
distribution function (CDF).

3.2 Relaxed Bernoulli Distribution

The reparameterization trick cannot be directly applied
to discrete random variables as there is no differentiable
function to transform a base distribution to a discrete dis-
tribution. Concrete distribution (Maddison et al., 2017;

Jang et al., 2017) resolves this issue with a relaxation of
the categorical distribution based on the Gumbel-Softmax
trick. The binary special case, referred to as the Relaxed
Bernoulli (or Binary Concrete) distribution (Maddison
et al., 2017, Appendix B), can be considered as a contin-
uous relaxation or approximation of the Bernoulli distri-
bution, with support on the unit interval (0, 1). One key
property of the Relaxed Bernoulli distribution is that it
can be reparameterized, as the sampling procedure for
B ∼ RelaxedBernoulli(α, λ) can be described as:

U ∼ Uniform(0, 1),

L = log(α) + log(U)− log(1− U),

B =
1

1 + exp(−L/λ)
,

(5)

where α ∈ (0,∞) is the location parameter and λ ∈
(0,∞) is the temperature parameter that controls the de-
gree of approximation. As λ → 0, the random variable
B converges to Bernoulli with parameter α/(1 + α); as
λ→∞, the distribution of B becomes degenerate at 0.5.
RelaxedBernoulli(α, λ) can also be directly reparameter-
ized from a logistic random variable L ∼ Logistic(0, 1),
followed by an addition of log(α), a division by λ, and a
sigmoid transformation.

4 RELAXED MULTIVARIATE
BERNOULLI

Generalizing the Relaxed Bernoulli distribution to the
multivariate case is not straightforward, as it is difficult
to directly specify its correlation structure in the form of
a covariance matrix, in contrast to the multivariate Gaus-
sian or the multivariate t-distribution. As the Relaxed
Bernoulli distribution can be reparameterized by apply-
ing a deterministic and differentiable transformation to a
Uniform(0, 1) random variable (Eq. (5)), we propose to
use the Gaussian copula to characterize the correlation be-
tween multiple Uniform(0, 1) random variables, so that
their dependencies can be transferred to multiple Relaxed
Bernoulli variables.

A copula (Nelsen, 2007) is a multivariate cumulative dis-
tribution function of (U1, U2, ...., Ud) over the unit cube
[0, 1]d with uniform marginals, i.e., Uj ∼ Uniform(0, 1)
for j = 1, . . . , d. An important member of the copula
family is the Gaussian copula, which is constructed from
a multivariate Gaussian distribution. Given a correlation
matrix R ∈ [−1, 1]d×d, the Gaussian copula CR with
parameter R can be written as

CR(U1, U2, ...Ud)=ΦR(Φ−1(U1),Φ−1(U2), . . . ,Φ−1(Ud)),
(6)

where ΦR stands for the joint CDF of a multivariate Gaus-
sian distribution with mean vector 0 and covariance ma-



Algorithm 1: Sampling from RelaxedMVB
Input: d: dimension of the distribution

α = (α1, α2, . . . , αd): location vector
Σ ∈ Rd×d: PSD covariance matrix with σ2

j

as the jth diagonal element
λ: temperature

1 Draw a standard normal sample: ε ∼ N (0, Id)
2 Compute L = CholeskyDecomposition(Σ)
3 Generate a multivariate Gaussian vector: g = Lε
4 Apply element-wise Gaussian CDF Φσj

with mean
zero and variance σ2

j :

Uj = Φσj
(gj), j = 1, . . . , d

5 Apply inverse CDF of the logistic distribution:

lj = log(αj)+log(Uj)−log(1−Uj), j = 1, . . . , d

6 Apply the sigmoid function:

Bj =
1

1 + exp(−lj/λ)
, j = 1, . . . , d

returnB = (B1, . . . , Bd) ∈ (0, 1)d

trix equal to the correlation matrix R, and Φ−1 is the
inverse CDF of the standard univariate Gaussian distri-
bution. As a consequence, the Gaussian copula allows
for generating a vector of correlated random variables
(U1, U2, ...Ud) on the unit cube with uniformly distributed
marginals.

We propose to combine the Gaussian copula and the
Relaxed Bernoulli to create a continuous relaxation of
the multivariate Bernoulli distribution that allows for
inter-dimensional dependence. We name this distribu-
tion after RelaxedMVB, a relaxation of the multivariate
Bernoulli, and it is parameterized by a location vector
α = (α1, α2, . . . , αd) ∈ (0,∞)d, a covariance matrix
Σ ∈ Rd×d, and a temperature λ ∈ (0,∞). The sampling
procedure for B ∈ (0, 1)d ∼ RelaxedMVB(α,Σ, λ)
is summarized in Algorithm 1. Similar to the Relaxed
Bernoulli distribution, sampling from RelaxedMVB is
also differentiable with respect to its parameters α and
Σ, and the sampling procedure can be interpreted as a
deterministic transformation of a standard multivariate
Gaussian random variable ε ∼ N (0, Id).

In practice, the covariance matrix Σ is typically predicted
from each observation x with an encoder network. Ad-
ditional effort is required to ensure that Σ is positive
semi-definite (PSD). We propose different parameteri-
zation strategies, including low-rank approximation and
Cholesky decomposition, for Σ in different applications.
More details will be discussed in the next section.

5 APPLICATIONS

We demonstrate the application of RelaxedMVB in two
tasks: density estimation with Bernoulli VAE and semi-
supervised multi-label classification.

5.1 Density Estimation with Bernoulli VAE

In this task, our goal is to learn a VAE with Bernoulli
latent variables to fit a distribution for a set of training
samples, referred to as density estimation in Maddison
et al. (2017). Our generative model and variational poste-
rior distribution are specified as follows:

pθ(x, z) = pθ(x | z)p(z),

p(z) =

d∏
j=1

Bernoulli(zj ; 0.5),

qφ(z | x) ≈ RelaxedMVB(αφ(x),Σφ(x), λ).

(7)

pθ(x | z) is a fully factorized multivariate Bernoulli (for
binary data) or Gaussian (for continuous-valued data)
whose distribution parameters are outputs of the decoder
network. αφ(x) and Σφ(x) are represented as two sep-
arate encoder networks. Both the decoder and encoder
networks contain two hidden layers, with 512 and 256
units respectively. Furthermore, the temperature λ is an-
nealed using a similar schedule proposed in Jang et al.
(2017): λ = max(0.5, exp(−τt), where t stands for the
training step and λ is updated every T steps. In our exper-
iments, we set T = 100 and τ = 3e−5.

Notice that directly inferring the full covariance matrix
Σ would require d(d + 1)/2 parameters, where d is the
dimension of the latent variable z. To reduce the number
of parameters, we parameterize Σ using a low-rank matrix
V and a vector σ2:

Σ = VVT + diag(σ2),

V ∈ (−1, 1)
(d,r)

,σ2 ∈ Rd+,
(8)

where r ≤ d is a hyperparameter controlling the rank of
V. In this way, Σ is guaranteed to be positive definite.
We use tanh and ReLU as the activation functions for V
and σ2 respectively so as to ensure that they are within a
valid range.

We train our model by optimizing the ELBO in Eq. (2)
and compare its performance with a baseline model in
which the variational posterior qφ(z | x) is approximated
by a factorized Relaxed Bernoulli (Jang et al., 2017; Mad-
dison et al., 2017). In both models, we choose to approx-
imate the KL divergence term in the ELBO by comput-
ing the KL divergence between the discretization of the
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Figure 1: Test loss on the MNIST and Omniglot datasets.
The model without copula (dashed line) refers to the
baseline in which the variational posterior qφ(z | x) ≈∏d
j=1 RelaxedBernoulli(αφ(x)j , λ).

relaxed posterior and the discrete uniform prior, which
corresponds to Eq. (22) in Appendix C of Maddison et al.
(2017) and was also used in the official implementation
of categorical VAE with the Gumbel-Softmax estima-
tor1 (Jang et al., 2017).

We conduct the experiments on the MNIST (LeCun et al.,
1998) and Omniglot (Lake et al., 2015) datasets. They are
datasets of 28×28 images of handwritten digits (MNIST)
or letters (Omniglot). For MNIST, we use the standard
train/test split; for Omniglot, we use the binarized pre-
split version provided by Burda et al. (2015).

1See the fifth code cell in the notebook available at https:
//github.com/ericjang/gumbel-softmax/blob/
master/Categorical%20VAE.ipynb.
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Figure 2: Test loss on MNIST with d = 100 as a function
of the hyperparameter r.

original
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Figure 3: Visualization of the reconstruction result on the
test set. Shown in the first row are the original digits and
letters. The remaining rows compare the reconstruction
quality in different dimensions of the latent space.

We experiment with three different sizes of the latent
dimension d ∈ {20, 40, 100}. The hyperparameter r is
set to be 5, 10, and 20, respectively. Figure 1 shows the
test loss in terms of the negative log-likelihood (NLL). It
can be observed that our model outperforms the baseline
in all the settings and on both datasets, with the most
significant improvement achieved at a lower-dimensional
latent space (d = 20). We also investigate the effect of the
hyperparameter r on the MNIST dataset with d = 100.
As Figure 2 shows, the test loss exhibits a typical U-
shaped pattern with the increase of r.

The significant improvement in the test loss can also be
reflected in the reconstructed samples on the test set, as
shown in Figure 3. By capturing the correlation struc-
ture in the latent space, our model is able to reconstruct
the original digits and letters with better quality than the
baseline without considering correlation. Consistent with
the observation in Figure 1, the benefit of modeling inter-
dimensional dependencies is more evident when the latent
variable is in a lower-dimensional space.

We argue that the inter-dimensional correlation through
the covariance matrix of the Gaussian copula helps to
capture the spatial structure in the images, which allows
our model to learn the distribution of images even with
a lower-dimensional latent space. By contrast, the com-

https://github.com/ericjang/gumbel-softmax/blob/master/Categorical%20VAE.ipynb
https://github.com/ericjang/gumbel-softmax/blob/master/Categorical%20VAE.ipynb
https://github.com/ericjang/gumbel-softmax/blob/master/Categorical%20VAE.ipynb
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Figure 4: Visualization of the covariance matrix learned
from MNIST. We choose the 20-dimensional model as
an illustration, i.e., d = 20,Σ ∈ R20×20. Covariance
matrices of different digits are highlighted in different
colors. It can be observed that the embeddings for digit 7,
4, and 9 are close to each other, as these three digits have
similar characteristics.

plex information of the original images cannot be easily
captured by a fully factorized binary latent space of very
few dimensions. To illustrate the structure learned from
the images, we perform t-SNE (van der Maaten & Hin-
ton, 2008) on the upper triangular elements of the covari-
ance matrix Σφ(x) learned from MNIST. The embedding
shown in Figure 4 demonstrates that our model indeed
encodes class-specific and spatial structure information
into the learned covariance matrix.

5.2 Semi-supervised Multi-label Classification

Semi-supervised learning involves training a classifier
with a small subset of labeled samples and a large subset
of unlabeled samples. Kingma et al. (2014) develop a vari-
ation of VAE that exploits the power of deep generative
models for semi-supervised multi-class learning. In this
section, we extend this model to the multi-label setting,
in which each sample can be associated with a subset of
all candidate labels.

5.2.1 Semi-supervised VAE

The structure of our model is similar to the genera-
tive semi-supervised model (M2) proposed in Kingma
et al. (2014). The original model consists of two la-
tent variables: a continuous Gaussian variable z ∈ Rd
representing the content information, and a categorical
variable y representing the class information, which is
observed in the labeled samples. A generative model

p(x, y, z) = pθ(x | y, z)p(y)p(z) is trained to: (1) esti-
mate the density of x; and (2) infer unobserved y with a
classifier network qφ(y | x).

In the multi-label setting, the class label is represented as
a binary vector y ∈ {0, 1}k, where k is the number of all
label candidates. We propose to use our RelaxedMVB to
approximate qφ(y | x) for y ∈ {0, 1}k, which enables us
to capture the correlation between different label candi-
dates and to backpropagate directly with a single sample
from qφ(y | x). The generative semi-supervised model
and the variational posterior are specified as follows:

p(x,y, z) = pθ(x | y, z)p(y)p(z),

p(y) =

k∏
j=1

Bernoulli(yj ; 0.5),

p(z) = N (0, Id),

qφ(y, z | x) = qφ(z | y,x)qφ(y | x),

qφ(y | x) ≈ RelaxedMVB(αφ(x),Σφ(x), λ),

qφ(z | y,x) = N (µφ(y,x),diag(σ2
φ(y,x))).

(9)

pθ(x | y, z) is a multivariate Gaussian distribution with
the mean vector output by the decoder network and an
identity covariance matrix. The ELBO for an unlabeled
sample x is

U(x) = Eqφ(y,z|x)

[
log pθ(x | y, z) + log p(y)+

log p(z)− log qφ(y, z | x)

]
.

(10)

Computing this ELBO and its gradient requires taking ex-
pectation with respect to qφ(y | x). Kingma et al. (2014)
compute the expectation by summing over all possible val-
ues of y, which is impractical in the multi-label setting be-
cause the computational complexity scales exponentially
with the number of label candidates k. However, with
RelaxedMVB that is reparameterizable, both the ELBO
and its gradient can be efficiently estimated by drawing
only a single sample from qφ(y | x), which significantly
reduces the computational cost.

For a sample x with observed label y, the ELBO is

L(x,y) = Eqφ(z|x,y)

[
log pθ(x | y, z) + log p(y)+

log p(z)− log qφ(z | x,y)

]
.

(11)

It is worth noting that qφ(y | x) contributes only to the
ELBO in Eq. (10) for unlabeled samples, so labeled sam-
ples are completely ignored when training this classifier



network. As a solution, Kingma et al. (2014) propose to
add a discriminative term Ep̃l(x,y)[log qφ(y | x)] to the
ELBO in Eq. (11), where p̃l(x,y) is the empirical distri-
bution of labeled samples. The final objective function to
be maximized can be written as:

J =
∑

(x,y)∼p̃l

L(x,y) + c ·
∑

(x,y)∼p̃l

log qφ(y | x)

+
∑
x∼p̃u

U(x),

(12)

where p̃u is the empirical distribution of unlabeled sam-
ples and c is a hyperparameter controlling the relative
weight of the discriminative term.

5.2.2 Discriminative Objective

The discriminative term Ep̃l(x,y)[log qφ(y | x)] in
Eq. (12) plays a very import role in semi-supervised
VAE. In Kingma et al. (2014) where qφ(y | x) ∼
Categorical(αφ(x)), maximizing this term is equivalent
to training a probabilistic classifier whose conditional den-
sity function qφ(y | x) is parameterized by αφ(x), the
output of a network on the labeled samples. However, in
our case, qφ(y | x) ≈ RelaxedMVB(αφ(x),Σφ(x), λ)
is a continuous relaxation and has support on (0, 1)k, as
we would like sampling from qφ(y | x) to be differen-
tiable with respect to α and Σ. As a consequence, the
likelihood becomes zero at observed labels y ∈ {0, 1}k.
A common choice for addressing this issue in the Relaxed
Categorical or Relaxed Bernoulli case is to minimize the
cross-entropy loss2 between the predicted logits αφ(x)
and the ground truth label y. However, applying this tech-
nique to our case only involves updating the parameters of
the encoder network for αφ(x). As a result, the encoder
network for Σφ(x) would be completely ignored during
training.

To address this problem, we propose a sampling-based
training procedure that takes both networks for αφ(x)
and Σφ(x) into account. Our goal is to train qφ(y|x)
so that samples generated from qφ(y|x) are close to the
observed labels measured by the L2 distance. Sampling
from qφ(y|x) is straightforward: we first feed input data x
into the networks forαφ(x) and Σφ(x), and next we gen-
erate a sample ŷ from RelaxedMVB(αφ(x),Σφ(x), λ)
using Algorithm 1. The L2 distance between ŷ and ob-
served label y is then minimized with respect to α and
Σ. Since ŷ is a differentiable and deterministic function
of α and Σ , the gradients of L2 distance can be back-
propagated to both α and Σ (i.e., the reparameterization
trick). As a result, parameters of both networks αφ(x)
and Σφ(x) get updated during backpropagation.

2See the semi-supervised VAE tutorial from the Deep Bayes
summer school: https://github.com/bayesgroup/
deepbayes-2019/tree/master/seminars/day2
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Figure 5: Green solid line: density of the Hard Concrete
distribution transformed from RelaxedBernoulli(α =
1, λ = 0.5) with ζ = −0.2 and γ = 1.2. Blue dashed
line: density of RelaxedBernoulli(α = 1, λ = 0.5).

Recall that samples from qφ(y|x) are in (0, 1)k because
of the relaxation, while the observed labels are in {0, 1}k.
As a result, generated samples close to 0 or 1 but not
exactly binary would incur a loss. For example, given
the observed label y = [1, 0] and sampled ŷ = [0.9, 0.1]
from qφ(y|x), the L2 loss in this case could be unnec-
essary as it may be caused by the continuous nature of
RelaxedMVB instead of poorly learned α and Σ. In
order to have a better measure of the distance between
generated samples and observed labels, we propose to
apply a differentiable transformation on each generated
sample ŷ so that the resulting ỹ becomes closer to binary.
Here, we adopt the idea of the Hard Concrete distribu-
tion proposed in Louizos et al. (2018): given a sample
ŷ ∈ (0, 1)k from RelaxedMVB, we first stretch each di-
mension of ŷ into a larger interval (γ, ζ), then we apply
a hard-sigmoid on it to clip it back into [0, 1]k :

ȳj = ŷj(ζ − γ) + γ, ỹj = min(1,max(0, ȳj)). (13)

As Figure 5 illustrates, the probability density of ỹ is
now more concentrated at 0 and 1. As we will show in
Section 5.2.4, applying this differentiable transformation
is crucial for the overall performance.

5.2.3 Experimental Setup

We test our model on the CelebA dataset of celebrity im-
ages (Liu et al., 2015). Each image can be associated with
multiple facial attributes, such as smiling and wearing
eyeglasses. We randomly select 80, 000 images from the
dataset and crop them to the size of 64×64. We then man-
ually choose 25 attributes out of the original 40 attributes
to perform semi-supervised multi-label classification. A
different subset of 2, 000 images are used as the test set.

The encoder network is composed of a three-layer convo-
lution neural network (CNN) followed by a linear layer

https://github.com/bayesgroup/deepbayes-2019/tree/master/seminars/day2
https://github.com/bayesgroup/deepbayes-2019/tree/master/seminars/day2
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Figure 6: Micro-F1 score on the CelebA dataset under
different supervision rates. The baseline refers to a sim-
ilar model defined in Eq. (9), except that qφ(y | x) ≈∏k
j=1 RelaxedBernoulli(αφ(x)j , λ).

with 256 hidden units. The decoder network is made up of
two linear layers with 256 hidden units and a three-layer
deconvolution network. We use three separate encoder
networks for {µ,σ}, α, and Σ. As for the parameteri-
zation of the covariance matrix Σ, we choose to let the
encoder network directly output its Cholesky factor3 L,
i.e., Σ = LLT .

Models are trained with Adam (Kingma & Ba, 2015) for
a maximum of 80 epochs and are early stopped if test
accuracy does not decrease for 8 consecutive epochs. The
initial learning rate is 5e−4 and is decayed by a factor
of 0.999 every epoch. The temperature λ is annealed
according to λ = max(0.5, λ0τ

t), where λ0 represents
the initial temperature. τ and t stand for the annealing
rate and the epoch respectively. We initialize λ0 = 1 and
set τ = 0.99. The hyperparameter c in the discriminative
term of Eq. (12) is set to be 512. The dimension of z is
chosen to be d = 32 for all the experiments.

5.2.4 Classification Result

We use a variant of semi-superverised VAE defined in
Eq. (9) as the baseline model, in which the variational
posterior qφ(y | x) is instead approximated by a factor-
ized Relaxed Bernoulli (Jang et al., 2017; Maddison et al.,
2017).

We compare the classification accuracy of our model with
the baseline under the supervision rate ranging from 0.05
to 0.6. We also evaluate a variant of our model that does
not apply the differentiable transformation (13). The ac-

3We choose to parameterize the covariance matrix with its
Cholesky factor instead of a low-rank approximation because
the low-rank approach does not reduce the number of parameters
significantly in this scenario, where k = 25. When the number
of attributes becomes larger, one should consider using low-rank
approximation as in Eq. (8).

curacy is evaluated by the micro-F1 score. As shown
in Figure 6, our model outperforms the baseline across
all the ranges of the supervision rate, with the most sig-
nificant improvement occurring in the regime of higher
supervision rate. We believe this is because when the
number of labeled samples is small, the parameters of
the encoder network Σφ(x) cannot be well estimated
with a limited amount of labeled samples. Figure 6 also
shows that the differentiable transformation in Eq. (13) is
essential for achieving better prediction performance.

5.2.5 Inferring the Correlation of Attributes

Since we model inter-attribute dependencies via the Gaus-
sian copula, we can use our trained model to infer the
correlation matrix between different attributes on the test
set. The procedure is as follows: we first discretize the
sample generated from qφ(y | x) for each x in the test set
and then we compute the empirical correlation matrix on
all the samples. This inferred correlation matrix is then
compared with the empirical correlation matrix computed
on the ground truth labels of the test set. With 20 percent
of the labeled samples, our inferred correlation matrix
is able to have 281 out of 300 attribute pairs with a cor-
rect sign. Furthermore, the average L2 distance between
the two matrices is 0.0017. As an illustration, we plot a
subset of both correlation matrices in Figure 7.

5.2.6 Conditional Generation

Recall that our generative model is specified as
p(x,y, z) = pθ(x | y, z)p(y)p(z). To generate a new
face image, we fix y to be a binary vector that represents
a set of desired facial attributes, then we sample a con-
tinuous variable z from the prior p(z), and finally pass
them to the learned decoder pθ(x | y, z) to generate an
observation x. Figure 8 shows generated faces for a set
of selected attribute combinations, demonstrating that the
decoder can well capture the underlying class structure of
the data.

6 CONCLUSION

We present RelaxedMVB, a relaxation of the multivariate
Bernoulli distribution that supports reparameterization.
The proposed distribution employs a Gaussian copula to
allow inter-dimensional correlation to be captured. When
RelaxedMVB is integrated into variational auto-encoder,
the resulting models show superior performance in two
tasks: density estimation and semi-supervised multi-label
classification. In future work, we plan to explore more
applications of RelaxedMVB. Moreover, it would be inter-
esting to see if our approach can be combined with other
gradient estimators, such as RELAX (Grathwohl et al.,
2018) and direct optimization through arg max (Lorber-
bom et al., 2019).



(a) Empirical correlation matrix. (b) Inferred correlation matrix.

Figure 7: Comparison between the empirical correlation matrix computed on the ground truth labels of the test set and
the correlation matrix inferred by our model.

(a) Male

(b) Female

Figure 8: Illustration of conditional generation.
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