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Abstract

Despite the success of the recent nonlinear ten-
sor decomposition models based on Gaussian
processes (GPs), they lack an effective way
to deal with streaming data, which are impor-
tant for many applications. Using the stan-
dard streaming variational Bayes framework
or the recent streaming sparse GP approxima-
tions will lead to intractable model evidence
lower bounds; although we can use stochastic
gradient descent for incremental updates, they
are unreliable and often yield poor estimations.
To address this problem, we propose Stream-
ing Nonlinear Bayesian Tensor Decomposition
(SNBTD) that can conduct high-quality, closed-
form and iteration-free updates upon receiving
new tensor entries. Specifically, we use random
Fourier features to build a sparse spectrum GP
decomposition model to dispense with complex
kernel/matrix operations and to ease posterior
inference. We then extend the assumed-density-
filtering framework by approximating all the
data likelihoods in a streaming batch with a sin-
gle factor to perform one-shot updates. We use
conditional moment matching and Taylor ap-
proximations to fulfill efficient, analytical fac-
tor calculation. We show the advantage of our
method on four real-world applications.

1 Introduction

Tensor decomposition is a fundamental framework for
multiway data analysis. While many decomposition meth-
ods have been proposed (Chu and Ghahramani, 2009;
Kang et al., 2012; Choi and Vishwanathan, 2014), they
are mostly based on a multilinear form, and cannot esti-
mate more complex, nonlinear relationships. To overcome
this limitation, Zhe et al. (2016b) proposed a Bayesian

Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI), PMLR volume 124, 2020.

nonlinear tensor decomposition model that uses nonpara-
metric function learning, i.e., Gaussian process (GP) (Ras-
mussen and Williams, 2006), to flexibly capture a variety
of nonlinear relationships in data. On several benchmark
datasets, the nonlinear model has shown a substantial im-
provement upon the multilinear methods in missing value
prediction tasks (i.e., tensor completion).

However, a critical bottleneck of the nonlinear decom-
position is that it lacks an effective strategy to handle
streaming data. Real-world applications are often satu-
rated with high-velocity data streams (Du et al., 2018). It
is extremely expensive or even infeasible to run the de-
composition every time from scratch upon receiving a set
of new entries. Therefore, we need an effective streaming
estimation algorithm to update the model incrementally
and responsively.

A powerful framework is streaming variational Bayes
(SVB) (Broderick et al., 2013) that continuously inte-
grates the current posterior (as a prior) with the incoming
data to obtain the updated posterior in the variational ap-
proximation framework. While Du et al. (2018) have used
SVB to successfully develop the state-of-the-art multilin-
ear streaming decomposition algorithm, SVB does not
work well for the nonlinear decomposition (Zhe et al.,
2016b), which uses sparse variational GPs (Titsias, 2009)
to estimate the latent embeddings and pseudo inputs in
a variational model evidence lower bound (ELBO). To
conduct SVB, we have to incorporate into the ELBO a
variational posterior for the embeddings and pseudo in-
puts. Since they are coupled in the kernel function and
the inverse and log determinant of the kernel matrices, the
ELBO is not analytical and we do not have any closed-
form update. Although we can use stochastic gradient
descent (SGD) instead, due to its unstableness and the
challenge of optimizing the intractable ELBO, SGD often
fails to provide reliable, high-quality posterior updates,
which in turn affects the updates for the subsequent data
and ends up with a poor estimation of the embeddings.
While the recent streaming sparse GP (SSGP) approxima-



tion (Bui et al., 2017) can avoid incrementally updating
the pseudo inputs, introducing a variational posterior of
the embeddings still leads to an intractable ELBO, for
which we may still have to rely on SGD.

To address these issues, we propose SNBTD, a stream-
ing nonlinear Bayesian tensor decomposition approach
that performs high-quality, closed-form, and iteration-free
posterior updates upon receiving new tensor entries, and
hence is highly efficient to process data streams. Specif-
ically, we first use random Fourier features to develop a
nonlinear tensor decomposition model that can be viewed
as a sparse spectral representation of the GP decomposi-
tion model in (Zhe et al., 2016b). We augment the model
with feature weights to incorporate a linear structure so as
to dispose of complex kernel computation and matrix op-
erations. Thereby, we ease the posterior inference while
preserving the nonlinear learning capability. Next, for
efficient and reliable streaming inference, we extend the
assumed-density-filtering (ADF) framework (Boyen and
Koller, 2013) by using one single factor to approximate
the likelihood of all the entries in each streaming batch.
In this way, we avoid iteratively optimizing many approxi-
mation factors and instead perform real-time, one-shot up-
date that is much faster. Finally, to bypass the intractable
moment matching, we use conditional moment match-
ing, quadrature and Taylor expansions to fulfill efficient,
closed-form calculation of the approximate factor.

For evaluation, we examined SNBTD on four real-world,
large-scale applications, including both binary and contin-
uous tensors. We compared with POST (Du et al., 2018),
the state of the art streaming tensor decomposition based
on the multilinear, CP form (Harshman, 1970), and non-
linear streaming decomposition implemented with SVB
and SSGP approximations. In both running and final pre-
dictive performance, our method consistently outperforms
all the competing approaches, mostly by a large margin.
Meanwhile, SNBTD spends running time much less than
or comparable to POST, and is much faster than the one-
by-one update as in ADF and the alternative nonlinear
streaming decomposition methods.

2 Background
Tensor Decomposition. We denote a K-mode tensor
by Y ∈ Rd1×...×dK . Each mode k consists of dk
entities or nodes. We index each entry with a tuple
i = (i1, . . . , iK) and denote the entry value by yi. For
decomposition, we introduce K latent embedding matri-
ces U = {U1, . . . ,UK} to represent the entities in all
the K modes. Each Uk is dk × rk and the rows are the
embedding vectors of the nodes in mode k. We aim to
use U to reconstruct the observed entries in Y . A clas-
sical method is Tucker decomposition (Tucker, 1966),
which assumes Y = W ×1 U1 ×2 . . . ×K UK , where

W ∈ Rr1×...×rK is a parametric tenor and ×k is the
mode-k tensor-matrix product (Kolda, 2006), which is
very similar to matrix-matrix product. When we set
all rk = r and W to be diagonal, Tucker decomposi-
tion becomes CANDECOMP/PARAFAC (CP) decompo-
sition (Harshman, 1970).

While many tensor decomposition methods have been
proposed, e.g., (Chu and Ghahramani, 2009; Kang et al.,
2012; Choi and Vishwanathan, 2014), most of them are in-
herently based on the Tucker or CP decomposition forms.
However, since both forms are mutilinear to the embed-
dings, they are incapable of capturing more complex,
nonlinear relationships in data. To overcome this limi-
tation, Zhe et al. (2016b) proposed a nonparametric ten-
sor decomposition model, which learns the entry value
as a (possible) nonlinear function of the embeddings,
yi = f(xi), where xi = [U1(i1, :), . . . ,U

K(iK , :)] is
the concatenation of the latent embeddings associated
with each entry i. To flexibly estimate f(·), Zhe et al.
(2016b) assigned a Gaussian process (GP) (Rasmussen
and Williams, 2006) prior. Therefore, for any collec-
tion of observed entries, D = {i1, . . . , iN}, the function
values f = [f(xi1), . . . , f(xiN )]> follow a multivariate
Gaussian distribution,

p(f |U) = N (f |0,KNN ) (1)

where KNN is a kernel matrix on X = [xi1 , . . .xiN ]>

and each element is a covariance (kernel) function of the
corresponding input vectors: [KNN ]n,t = κ(xin ,xit).
Given f , we use a noise model p(y|f) to generate the
observed entry values y. For example, we can use a
Gaussian noise model for continuous entries, p(y|f) =
N (y|f , τ−1I), where τ is the inverse noise variance.
When the number of observed entries N is large, the
computation of the N ×N covariance matrix K (and its
inverse/determinant) in (1) will be prohibitively costly.
To scale up to large data, Zhe et al. (2016b) followed the
sparse variational GP framework (Titsias, 2009; Hensman
et al., 2013) to derive a tractable variational model evi-
dence lower bound (ELBO), by introducing a small set
of M pseudo inputs Z = {z1, . . . , zM} (M � N ). Take
continuous tensors as an example. The ELBO is given by

L =
1

2
log |KMM | −

1

2
log |KMM + τKMNKNM |

+
τ

2
tr(K−1MMKMNKNM )− τ

2

N∑
t=1

knn +
N

2
log(τ)

+
1

2
τ2y>KNM (KMM + τKMNKNM )−1KMNy

− τ

2

∑
n

yn + const, (2)

where KMM is the kernel matrix on the pseudo inputs
Z, KMN is the cross kernel between Z and X, each



[KMN ]mn = κ(zm,xin), KNM = K>MN and knn =
κ(xin ,xin). Now, all the inverse and (log) determinants
are calculated on small matrices of size M ×M . The
computation is scalable to large N . We maximize the
ELBO (2) to estimate the embeddings U .

Streaming Inference. Streaming variational Bayes
(SVB) (Broderick et al., 2013) is a general posterior
inference framework for streaming data. Denote by
θ all the latent random variables in the model, by Dt
all the observed data before the next streaming batch
Bt arrives, and by q(θ) the current variational poste-
rior, i.e., q(θ) ≈ p(θ|Dt). According to Bayes’ rule,
we have p(θ|Dt ∪ Bt) ∝ p(θ|Dt)p(Bt|θ). Therefore,
to incrementally update the posterior after receiving
Bt, SVB uses q(θ) as the prior and finds q∗(θ) =
argminq̂(θ) KL

(
q̂(θ)‖q(θ)p(Bt|θ)/C

)
, where C is the

normalization constant and KL is the Kullback-Leibler
divergence. This is equivalent to maximizing a vari-
ational ELBO (Wainwright et al., 2008), q∗(θ) =
argmaxq̂ −KL

(
q̂(θ)‖q(θ)

)
+ Eq̂(θ) log[p(Bt|θ)]. Then

SVB set q∗(θ) to q(θ) to finish the update. At the very
beginning, we set q(θ) to be the original prior p(θ) in
the model. Every time when a new batch of data points
arrive, we repeat this procedure to update the variational
posterior. For convenience and efficiency, we usually use
a factorized posterior q(θ) =

∏
i q(θi) and iteratively

perform mean-field update for each q(θi). Note that we
never need to retrospectively access the previously seen
data — they are summarized in the current posterior.

3 Model
While SVB is powerful, it does not support point estima-
tions. To apply SVB for nonlinear decomposition (see (1)
and (2)), we have to treat the embeddings U and pseudo
inputs Z as random variables. That means, we need to in-
troduce a variatonal posterior, q(U ,Z), and take the expec-
tation of L in (2) to construct a new ELBO for streaming
updates, L+ = −KL

(
q(U ,Z)‖p(U ,Z)

)
+ Eq(U,Z)[L],

where p(U ,Z) is the current variational posterior (now
served as the prior). However, since U and Z are cou-
pled in kernels and therefore in the matrix inverse and
log determinant, the expectation Eq(U,Z)[L] is not analyt-
ical. We do not have any efficient, closed-form updates to
optimize L+. Although we can use stochastic gradient de-
scent (SGD) (with the reparameterization trick (Kingma
and Welling, 2013)), it often fails to provide a reliable,
high-quality estimation of the variational posterior. First,
the intractable L+ is complex and challenging to opti-
mize. Second, without knowing the explicit form of L+,
it is hard to diagnosis the convergence of the stochastic
optimization. The algorithm may stop at a place far from
local optimums. The inferior posterior estimation can
further affect the incremental updates in the subsequent
data stream, finally leading to very poor learning results.

Recently, Bui et al. (2017) proposed a streaming sparse
GP approximation that can avoid estimating the poste-
rior of the pseudo inputs. However, for streaming tensor
decomposition, we still need to plug in a variational poste-
rior of the embeddings that are coupled in the kernel and
complex matrix operations in the ELBO (which is even
more complex than (2), see (8) in their paper). The new
ELBO is therefore also intractable and we may still have
to seek for stochastic optimization.

To address these issues, we propose a novel Bayesian
nonlinear tensor decomposition model. Our model has
the same nonlinear function learning capability, but the
log joint probability is free of the complex kernel and
matrix operations, and therefore the posterior inference
is much easier. We then develop efficient, closed-form
updates for streaming posterior inference. Our model is
presented as follows.

3.1 Nonlinear Decomposition with Random
Fourier Features

We first consider the spectral representation of a stationary
kernel (or covariance) function κ(a1,a2) = κ(a1 − a2).
According to Bochner’s theorem (Akhiezer and Glazman,
2013), κ(·) is the Fourier transform of a non-negative
measure ω(s). When κ(·) is scaled properly, ω(s) is pro-
portional to a probability density, ω(s) = κ(0)pω(s),
which is called the spectral density of κ(·). Based
on this fact, we have κ(a1,a2) = κ(a1 − a2) =∫
ω(s)eis

>(a1−a2)ds = κ(0)Epω(s)[e
is>a1

(
eis

>a2
)†

],
where † denotes the complex conjugate. Since the kernel
function is essentially an expectation, we can draw M
independent frequencies S = [s1, . . . , sM ]> from pω(·)
and approximate κ(a1,a2) as a Monte-Carlo summation,

κ(a1,a2) ≈ κ(0)

M

M∑
m=1

eis
>
ma1
(
eis

>
ma2
)†

=
κ(0)

M

M∑
m=1

(
cos(s>ma1) cos(s>ma2) + sin(s>ma1) sin(s>ma2)

)
.

Therefore, we have

κ(a1,a2) ≈ k(0)

M
φ(a1)>φ(a2) (3)

where φ(·) is a 2M dimensional, random Fourier fea-
ture vector. Given any input a, we obtain φ(a) =
[cos(s>1 a), sin(s>1 a), . . . , cos(s>Ma), sin(s>Ma)]>.

Based on this kernel approximation, we propose our non-
linear tensor decomposition model. Specifically, given the
collection of observed tensor entries D = {i1, . . . , iN},
we first sample M independent frequencies S as afore-
mentioned. Next, we sample a feature weight vector w

from p(w) = N (w|0, k(0)M I). Then we sample each



observed entry in from a noise model with a linear struc-
ture, p(yin |U ,w,S) = p

(
yin |w>φ(xin)

)
. For example,

we use p
(
yin |w>φ(xin)

)
= Φ

(
(2yin − 1)w>φ(xin)

)
for binary tensors, where Φ(·) is the cumulative den-
sity function (CDF) of the standard normal distribu-
tion, and for continuous tensors, p(yin |w>φ(xin)) =
N (yin |w>φ(xin), τ−1), where τ is the inverse noise
variance. Here xin is the concatenation of the latent em-
beddings associated with entry in.

In our paper, we will focus on the RBF kernel,
k(xim ,xin) = exp(−‖xim−xin‖

2

σ2 ). Since the inputs con-
sist of the latent embeddings. We can let the length-scale
σ be absorbed into the latent embeddings and only es-
timate the embeddings. The results are equivalent. In
other words, we can simply set σ to 1. Then we have
κ(0) = 1 and pω(·) = N (·|0, I) (from the Fourier trans-
form of the RBF kernel). We assign a standard Gaussian
prior over the embeddings U . For binary tensors, the joint
probability of our model is

p(U ,S,w,D) =

K∏
k=1

dk∏
j=1

rk∏
t=1

N (ukjt|0, 1)

·
M∏
m=1

R∏
j=1

N (smj |0, 1)N (w|0,M−1I)

·
∏
i∈D

Φ
(
(2yi − 1)w>φ(xi)

)
, (4)

where smj = [S]mj , ukjt = [Uk]jt and R =
∑
k rk.

For continuous entries, we place a Gamma prior over the
inverse noise variance τ . The joint probability is given by

p(U ,S,w, τ,D) =

K∏
k=1

dk∏
j=1

rk∏
t=1

N (ukjt|0, 1)

·
M∏
m=1

R∏
j=1

N
(
smj |0, 1

)
N (w|0,M−1I)

·Gamma(τ |c0, d0)
∏
i∈D

N (yi|w>φ(xi), τ
−1). (5)

Note that if we marginalize out the feature weights w, we
will recover the kernel matrix and obtain a joint multivari-
ate Gaussian likelihood of y = [yi1 , . . . yiN ] similar to
(1). Hence, our model is essentially a sparse spectrum ap-
proximation of the GP decomposition model in (1), where
the kernel is approximated with the inner-product of the
random Fourier features (3). Here, we keep w and the lin-
ear structure in the likelihood so that our joint probability
will not include any complicated kernel computation and
matrix operations, such as inverse and log determinant.
Therefore, it is much simpler than the ELBO of the varia-
tional sparse GP (see (2)), and the posterior inference of
the embeddings can be easier and more convenient.

4 Algorithm
We now present SNBTD, the streaming posterior infer-
ence algorithm of our nonlinear tensor decomposition
model. In general, we assume the observed tensor entries
are streamed in a series of small batches, {B1,B2, . . .}.
Different batches do not necessarily include the same
number of entries. We aim to update the posterior of
the latent embeddings U , the weights w and the frequen-
cies S upon receiving each batch Bt, without using the
previously accessed batches {B1, . . . ,Bt−1}.
4.1 One-Shot Posterior Update
First, to avoid optimizing intractable ELBOs as in SVB,
we explore assumed-density-filtering (ADF) (Boyen and
Koller, 1998), which processes data points one by one
and upon each data point applies expectation propaga-
tion (EP) (Minka, 2001) to update the posterior (analyt-
ically). Specifically, let us consider binary tensors as
an example. When a new data point (i, yi) arrives, we
first replace the prior in our model (4) by the current
posteriors q(U ,w,S). We then combine with the likeli-
hood of the data point to construct a blending distribution,
pb(U ,S,w) ∝ q(U ,S,w)Φ

(
(2yi − 1)w>φ(xi)

)
. Since

the blending distribution is intractable to compute, we
project it to the exponential family to obtain the updated
posterior (with a nice and easy form). The projection is
done by moment matching, which is the key step of EP
and essentially minimizes the KL divergence between pb
and the approximate posterior. To illustrate it, suppose
q(U ,w,S) includes a fully factorized Gaussian distribu-
tion for U . To update each q(ukjt) = N (ukjt|µkjt, vkjt),
we need to compute the first and second order moments,
Epb [ukjt] and Epb [(ukjt)

2], and find a Gaussian distribution
with the same moments. The matched Gaussian is the up-
dated posterior. Obviously, this is can be done by setting
µkjt = Epb [ukjt] and vkjt = Epb [(ukjt)

2]− Epb [ukjt]
2.

Although ADF is efficient, it only handles one data point
at a time. When we receive a batch of entries Bt =
{i1, . . . , iN}, ADF cannot jointly integrate all the data
points to improve the robustness/quality of the posterior
update. To address this problem, one can return to the
standard EP, where we introduce a factor f̂n(U ,S,w) in
the exponential family to approximate the likelihood of
each data point n,

pb(U ,S,w) ∝ q(U ,S,w)
∏

in∈Bt

Φ((2yin − 1)w>φ(xin))

≈ q̂(U ,S,w) ∝ q(U ,S,w)
∏

in∈Bt

f̂n(U ,S,w). (6)

We then iteratively update each approximate factor f̂n
with three steps: (1) computing the calibrating distribu-
tion, q\n ∝ q̂/f̂n, (2) constructing a tilted distribution
∝ q\n(U ,S,w)Φ

(
(2yi − 1)w>φ(xi)

)
, then projecting



it back to the exponential family to obtain q∗(U ,S,w)
via moment matching, and (3) updating the approximate
factor, f̂n ∝ q∗/q\n.

While the standard EP can jointly exploit the information
of the data batch, it needs extra storage for the approxi-
mate factor of each data point and iteratively updates all
the factors. Therefore, it is much more costly than ADF.
In order to unify the benefits of both ADF and EP, we
use one single factor to approximate the product of all the
likelihoods,

f̂(U,S,w) ≈
∏

in∈Bt

Φ((2yin − 1)w>φ(xin)).

We then have

pb(U ,S,w) ≈ q̂(U ,S,w) ∝ q(U ,S,w)f̂(U,S,w).

Now the calibrating distribution to update f̂ is simply the
prior (i.e., the current posterior) q(U ,S,w), and so the
tilted distribution is pb(U ,S,w). We then use moment
matching to obtain q∗(U ,S,w). Since there is only
one approximate factor and we do not need to update
other factors (iteratively), the optimal f̂ is obtained
by matching the moments just once. Furthermore,
because there are no iterations, we even do not need
to explicitly update f̂ ; instead, we can directly set the
current posterior q(U ,S,w) to q∗(U ,S,w) and prepare
for the next batch. In this way, we fulfill a one-shot
update as in ADF, but we jointly integrate all the data
points to improve the quality/robustness of the posterior
update; our method is even more efficient, because
we do not go through each data point and match the
moments one by one. Similarly, for continuous data, we
use the current posterior q(U ,S,w, τ) as the prior and
construct the blending distribution, pb(U ,S,w, τ) ∝
q(U ,S,w, τ)

∏
i∈Bt
N (yi|w>φ(xi), τ

−1) (see (5)).
We then introduce one single approximate factor
f̂(U,S,w, τ) ≈

∏
i∈Bt
N (yi|w>φ(xi), τ

−1) to
perform the one-shot update.

4.2 Closed-Form Moment Approximation
The next step is to compute the moments from
the blending distribution (pb(U ,w,S) for binary and
pb(U ,w,S, τ) for continuous tensors), to update the pos-
terior upon receiving new entry batch Bt. However, the
exact moments are infeasible to compute, because the
embeddings U and frequencies S are coupled in the non-
linear random Fourier features in the data likelihood (see
(4) and (5)). To address this issue, we use the conditional
moment matching (Wang and Zhe, 2019), Gauss-Hermite
quadrature and Taylor expansion to fulfill an effective,
closed-form moment approximation, based on which we
can conduct highly-efficient and reliable posterior up-
dates.

Specifically, let us first consider binary tensors. We will
use a factorized posterior,

q(U ,S,w) =

K∏
k=1

dk∏
j=1

rk∏
t=1

q(ukjt)

M∏
m=1

R∏
j=1

q(smj) · q(w)

where each q(ukjt) = N (ukjt|µkjt, vkjt), q(smj) =
N (smj |αmj , ρmj) and q(w) = N (w|η,Σ). We first
look into the update of each frequency’s posterior q(smj).
For convenience, we denote θ = {U ,w,S}. To update
q(smj) upon receiving Bt, we observe that the blending
distribution (see (6)) can be decomposed as

pb(θ) = pb(θ\smj
)pb(smj |θ\smj

)

where θ\smj
= θ \ {smj} and pb(smj |θ\smj

) ∝
q(smj)

∏
in∈Bt

Φ
(
(2yin − 1)w>φ(xin)

)
. Therefore, for

the first order moment (i.e., mean), we have

Epb [smj ] = Epb(θ\smj
)Epb(smj |θ\smj

)[smj ]. (7)

To approximate this intractable moment, we first calculate
the conditional moment Epb(smj |θ\)[smj ]. Although it
still is intractable, because the expectation is only taken
over a scalar and all the other random variables (i.e.,
θ\smj

) are fixed, we can analytically represent the condi-
tional moment via Gauss-Hermite quadrature,

Epb(smj |θ\smj
)[smj ] =

∑
j βjγjg(γj ,θ\smj

)∑
j βjg(γj ,θ\smj

)
= h(θ\smj

),

where {γj , βj} are quadrature nodes and weights, g(·) =∏
in∈Bt

Φ
(
(2yi − 1)w>φ(xin)

)
, and the denominator is

the quadrature for the normalizer. Note that the quadrature
nodes are determined by the current posterior q(smj).

The next step is to compute the expectation of the condi-
tional moment Epb(θ\smj

)[h(θ\smj
)], which, however, is

infeasible as well, because the marginal blending distribu-
tion pb(θ\smj

) is intractable. To address this problem, we
observe that due to the factorized posterior structure, the
moment matching is also maintained between pb(θ\smj

)
and q(θ\smj

). In other words, we can assume they are
close in high density regions. Hence, we can use the
current posterior q(θ\smj

) as a surrogate of pb(θ\smj
),

and compute Eq[h(θ\smj
)] instead. Now, with the nice

form of q (in the exponential family), even the expecta-
tion is still intractable, we can apply the first-order Taylor
approximation at the mean,

ĥ(θ\smj
) = h(Eq[θ\smj

])

+∇h(Eq[θ\smj
])>(θ\smj

− Eq[θ\smj
]).

Then we have

Eq[h(θ\smj
)] ≈ Eq[ĥ(θ\smj

)] = h(Eq[θ\smj
]). (8)



We can use the same approach to compute the second
order moment. Therefore, to approximate the moments of
smj , we only need to represent the conditional moment
by quadrature formulas, and replace all the other random
variables inside the quadrature by the mean of their cur-
rent posterior. This is analytical and straightforward. Note
that although we can also use the second-order Taylor ex-
pansion, we did not find improvement in the experiments.
Similarly, we can compute the first/second moments of
all elements U and update each {q(ukjt)} accordingly.

Now we look at q(w). If we choose a fully factor-
ized form for q(w), we can apply the same approach
to update each q(wj). Here we use a joint Gaussian
q(w) = N (w|η,Σ) to preserve the posterior correla-
tions and to further enhance the inference quality. To
achieve a closed-form update, we observe that the like-
lihood of each data point, Φ((2yin − 1)w>φ(xin) =∫
N (zi|w>φ(xin), 1)1(zi(2yi − 1) ≥ 0)dzi where 1(·)

is the indicator function. Therefore, we can augment
the blending distribution and obtain pb(U ,S,w, z) =
q(U ,S,w)N (z|Φw, I)

∏
i∈Bt

1(zi(2yi−1) ≥ 0) where
z = [zi1 , . . . , ziN ] and Φ = [φ(xi1), . . . ,φ(xiN )]>. We
then derive the conditional moments of w based this aug-
mented distribution, which is analytically tractable,

E(w|θ\w) =
(
Σ−1 + ΦΦ>

)−1
(Φz + Σ−1µ),

E(ww>|θ\w) =
(
Σ−1 + ΦΦ>

)−1
+ E(w|θ\w)E(w|θ\w)>. (9)

Note that now θ\w = {S,U , z}. To compute the mo-
ments, we first calculate Epb(z) via conditional moment
matching again. We derive each Epb(zi|U ,S,w) under
pb(zi|w,U ,S) ∝ N (zi|φ(xi)

>w, 1)1
(
zi(2yi−1) ≥ 0

)
and then replace each frequency smj , each latent factor
ukjt and w with their current posterior mean. This is
equivalent to taking the expectation of the first Taylor
approximation of the conditional mean (see (8)). Next,
we substitute Epb(z) and Eq(U) and Eq(S) for z, S and
U , respectively into the conditional moments of w in (9)
to obtain the approximate moments and to update q(w).

For efficiency, we compute all the required mo-
ments in parallel and obtain the new posteriors
{q(ukjt), q(smj), q(w)} simultaneously.

The posterior update for continuous data are similar. We
use the following factorized posterior, q(U ,S,w, τ) =∏K
k=1

∏dk
j=1

∏rk
t=1 q(u

k
jt)
∏M
m=1

∏R
j=1 q(smj)q(w)q(τ),

where each q(ukjt) and q(smj) is a scalar Gaussian,
q(τ) = Gamma(τ |c, d) and q(w) = N (w|η,Σ).
The conditional moments for w are the same as
(9) except that we replace ΦΦ> by τΦΦ> and
Φz by τΦy. The conditional moments of τ are
E(τ |θ\τ ) = (c + N

2 )/(d + 1
2‖y − Φw‖2) and

Var(τ |θ\τ ) = (c + N
2 )/(d + 1

2‖y − Φw‖2)2. We
then substitute Eq(θ\w) and Eq(θ\τ ) for θ\w and θ\τ
respectively, to obtain the approximation of the moments,
and update q(w) and q(τ) accordingly. The updates for
each q(ukjt) and q(smj) are similar to that in the binary
case. Finally, our streaming nonlinear decomposition is
summarized in Algorithm 1 in the appendix.
4.3 Algorithm Complexity
The time complexity of our algorithm in processing one
streaming batch is O

(
N(
∑
k dkrk +MR + 4M2)

)
for

continuous data. Therefore, the time complexity is pro-
portional to N , the size of the streaming batch. The space
complexity is O(

∑
k dkrk +MR+M2) for continuous

data, which is to store the posteriors for the embeddings,
frequencies and feature weights.

5 Related Work
Classical Tucker (Tucker, 1966) and CP (Harshman,
1970) decomposition are multilinear and therefore cannot
estimate complex, nonlinear relationships in data. While
many other approaches have also been proposed (Shashua
and Hazan, 2005; Chu and Ghahramani, 2009; Acar et al.,
2011; Hoff, 2011; Yang and Dunson, 2013; Rai et al.,
2014; Choi and Vishwanathan, 2014; Hu et al., 2015),
they are mostly based on Tucker or CP forms. To over-
come their limitation, several Bayesian nonparametric
decomposition models (Xu et al., 2012; Zhe et al., 2015,
2016a,b) were recently proposed. These methods use GPs
to flexibly estimate a variety of nonlinear relationships
in tensors. Our approach adopts the same GP model-
ing choice as in (Zhe et al., 2016b). The standard GP
is known to be prohibitively costly for large data. Ac-
cordingly, many sparse GP approximations have been
proposed, e.g., (Schwaighofer and Tresp, 2003; Titsias,
2009; Lázaro-Gredilla et al., 2010; Hensman et al., 2013,
2017); see an excellent survey in (Quiñonero-Candela
and Rasmussen, 2005). Zhe et al. (2016b) used the vari-
ational sparse approximation (Titsias, 2009; Hensman
et al., 2013) to develop a distributed estimation algorithm.

Expectation propagation (Minka, 2001) is a powerful
approximate posterior inference algorithm that gener-
alizes the assumed-density-filtering (ADF) (Boyen and
Koller, 1998) and (loopy) belief propagation (Murphy
et al., 1999). EP uses an exponential-family factor to
approximate the likelihood of each data point (and also
the prior) in a probabilistic model, and iteratively update
each approximate factor by moment matching, which is
essentially to minimize a local KL divergence. EP up-
dates are fixed-point iterations to find a stationary point
of the corresponding energy function. The updates in
ADF can be viewed as EP inference for a model including
only one data point. While often being fast and accurate,
EP can be troublesome when the moment matching is
intractable. While in such cases, importance sampling



is a straightforward solution, it is very inefficient and of-
ten unreliable. Recently, Wang and Zhe (2019) proposed
conditional EP that uses conditional moment matching
and Taylor approximations to provide a high-quality, ana-
lytical solution. In our work, to improve the quality and
efficiency for streaming inference, we extend ADF by
approximating the product of all the data likelihoods in
each streaming batch with one single factor, so that we
only need to perform a one-shot update. To fulfill reliable,
closed-form one-shot updates, we then combine condi-
tional moment matching, Gauss-Hermite quadrature and
Taylor approximations.

6 Experiment
6.1 Predictive Performance
Datasets. For evaluation, we examined SNBTD on four
real-world, large-scale datasets. (1) DBLP (Du et al.,
2018), a binary tensor depicting three way bibliography
relationships (author conference, keyword). The tensor
is 10, 000 × 200 × 10, 000, including 0.001% nonzero
entries. (2) ACC (Du et al., 2018), a continue tensor of
size 3, 000×150×30, 000, which was extracted from the
log of a code repository and records the three-way inter-
actions (user, action, resource). The entry values are the
logarithm of the resource access frequencies. The tensor
contains 0.9% nonzero entries. (3) Anime(https:
//www.kaggle.com/CooperUnion/
anime-recommendations-database), a two-
mode binary tensor describing (user, anime) preferences
(each entry value is whether a user likes an anime
or not). The tensor is 25, 838 × 4, 066 and includes
1, 300, 160 observed entries. (4) MovieLen1M (https:
//grouplens.org/datasets/movielens/), a
two-mode continuous tensor of size 6, 040 × 3, 706,
recording (user, movie) ratings. There are 1, 000, 209
observed entries.

Competing methods. We compared with the follow-
ing baselines. (1) POST (Du et al., 2018), the state-of-
the-art streaming tensor decomposition algorithm based
on a probabilistic CP model. It uses streaming varia-
tional Bayes (SVB) (Broderick et al., 2013) to perform
mean-field posterior updates upon receiving newly ob-
served entries. (2) SVB-NTD, SVB based nonlinear ten-
sor decomposition. It introduces a variational posterior
(i.e., fully factorized Gaussian) of the latent embeddings
and pseudo inputs in the sparse variational GP frame-
work (Hensman et al., 2013) to construct an (intractable)
ELBO for streaming inference. It uses the reparameter-
ization trick (Kingma and Welling, 2013) and stochas-
tic gradient descent (SGD) to optimize the ELBO. (3)
SSGP-NTD, nonlinear tensor decomposition based on the
recent streaming sparse GP approximations (Bui et al.,
2017). Again, it uses SGD to optimize the ELBO. (4)
CP-WOPT (Acar et al., 2011), a scalable static CP de-

composition algorithm implemented with gradient-based
optimization. Finally, we also tested our method to pro-
cess streaming entries one by one. We denote this variant
by (5) SNBTD-1.

Parameter Settings. We implemented our methods
(SNBTD and SNBTD-1) with Python + Numpy/Scipy
library, and SVB-NTD and SSGP-NTD with TensorFlow.
For POST, we used the original MATLAB implementa-
tion (https://github.com/yishuaidu/POST).
We set the number of pseudo inputs in SVB/SSGP-
NTD and frequencies in our methods to 128. We used
Adam (Kingma and Ba, 2014) for the stochastic optimiza-
tion in SVB/SSGP-NTD, for which we set the number
of epochs to 100 in processing each streaming batch and
chose the learning rate from {10−5, 5× 10−5, 10−4, 3×
10−4, 5×10−4, 10−3, 3×10−3, 5×10−3, 10−2} on extra
validation datasets. Like our method, SVB/SSGP-NTD
used RBF kernel with the length-scale set to 1, which
is equivalent to letting any free length-scale parameter
be absorbed into the latent embeddings. To compare the
running speed, we ran all the methods on a server with
64GB memory and a single Intel i7-9700K CPU.

We first examined the predictive performance of each
method after processing all the (accessible) tensor entries.
To this end, we sequentially fed a collection of training
entries into every streaming decomposition method, each
time with a small batch. Then we evaluated the prediction
accuracy on the test entries. We fixed the batch size to
256. We used the mean-squared-error (MSE) and area
under ROC curves (AUC) for continuous and binary data,
respectively. For the static decomposition algorithm CP-
WOPT, we ran it on all the training entries. On DBLP
and ACC, we used the same set of training and test entries
as in (Du et al., 2018), including 320K and 1M training
entries for DBLP and ACC respectively, and 100K test
entries for both. We randomly split the observed entries
with the training/test ratio being 1/1 and 9/1 on Anime
and MovieLen1M, respectively. For each streaming de-
composition algorithm, we randomly shuffled the training
entries and then partitioned them into a stream of entry
batches. On each dataset, we repeated the test for 5 times
and computed the average of MSEs/AUCs and standard
deviations. For CP-WOPT, we used a different, random
initialization in each test. We varied the rank of the embed-
dings, namely the dimension of each embedding vector,
denoted by r, from {3, 5, 8, 10}. The performance of all
the methods is reported in Fig. 1a-d.

As we can see, our methods (including both SNBTD
and SNBTD-1) outperform all the competing baselines
in all the cases and mostly by a large margin. In par-
ticular, SNBTD significantly improves upon POST and
CP-WOPT — the streaming and static multilinear de-

https://www.kaggle.com/CooperUnion/anime-recommendations-database
https://www.kaggle.com/CooperUnion/anime-recommendations-database
https://www.kaggle.com/CooperUnion/anime-recommendations-database
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
https://github.com/yishuaidu/POST
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Figure 1: Predictive performance with different ranks (top row) and streaming batch sizes (bottom row). In the top row,
the streaming bath size is fixed to 256; in the bottom row, the rank is fixed to 8. The results are averaged over 5 runs.
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Figure 2: Running prediction accuracy along with the number of processed streaming batches. The batch size was fixed
to 256.
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Figure 3: Running time with different streaming batch sizes. The rank was set to 3 and 8 in the top and bottom rows,
respectively.



compositions, confirming the advantages of the nonlinear
decomposition. It is interesting to see that CP-WOPT
is much worse than POST on ACC and MovieLen1M.
The reason might be CP-WOPT converged to poor local
optimums. Generally, SVB/SSGP-NTD are far worse
than our methods, and in many cases even worse than
POST (see Fig. 1b,c and d). This might be due to the
inferior/unreliable stochastic posterior updates. Lastly,
SNBTD and SNBTD-1 achieved almost the same predic-
tion accuracy on binary tensors (see Fig. 1a and b; their
curves overlap) and close MSEs on MovieLen1M. But on
ACC, SNBTD achieved significantly smaller MSEs than
SNBTD-1 (see Fig. 1c, p < 0.05). This demonstrates the
benefit of our one-shot update (Sec. 4.1) that jointly inte-
grates all the entries in each streaming batch, rather than
one by one, to further improve the quality of posterior
updates.

Second, we examined how the predictive performance of
the streaming methods varies along with the size of the
streaming batches. To this end, we set the rank of the
embeddings to 8, and tested with the batch size from {26,
27, 28, 29}. Similarly as above, we randomly shuffled
the training entries to generate the sequence of streaming
batches. On each dataset, we repeated the test for 5 times,
and calculated the average MSE/AUC and their standard
deviations. We show the results in Fig. 1e-h. It can be
seen that SNBTD and SNBTD-1 consistently outperform
all the competing methods by a large margin. The predic-
tion accuracy of SNBTD-1 is close to SNBTD on DBLP
and Anime (Fig. 1e and f), slightly worse than SNBTD
on MovieLen1M (Fig. 1h), and significantly worse on
ACC (Fig. 1g). Therefore, the results further confirm the
advantage of our nonlinear streaming decomposition and
one-shot posterior updates.

6.2 Prediction Accuracy On the Fly
Next, we evaluated the dynamic performance of the
streaming decomposition. To do so, on each dataset, we
randomly generated a stream of training batches, upon
which we ran each streaming decomposition approach
and tested the prediction accuracy after each batch was
processed. We set the batch size to 256 and tested with
the rank r = 3 and r = 8. The running MSE/AUC of
each method is shown in Fig. 2. Note that in Fig. 2d
and h, we did not show the results of SVB/SSGP-NTD
and SVB-NTD respectively, because their performance is
much worse than all the other methods. In general, all the
methods improved their prediction accuracy with more
and more batches, showing increasingly better estimations
of the embeddings. However, our methods (SNBTD and
SNBTD-1) always obtained the best AUC/MSE through-
out the running, except at the very beginning stage on
Anime. SNBTD is in general better than or almost the
same as SNBTD-1. In addition, we can see that the trend

of our methods is much smoother than that of SVB/SSGP-
NTF; so are POST that employs analytical, mean-field
updates. This might be because the stochastic updates in
SVB/SSGP-NTF are unstable and unreliable. Note that
while the curves of SNBTD-1 and SNBTD are equally
smooth on the other datasets, on ACC (Fig. 2c and g), the
curve of SNBTD-1 vibrates much more and the trend of
SNBTD is still quite smooth. It implies that our one-shot
update can be more robust/stable than the one by one
fashion in streaming inference.

6.3 Running Speed
Finally, we examined the efficiency of our methods in
terms of running speed. To this end, on each dataset, we
varied the size of streaming batches from {26, 27, 28, 29}
and reported the running time of each method to finish the
streaming decomposition. We tested with the rank from
{3, 8}. As shown in Fig. 3, SNBTD nearly always spent
the least time, except that on DBLP, SNBTD took a little
bit more than POST. Note that the mean-field updates
of POST for multilinear decomposition are much sim-
pler. We can see that due to the iteration-free nature, the
running time (or the speed) of our methods is relatively
constant to the batch size. By contrast, the competing
approaches require iterative updates toward convergence
and their speeds can vary much. For instance, on DBLP,
Anime and ACC, POST converges fast with each rank
and batch size setting, but on MovieLen1M, POST con-
verges much slower in larger batches when r = 3 (see
Fig. 3d). The running time of SSGP/SVB-NTD decreases
with larger streaming batches. The reason is that smaller
batches need more streaming updates and incurs more fre-
quent execution of the computation graphs in TensorFlow.
The loading and running of the graph dominated the cost
while the kernel/matrix computation on different sizes of
small batches turned out to make little difference. Lastly,
while often achieving close predictive performance to
SNBTD, SNBTD-1 is much slower. Overall, SNBTD
gains 3-8x speed up as compared with SNBTD-1. There-
fore, it demonstrates that our one-shot update not only
improves the quality of the streaming posterior inference,
but also saves the computation (i.e., moment matching)
and greatly accelerates the decomposition.

7 Conclusion
We have presented SNBTD, a streaming nonlinear
Bayesian tensor decomposition method. Based on a spec-
trum GP decomposition model, SNBTD can integrate all
the entries in each streaming batch to perform one-shot,
closed-form posterior updates. Experiments on real-world
applications have demonstrated the advantage of SNBTD
in both prediction accuracy and running efficiency.
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