
Neural Likelihoods via Cumulative Distribution Functions

Pawel Chilinski
University College London

pawel.chilinski.14@ucl.ac.uk

Ricardo Silva∗
University College London and The Alan Turing Institute

ricardo@stats.ucl.ac.uk

Abstract

We leverage neural networks as universal ap-
proximators of monotonic functions to build
a parameterization of conditional cumulative
distribution functions (CDFs). By the applica-
tion of automatic differentiation with respect
to response variables and then to parameters of
this CDF representation, we are able to build
black box CDF and density estimators. A suite
of families is introduced as alternative con-
structions for the multivariate case. At one ex-
treme, the simplest construction is a compet-
itive density estimator against state-of-the-art
deep learning methods, although it does not
provide an easily computable representation of
multivariate CDFs. At the other extreme, we
have a flexible construction from which multi-
variate CDF evaluations and marginalizations
can be obtained by a simple forward pass in
a deep neural net, but where the computation
of the likelihood scales exponentially with di-
mensionality. Alternatives in between the ex-
tremes are discussed. We evaluate the differ-
ent representations empirically on a variety of
tasks involving tail area probabilities, tail de-
pendence and (partial) density estimation.

1 CONTRIBUTION

We introduce a novel parameterization of multivari-
ate cumulative distribution functions (CDFs) using deep
neural networks. We explain how training can be done
by a straightforward adaptation of standard methods for
neural networks. The main motivations behind our work
include: a direct evaluation of tail area probabilities; co-
herent estimation of low dimensional marginals of a joint

∗Partially supported by EPSRC grant EP/N510129/1.

distribution without the requirement of fitting a full joint;
and supervised/unsupervised density estimation.

The first two tasks benefit directly from a CDF computed
by a forward pass in a neural network, as tail probabil-
ities and marginal CDFs can be read-off essentially di-
rectly in this representation. The latter has been tack-
led by an increasingly large literature on neural density
estimators. This dates back at least to Bishop (1994),
who used multilayer perceptrons to encode conditional
means, variances, and mixture probabilities for a (con-
ditional) mixture of Gaussians. Recently, models using
transformations of a simple distribution into more com-
plex ones were proposed. Dinh et al. (2015),Dinh et al.
(2017),Papamakarios et al. (2017), Huang et al. (2018)
and De Cao and Titov (2019) are examples of the state of
the art for density estimation. They use invertible trans-
formations from simple base distributions where the de-
terminant of the Jacobian is easy to compute and Monte
Carlo approaches for computing gradients become feasi-
ble. Depending on the architecture, they are optimized
for density estimation or sampling. We show we re-
main competitive against these methods while keeping
a comparatively simple uniform structure with few hy-
perparameters. For instance, compared to the method of
Bishop (1994), there is no need to choose the base distri-
bution of the mixture nor the number of mixtures.

All of the above is predicated on how we construct mul-
tivariate CDFs. The most direct extension from uni-
variate to multivariate CDFs is conceptually simple, but
the calculation of the likelihood grows exponentially in
the dimensionality. This is essentially the counterpart to
computing a partition function in an undirected graphi-
cal model, where here the problem is differentiation as
opposed to integration. Compromises are discussed, in-
cluding the relationship to Gaussian copula models and
other CDF constructions based on small dimensional
marginals. One extreme sacrifices the ability of repre-
senting a CDF by a single forward pass in exchange for
scalability to high dimensions, where we can compare it

against state-of-the-art neural density estimators.

This paper is organized as follows. Section 2 describes
our main approach. Related work is described in Sec-
tions 3 and S1. Experiments are discussed in Section
4. We show that our models are competitive for density
estimation while able to directly tackle some modelling
problems where recent neural-based models could not be
applied in an obvious manner.

2 THE MONOTONIC NEURAL
DENSITY ESTIMATOR

We now introduce the Monotonic Neural Density Esti-
mator (MONDE), inspired by neural network methods
for parameterizing monotonic functions. The primary
usage of MONDE is to compute conditional CDFs with
a single forward pass in a deep neural network, while
allowing for the calculation of the corresponding con-
ditional densities by tapping into existing methods for
computing derivatives in deep learning. The latter is
particularly relevant for likelihood-based fitting meth-
ods such as maximum (composite) likelihood. We will
focus on the continuous case only, where probability
density functions (pdfs) are defined, although extensions
to include mixed combinations of discrete and continu-
ous variables are straightforward by considering differ-
ence operations as opposed to differentiation operations.
We start with the simplest but important univariate case,
where dependency between variables does not have to
be modelled. We progress through more complex con-
structions to conclude with the most flexible but com-
putationally demanding case, where we deal with mul-
tivariate data without assuming any specific families of
distributions for the data generating process.

Here we use the following notation.
F (y|x): multivariate conditional CDF, where y ∈ RK is
the response vector and x ∈ RD is a covariate vector;
Fk(yk|x): k-th marginal conditional CDF;
f(y|x): multivariate conditional pdf;
fk(yk|x): k-th marginal conditional pdf;
w: the set of parameters of a neural network, where wlij
represents a particular weight connecting two nodes i and
j, with i located at layer l of the network.

2.1 UNIVARIATE CASE

The structure of MONDE for univariate responses is
sketched in Figure1 as a directed graph1 with two types

1This graph is to be interpreted as a high-level simplified
computation graph as opposed to a graphical model. It does not
illustrate a generative process, hence the placement of output
random variable y as an input to other variables.

x1 xD. . .

. . .

. . .

. . .
y

. . .

. . .

. . .

. . .

t

∂F (y|x)
∂y

F (y|x)

f(y|x)

wij ∈ R
wij ∈ R+

no weights
xd covariate
y response variable
t σ(bias+

∑
i wijinputi)

tanh(bias+
∑
i wijinputi)

Figure 1: The graph representing Univariate Mono-
tonic Neural Density Estimator computational structure.
The last node symbolizes the operation of differentiating
parameterized conditional distribution function F (y|x)
with respect to the input y. Its output f(y|x) encodes
the conditional density function. The legend explains the
symbols used.

of edges and a layered structure so that two consecu-
tive layers are fully connected, with no further edges.
The definition of layer in this case follows immediately
from the topological ordering of the graph. Covariates
xi, . . . , xD and response variable y are nodes without
parents in the graph, with the layer of the covariates de-
fined to be layer 1. The response variable y is posi-
tioned in some layer 1 < ly < L, where L is the final
layer. Each intermediate node i at layerl, hli, returns a
non-linear transformation of a weighted sum of all nodes
in layer l − 1. Here, as commonly used in the neu-
ral network literature and based on preliminary results
from our experiments, we use the hyperbolic tangent
function such that hli = tanh

(∑
vj∈Vl−1

wlijvj + wli0

)
,

where 1 < l < L and Vl is the set of nodes in
layer l. The final layer L consists of a single node
t(y,x) ≡ sigmoid

(∑
vj∈VL−1

wLijvj + wLi0

)
, repre-

senting the probability P (Y ≤ y | X = x) as encoded
by the weights of the neural net. In other words, t(y,x)
is interpreted as a CDF Fw(y | x) encoded by some w.

Assuming w parameterizes a valid CDF, we can use an
automatic differentiation method to generate the density
function fw(y | x) corresponding to Fw(y | x) by dif-
ferentiating t(y,x) with respect to y. The same princi-
ple behind backpropagation applies here, and in our im-
plementation we use Tensorflow2 to construct the com-
putation graph that generates t(y,x). Once the pdf is

2https://www.tensorflow.org

constructed, automatic differentiation can once again be
used, now with respect to w, to generate gradients to be
plugged into any gradient-based learning algorithm.

To guarantee that t(y,x) is a valid CDF, we must en-
force three constraints: (i) limy→−∞ t(y,x) = 0; (ii)
limy→+∞ t(y,x) = 1; (iii) ∂t(y,x)/∂y ≥ 0. We chose
the following design to meet these conditions: for every
wlij where vj ∈ Vl−1 is a descendant of y in the corre-
sponding directed graph, enforce wlij ≥ 0. This means
that for all layers l > ly , all weights {wlij} are con-
strained to be non-negative, while {wli0}, representing
bias parameters, are unconstrained. Meanwhile, wlij ∈ R
for l ≤ ly . In Figure 1, the constrained weights are
represented as squiggled edges. This guarantees mono-
tonicity condition (iii). Due to the range of the logistic
function being [0, 1] and t(y,x) being monotonic with
respect to y, (i) and (ii) are also guaranteed to some ex-
tent: an arbitrary choice of parameter vector w will not
imply e.g. that limy→+∞ t(y,x) = 1 since the contribu-
tion of y to the final layer is bounded by the tanh non-
linearity. However, by learning w, this limit is satisfied
approximately since a likelihood-based fitting method
will favour

∑n
i=1 F (ymax | x(i))/n ≈ 13, where n is

the sample size, i indexes the training sample, and ymax
is the maximum observed training value of Y in the sam-
ple. There are ways of “normalizing” t(y,x) so that the
limit is achieved exactly for all parameter configurations
(see Section 2.4). We have not found it mandatory in or-
der to obtain satisfactory empirical results. This happens
even though our “unnormalized” implementation is at a
theoretical disadvantage, as it can potentially represent
densities with the total mass less than 1. This is verified
by the experiments described in Section 4.

2.2 AUTOREGRESSIVE MONDE

The first variation of the MONDE model, capable of ef-
ficiently encoding multivariate distributions, is presented
in the Figure 2. It uses a similar approach to univari-
ate output distributions, as described in Section 2.1, to
parameterize each factor according to a fully connected
probabilistic directed acyclic graph (DAG) model. That
is, we assume a given ordering y1, . . . , yK defining the
fully connected DAG model:

f(y | x) =

K∏
k=1

fk(yk | x,y<k), (1)

where y<k is set of response variables with index smaller
than k. In theory, the indexing of variables can be chosen

3The expression is an empirical estimate of the marginal
F (ymax) which is 1 in the empirical distribution. The claim
follows as our estimator is chosen to minimize the KL diver-
gence with respect to the empirical distribution.

x y0
1

y1
1 y1

M
. . .

y2
1 y2

M
. . .

yL−11 yL−1M
. . .
. . .

yL1

∂F1(y1|x)
∂y1

∂FK(yK |x,y<K)
∂yK

. . .

= F1(y1|x), F2(y2|x, y1) . . . Fk(yK |x,y<K)

∏
fK(yK |x,y<K)f1(y1|x)

f(y|x)

x = x0 . . . xD

y0
1

= y1 . . . yK

ylm = ylm,1 . . . y
l
m,K

yL1 = F1(y1), F2(y2|y1) . . . Fk(yK |y<K)

Figure 2: Autoregressive Model, MONDE MADE, The
Multivariate Monotonic Neural Density Estimator archi-
tecture with shared parametrization inspired by MADE.
The square nodes of the computational graph contain
vectors, to differentiate from the oval nodes representing
scalar values.

arbitrarily. In this work, we do not try to optimize it. This
type of DAG parameterization was called “autoregres-
sive” in the neural density estimator of Uria et al. (2013),
a nomenclature we use here to emphasize that this is a
related method. Our implementation of the autoregres-
sive model uses parameter sharing inspired by MADE
(Germain et al., 2015).

The input to the computational graph is aK-dimensional
vector y of response variables and a D-dimensional vec-
tor x of covariate variables. These vectors comprise the
first layer of the network. Each consecutive hidden layer
is an affine transformation of the previous layer pro-
ceeded by a nonlinear elementwise map transforming its
inputs via sigmoid function. Each hidden layer is com-
posed of M K-dimensional vectors ylm, where l indexes
the layer and m is vector index within layer l. The affine
transformation matrix is constrained so that the k-th ele-
ment ofm-th vector, i.e. ylm,k, depends on a subset of the
elements of the previous layer, i.e. yl−1.,<k, and is mono-
tonically non-decreasing with respect to yl−1.,k . Here,
dot . represents all possible indices m ∈ {1, 2, . . . ,M}.
Monotonicity is preserved using non-negative weights in
the respective elements of the transformation matrix.

Finally, theL-th layer consists of a singleK-dimensional
vector yL1 , with each element representing a CDF factor,
F1(y1), . . . , Fk(yk|x,y<k). Each CDF factor is differ-
entiated with respect to its respective response variable
to obtain its pdf. The product of all pdf factors provide
the density function f(y|x). We provide the implemen-
tation details in the supplement, Section S2.1.

x1 xD. . .

. . .

. . .

. . .
y1

. . .

. . .

. . .

. . .

t

∂F1(y1|x)
∂y1

F1(y1|x)

Φ−1

. . .

. . .

. . .

. . .

yK

. . .

. . .

. . .

. . .

t

∂FK(yK |x)
∂yK

FK(yK |x)

Φ−1

. . .

. . .

. . .

. . .

ρ

φρ

∏
f1(y1|x) fK(yK |x)

f(y|x)

Figure 3: Multivariate Monotonic Neural Density Esti-
mator with Gaussian Copula Dependency and Constant
Covariance.

2.3 GAUSSIAN COPULA MODELS

A standard way of extending univariate models to mul-
tivariate models is to use a copula model (Sklar, 1959;
Schmidt, 2006). In a nutshell, we can write a multivariate
CDF F (y) as F (y) = P (Y ≤ y) = P (F−1(F (Y)) ≤
y) = P (U ≤ F (y)). Here, U is a random vector
with uniformly distributed marginals in the unit hyper-
cube and F−1(·) is the inverse CDF, applied element-
wise to Y, which will be unique for continuous data as
targeted in this paper. The induced multivariate distribu-
tion with uniform marginals, P (U ≤ u), is called the
copula of F (·). Elidan (2013) presents an overview of
copulas from a machine learning perspective.

This leads to a way of creating new distributions. Start-
ing from a multivariate distribution, we extract its cop-
ula. We then replace its uniform marginals with any
marginals of interest, forming a copula model. In the
case of the multivariate Gaussian distribution, the den-
sity function

f(y)=φρ(Φ
−1(F1(y1)), . . . ,Φ−1(FK(yK)))

K∏
k=1

fk(yk)

(2)

is a Gaussian copula model where φρ is a Gaussian den-
sity function with zero mean and correlation matrix ρ,
Φ−1 is the inverse CDF of the standard Gaussian, fk(·)
is any arbitrary univariate density function and Fk(·) its
respective distribution function. We can show that the
k-th marginal of this density is indeed fk(·).

We extend the density estimator from the previous sec-

tion to handle a K-dimensional multivariate output y by
exploiting two (conditional) copula variations. The first
variation is shown in Figure 3. Weight sharing is done
so that all output variables yk are placed in layer ly , with
all weights wl

′

ij , l
′ ≤ ly , producing transformations of

the input x that is shared by all conditional marginals
Fk(yk | x). From layers ly + 1, . . . , L, the neural net-
work is divided into K disjoint blocks, each composed
of two partitions: the first depending monotonically on
its respective yk, and the second depending on shared
transformation of x. The first partition depends on the
second but not vice versa so monotonicity with respect
to yk is preserved (all the paths from yk to tk in the com-
putational graph use non-negative parameters, as shown
in the diagram). Each of the K blocks generates output
tk(yk,x) representing an estimate of the corresponding
marginal Fk(yk | x). The k-th marginal pdf can be ob-
tained by applying backpropagation with respect to yk:
fk(yk) = ∂tk(yk,x)/∂yk. Next, the individual marginal
distributions evaluated at each training point are trans-
formed via standard normal quantile functions. Such
quantiles Φ−1(Fk(yk | x)) are standard normal variables,
which we use to estimate the correlation matrix for the
entire training set. The estimated marginals and correla-
tion matrix fully define our model. Taking the product
of the estimated copula and estimated marginal densities
(as shown in Equation 2) gives us an estimate of the joint
density with a correlation matrix that does not change
with x but which is simple to estimate by re-using the
univariate MONDE. We call this the Constant Covari-
ance Copula Model.

The next improvement, achieved at a higher computa-
tional cost, consists of parameterizing the correlation
matrix using a covariate transformation. The diagram of
this model is presented in Figure S2 in the supplement.
This time the correlation matrix is parameterized via a
low rank factorization of the covariance matrix which is
a function of the covariates, allowing for a model with
heteroscedasticity in the copula of the output variables.
The correlation matrix parameterization is as follows:

Σ(x) = u(x) · u(x)T + diag(d(x)) (3)

D(x) ≡
√
diag(Σ(x)), (4)

ρ(x) ≡ D−1(x) ·Σ(x) ·D−1(x), (5)

where Σ(x) is the covariate-parameterized low rank co-
variance matrix; u(x) ∈ RK and d(x) ∈ RK+ are
covariate-parameterized vectors; diag is an operator
which extracts a diagonal vector from the square ma-
trix or creates a diagonal matrix from a vector (according
to context); ρ(x) is the resulting covariate-parameterized
correlation matrix.

x1 xD. . .

σ σ. . .

σ σ. . .
. . .

hx

y1

σσ . . .

σσ . . .

σσ . . .
. . .

hxy1

y2

σ σ. . .

σ σ. . .

σ σ. . .
. . .

hxy2

. . .
m

. . .

. . .

. . .

t
∝ F (y|x)

σ sigmoid(bias+
∑
j wjinputj)

softplus(bias+
∑
j wjinputj)

Scalar multiplication

Figure 4: Graph of an “Unnormalized” Distribution
Function of PUMONDE, Pure Monotonic Neural Den-
sity Estimator. It shows two response variables y1, y2
and covariates x transformed via computational graphs:
hx, hxy1, hxy2, m and t.

2.4 PUMONDE: PURE MONOTONIC NEURAL
DENSITY ESTIMATOR

Our final model family is a flexible multivariate CDF pa-
rameterization. It can be combined with multivariate dif-
ferentiation, with respect to multiple response variables,
to provide a likelihood function. The higher order deriva-
tive ∂Kt(y,x)/∂y1 . . . ∂yK has to be non-negative so
that the model can represent a valid density function4.
The graph representing a monotone function with respect
to each response variable with no finite upper bound (to
be later “renormalized”) is presented in Figure 4. It
is composed of several transformations, each of them
represented in the computational graph as dashed rect-
angle containing the nodes and edges symbolizing its
computations: hx, a transformation the covariates us-
ing a standard multilayer network of sigmoid transforma-
tions; hxyi, a sequential composition of monotonic non-
linear mappings starting with hx and response variable
yi; m, the element-wise multiplication �Ki=1hxyi assum-
ing all hxyi have the same dimensionality; and t, a mono-
tonic transformation with respect to all its inputs that re-
turns a positive real valued scalar. The last transforma-
tion t uses only softplus as it non-linear transformations
(softplus(x) ≡ log(1 + expx)). The function t is non-

4This condition rules out sigmoid as the final transforma-
tion of the computational graph for the distribution function
because ∂2σ(z)/∂2z ∈ R, therefore this version of the CDF
estimator uses different approach to map its output to be in the
(0, 1) range.

decreasing with respect to any response variable on the
same premises as previous models.

In this model, we replaced tanh with sigmoid and
softplus, where a hidden unit uses softplus if it has more
than one ancestor in y1, . . . , yK and sigmoid otherwise.
This is because non-convex activation functions such as
the sigmoid will not guarantee e.g. ∂2t(y,x)/∂y1∂y2 ≥
0 for units which have more than one target variable as
an ancestor. Higher order derivatives with respect to the
same response variable can take any real number because
of the properties of the computational graph i.e., using
products of non-decreasing functions which are always
positive and noting the fact that second order derivative
with respect to the same response variable transformed
by sigmoid can take any real value.

The density is then computed from the following trans-
formations, here exemplified for a bivariate model:

Fw(y1, y2 | x) =
t(m(hxy1(y1, hx(x)), hxy2(y2, hx(x))))

t(1)
,

(6)

fw(y1, y2 | x) =
∂2Fw(y1, y2 | x)

∂y1∂y2
. (7)

All output elements of m(·) have values in the [0, 1]
range because it is element-wise multiplication of vec-
tors with component values in [0, 1]. By plugging-in
the maximum value 1 as input of the t transformation
(as shown in denominator of Equation 6) we normalize
the output of the distribution estimator Fw to lie within
[0, 1] so to output a valid CDF. The guarantee of non-
decreasing monotonicity and positiveness of the Fw with
respect to each element of y assures that the range of the
proposed estimator of a distribution function is in [0, 1]5.

2.4.1 Composite Log-likelihood

It must be stressed that an unstructured PUMONDE with
full connections will in general require an exponential
number of steps (as a function of K) for the gradient to
be computed, mirroring the problem of computing parti-
tion functions in undirected graphical models. Here we
explore the alternative with the use of composite likeli-
hood (Varin et al., 2011).

5The discussion at the end of Section 2.1, about the univari-
ate MONDE not being able strictly attain 0 or 1 is applicable
here as well, because of the hxyi(yi,x) transformation using
bounded non-linearities. However, we can modify the initial
layer at ly to simply monotonically map the real line to [0, 1]
(or whatever the support of each Yk is), and do the normaliza-
tion with respect to the output of ly having value 1, as opposed
to the output ofm. We decided to omit this in order to make the
description of the model simpler, and due to the lack of early
evidence that this pre-processing was useful in practice.

We train the PUMONDE model by minimizing the ob-
jective composed of the sum of the bivariate negative
log-likelihoods (LL) for each pair of response variables
(composite likelihood):

LL =
∑

i=1..K,j=1..K,i<j

log
∂2Fw(yi, yj |x)

∂yi∂yj
. (8)

We compute estimates of such sums over mini-batches
of data sampled from the training set. We update param-
eters using stochastic gradient descent as in other meth-
ods presented in this work. In the future, we want to
check its role in graphical models for CDFs (Huang and
Frey, 2008; Silva et al., 2011). For now we will restrict
PUMONDE to small dimensional problems.

3 RELATED WORK

Our work is inspired by the literature on neural networks
applied to monotonic function approximation and to den-
sity estimation which is reviewed in the supplement Sec-
tion S1.

4 EXPERIMENTS

In this section, we describe experiments in which we
compare our and baseline models on various datasets
and five success criteria. In what follows, Tasks I, III
and IV show how MONDE variations are competitive
against the state-of-the-art on modelling dependencies.
Given that, Tasks II and V advertise the convenience of
a CDF parameterization against other approaches. As
baselines, depending on the task, we use the follow-
ing models: RNADE (Uria et al., 2013, 2014), MDN
(Bishop, 1994), MADE (Germain et al., 2015), MAF
(Papamakarios et al., 2017), TAN (Oliva et al., 2018) and
NAF (Huang et al., 2018; De Cao and Titov, 2019). More
experiments are included in the supplement, Section S4.

4.1 TASK I: DENSITY ESTIMATION

In this section, we show results on density estimation us-
ing UCI datasets. We use the same experimental setup as
in (Papamakarios et al., 2017; Huang et al., 2018; De Cao
and Titov, 2019) to compare recently proposed learning
algorithms to one introduced in this work. In particu-
lar, we evaluate a MONDE MADE variant which is de-
scribed in Section 2.2. It is a simple extension of our
MONDE model to multivariate response variables using
autoregressive factorization. Among our methods, it is
the only viable option to be applied to high dimensional
and large datasets that does not make use of a paramet-
ric component, as in the Gaussian copula variants. Re-

sults are presented in Table 1, which contains test log-
likelihoods and error bars of 2 standard deviations on five
datasets. MONDE MADE matched the performance of
the state of the art NAF model from (Huang et al., 2018)
for the POWER dataset, and exceeded the performance
of the NAF for the GAS dataset. We achieved slightly
worse results on the other UCI datasets but we noticed
that our model had a tendency to overfit the training data
in these cases. We have not applied techniques that could
improve generalization like batch normalization which
were used in the baseline models. We conclude that our
models, by achieving comparable results and having a
complementary inductive bias to the baselines, can be
used as yet another tool for the benefit of practitioners.

4.2 TASK II: TAIL EVENT CLASSIFICATION

(a) ROC Curves (b) Precision/Recall Curves

Figure 5: ROC Curves/AUC Scores (Area) and
Precision-Recall Curves/Average Precision Scores
(Area). RF and Xgb clustered together at a lower TPR
and precision - Classification Task (better seen in color).

We tested the Copula MONDE (Section 2.3) and
PUMONDE (Section 2.4 and 2.4.1) models on a prob-
lem of detecting events falling at the tail of a distribu-
tion which, for a fixed threshold defining the tail, can
be compared against standard classifiers. We use foreign
exchange financial data described in section S4.5. Data
for the experiment was prepared as follows: 1) Sample
one minute negative log returns of 12 financial instru-
ments. At each time ti, we obtain a 12 element vector
r(ti) = log p(ti−1) − log p(ti), where p(ti) is the vec-
tor of 12 instruments mid prices at time ti. Each r(ti)
represents a vector of 1 minute losses. 2) For each ti, we
collect y = r(ti)10,11,12 and x = r(ti)1..9, r(ti−1). This
composition of data encodes a 3 dimensional response
variable representing 1 minute loss from the last 3 instru-
ments at time ti and covariates are 1 minute losses from
the rest of the instruments at time ti, combined together
with the previous period ti−1 1 minute losses from all
the instruments (x is 21 dimensional vector). We train
our estimators on such constructed data by maximizing
the log-likelihood function.

Table 1: Mean Loglikelihoods - Large UCI Datasets.

Power Gas Hepmass Miniboone Bsds300

MADE MoG 0.40 ± 0.01 8.47 ± 0.02 −15.15 ± 0.02 −12.27 ± 0.47 153.71 ± 0.28
MAF-affine (5) 0.14 ± 0.01 9.07 ± 0.02 −17.70 ± 0.02 −11.75 ± 0.44 155.69 ± 0.28
MAF-affine (10) 0.24 ± 0.01 10.08 ± 0.02 −17.73 ± 0.02 −12.24 ± 0.45 154.93 ± 0.28
MAF-affine MoG (5) 0.30 ± 0.01 9.59 ± 0.02 −17.39 ± 0.02 −11.68 ± 0.44 156.36 ± 0.28
TAN (various architectures) 0.48 ± 0.01 11.19 ± 0.02 −15.12 ± 0.02 −11.01 ± 0.48 157.03 ± 0.07
NAF 0.62 ± 0.01 11.96 ± 0.33 −15.09 ± 0.40 −8.86 ± 0.15 157.73 ± 0.04
B-NAF 0.61 ± 0.01 12.06 ± 0.09 −14.71 ± 0.38 −8.95 ± 0.07 157.36 ± 0.03

MONDE MADE 0.62 ± 0.01 12.12 ± 0.02 −15.83 ± 0.06 −10.7 ± 0.46 153.17 ± 0.29

We want to assess the models’ ability to correctly rank
tail events of any of the 3 assets experiencing loss at
least in the 95 percentile of the historical loss in the next
minute. To do this, we obtain the 95-th percentile thresh-
old for each dimension of the y measured on the training
set: y95. We compute the labels on the test partition as:
l = 1(y1 > y95

1 ∨ y2 > y95
2 ∨ y3 > y95

1) i.e. the la-
bel is 1 whenever value at any of the dimensions is larger
then its 95-th percentile, otherwise is 0. We compute
the test score for the trained estimator by feeding it with
test set covariates x and plugging in y95 as the response
vector (the same response vector for each test covariate
vector). The CDF output from the model is the estimate
of the probability P (Y ≤ y95|x) = F (y95|x). We es-
timate the tail probability of the label being equal 1 i.e.
P (L = 1 | x) = P (Y1 > y95

1 ∨ Y2 > y95
2 ∨ Y3 >

y95
1 | x) = 1− F (y95|x). Such computed ranks and the

true labels are used to compute the Receiver Operating
Characteristic curve, Area Under Curve score, Precision-
Recall curve and Average Precision score on the test par-
tition of the dataset. These performance measures are
used to compare our estimators to a multilayer percep-
tron with sigmoid outputs, Random Forests and Gradient
Boosting Trees (Chen and Guestrin, 2016). These dis-
criminative methods are trained directly on labels pre-
defined before training. Our estimators do not have to
use a particular threshold at a test time. It can be changed
after training is completed which is not possible for dis-
criminative models6.

ROC plots are shown in Figure 5. ROC curves for the
XGBoost and Random Forest classifiers cluster at the
lower level of TPR for small values of FPR. The other
models have ROC curves placed slightly higher. We
see that results for all models are similar, where the
multilayer perceptron and PUMONDE models achieved
slightly higher AUC score than the rest of the classifiers.
PR plots are shown in Figure 5. PR curves and aver-
age precision score (labelled “Area” in the legend of the
Figure) tell a similar story. In conclusion, we showed ev-
idence that our method is competitive in this task against

6This is analogous to a Bayesian Network providing the an-
swer to any query, as opposed to a specialized predictor fit to
answer a single predefined query.

black-boxed models finely tuned to a particular choice of
threshold, but where we can instantaneoulsy re-evaluate
classifications by changing the decision threshold with-
out retraining the model. This is not possible with the
baseline models, which are also less interpretable as they
do not show how the distribution of the original continu-
ous measurements changes around the tails.

4.3 TASK III: TAIL DEPENDENCE

In this experiment, we assess whether our models can be
used to estimate a measure of extreme dependence be-
tween two random variables Yi and Yj , tail dependence
(Joe, 1997):

λL(u) = lim
u→0+

P (Yi ≤ F−1i (u)|Yj ≤ F−1j (u))

= lim
u→0+

P (Yi ≤ F−1i (u), Yj ≤ F−1j (u))

P (Yi ≤ F−1i (u))

λR(u) = lim
u→1−

P (Yi > F−1i (u)|Yj > F−1j (u))

= lim
u→1−

P (Yi > F−1i (u), Yj > F−1j (u))

P (Yi > F−1i (u))

= lim
u→1−

1− 2u+ Fij(F
−1
i (u), F−1j (u))

1− u
,

where λL(u) and λR(u) are lower and upper tail depen-
dence indices respectively, Fi is the marginal distribu-
tion function for random variable Yi, Fij is the bivariate
marginal for random variables Yi and Yj . In our experi-
ment we use conditional distributions so distributions de-
pend on covariates: Fi(yi | x) and Fij(yi, yj | x).

In order to have ground truth and provide some inter-
pretability, we generate synthetic data as follows. We
sample a Bernoulli random variableC ∈ {0, 1} that indi-
cates which of two components generates the covariates
X. The components are two Gaussian multivariate dis-
tributions with different means and identity covariance
matrices. The choice of component also generates re-
sponse variables Y. In this case, the two distributions are
such that the first is normally distributed (no tail depen-
dence) and the second is t-distributed with 2 degrees of

freedom. We repeat this process independently for each
point in the dataset:

C ∼Bernouli(0.5)

X ∼Xc

X0 ∼N((−2,−3), I)

X1 ∼N((2, 5), I)

Y ∼Yc

Y0 ∼N((0, 0, 0),Σ)

Y1 ∼t((0, 0, 0), 2,Σ)

Σ =σPσ

σ =

0.4 0 0
0 0.5 0
0 0 0.8

P =

1.0 0.8 0.1
0.8 1.0 −0.5
0.1 −0.5 1.0

 .
To illustrate concentration in the tails of the distribu-

(a) Gaussian Component

(b) T Component

Figure 6: Tail Dependence Concentration Plots (better
seen in colour). The triangle shaped curve in each plot
is the tail dependence concentration plot for isotropic
Gaussian (shown as comparison for curves depicting de-
pendence and larger kurtosis). The first plot shows that
all models correctly capture the lack of tail dependence
in Gaussian distribution. The second plot shows that only
PUMONDE and MAF concentration plots are close to
the data concentration plot in the tails (when u tends to 0
or 1)

tion, we plot λ̂L(u) for u ∈ (0, 0.5) and λ̂R(u) for
u ∈ (0.5, 1) in Figure 6. This includes models presented
in this paper and also two baseline models (MAF and

MDN). We describe the procedure used to compute these
estimators in Section S4.6. We present two concentration
plots. The first one is for the response variable gener-
ated from the multivariate Gaussians i.e. the first com-
ponent, which does not exhibit tail dependence. This can
be observed in the curves which tend to 0 when u gets
closer to 0 and 1. The second one which depicts concen-
tration plots for mixture component generated from the
t-distributed sample with 2 degrees of freedom clearly
present tail dependence which can be noticed by their
limit converging to 0.6. We can see that Copula and
MDN models fail to capture tail dependence (the first as
expected, but the latter somehow has issues approximat-
ing non-Gaussian tails with a mixture of Gaussians). The
PUMONDE model trained with composite likelihood (as
described in Section 2.4.1) and MAF model are able to
capture “fatter” tails in the data.

4.4 TASK IV: MUTUAL INFORMATION

Table 2: Mutual Information.

Gaussian Component T Component
Model I(Y0, Y1) I(Y0, Y2) I(Y1, Y2) I(Y0, Y1) I(Y0, Y2) I(Y1, Y2)

Data 0.5108 0.0057 0.1454 0.5108 0.0057 0.1454

MAF 0.5107
(0.0001)

0.0018
(−0.004)

0.1827
(0.0373)

0.5786
(0.0677)

0.0831
(0.0774)

0.199
(0.0536)

MDN 0.5172
(0.0064)

0.0359
(0.0301)

0.1718
(0.0264)

0.6112
(0.1004)

0.1143
(0.1085)

0.2356
(0.0901)

MONDE
Const

0.4826
(−0.0283)

0.0078
(0.0021)

0.1304
(−0.015)

0.5363
(0.0255)

0.0414
(0.0357)

0.1431
(−0.0024)

MONDE
Param

0.5078
(−0.003)

0.0796
(0.0738)

0.1303
(−0.0151)

0.438
(−0.0728)

0.0849
(0.0792)

0.1268
(−0.0186)

PUMONDE 0.4682
(−0.0425)

0.004
(−0.0017)

0.1105
(−0.0349)

0.5307
(0.0199)

0.0573
(0.0515)

0.1621
(0.0167)

Pairwise mutual information measures how much infor-
mation is shared between two random variables. It cap-
tures not only linear dependency, but also more com-
plex relations. It is defined as KL-divergence between
the joint bivariate marginal distribution and the prod-
uct of the corresponding univariate marginals. We now
show results concerning estimation of pairwise mutual
information. The data generating process is the same
as in Section 4.3. We compute mutual information by
marginalizing distributions provided by the models using
numerical quadrature. We can apply this method because
of the low dimensionality of the problem.

Mutual information was computed for each pair of vari-
ables for the data generating process, two baseline mod-
els (MDN and MAF) and two of our models (Gaus-
sian copula MONDE, PUMONDE). We compute mutual
information for each mixture component separately by
conditioning each model on the covariate equal to the
mean vector for the given covariate mixture component.
The results are presented in Table 2. For each combi-
nation of model/pair of response variables/mixture com-

ponent, we obtain two values: mutual information score
and the absolute difference between mutual information
value for the model and value for the data generating pro-
cess (the difference is shown in brackets). The small-
est absolute value of the difference in a given column is
highlighted in bold, indicating which model represents
the closest mutual information to the one computed from
the data generating process. MONDE models are better
in five out of six cases. We can conclude that models pre-
sented in this paper are competitive in encoding bivari-
ate dependency with the current state of the art methods.
Having this evidence leads us to our final Task, where
we exploit estimating simultaneously multiple marginals
of a common joint. CDF parameterizations are partic-
ularly attractive, as marginalization takes the same time
as evaluating the joint model (Joe, 1997), unlike some of
the methods discussed in this section.

4.5 TASK V: BIVARIATE LIKELIHOOD

Table 3: Bivariate Likelihood Model Comparison.

MDN MONDE Const MONDE Param PUMONDE

MDN NA 0 0 0
MONDE Const 210 NA 27 0
MONDE Param 210 183 NA 0
PUMONDE 210 210 210 NA

In many practical problems, we are interested in estimat-
ing only particular marginals. Parameters for higher or-
der interactions are considered to be nuisance parame-
ters. Allowing for partial likelihood specification is one
of the primary motivations behind composite likelihood
(Varin et al., 2011)7.

The problem with partial specification is that in general
there are no guarantees that the corresponding marginals
come from any possible joint distribution. On the other
hand, a fully specified likelihood has nuisance parame-
ters. Ideally, we would like a flexible, overparameterized
joint model so that parameters are not obviously respon-
sible for any marginals a priori, with the objective func-
tion regularizing them towards the marginals of inter-
est. PUMONDE provides such an alternative. Although
high dimensional likelihoods are intractable to compute
in PUMONDE, low dimensional marginals are not.

In this section, we test the ability of our models to encode
coherent bivariate dependence in the data for problems

7This is not to be confused with another motivation, which
is to provide a tractable replacement for the likelihood func-
tion. In this case, a full likelihood is still specified and of in-
terest. While computational tractability is a more common mo-
tivation in machine learning, partial specification is one of the
main reasons for the development of composite likelihood in
the statistics literature.

of larger dimensionality. For example, in finance this can
be useful to model second order dependence of returns in
the portfolio of instruments as used in computation of the
Value at Risk metric (Holton, 2003). We use foreign ex-
change financial data as described in section S4.5. This
data contains a 21 dimensional response variable repre-
senting 1 minute losses for financial instruments at time
ti and a 21 dimensional covariate variable representing
1 minute losses for all the instruments at time ti−1. We
train the estimators on such constructed data maximiz-
ing the likelihood objective. For PUMONDE, we op-
timize the composite likelihood objective comprised of
the sum of all combinations of bivariate likelihoods. The
only neural density estimator we use is MDN, fit to the
21 dimensional distribution. Marginalization in MDN is
easy as it encodes a mixture of Gaussians, while the other
baseline models cannot be easily marginalized.

To assess model performance, we compute the average
log-likelihood for each bivariate combination of response
variables on the test partition, giving 210 unique pairs.
Each cell of Table 3 contains the number of times the
average log-likelihood computed for each bivariate com-
bination of response variable was larger for model shown
in the row compared to the model which is shown in the
column. We can see that the best performing model on
this test is the PUMONDE which obtained larger test log
likelihoods in all 210 cases when compared to each other
model. MONDE with parametrized covariance achieved
better results than MDN and MONDE with constant co-
variance. The worst results were obtained by MDN.

5 DISCUSSION

We proposed a new family of methods for represent-
ing probability distributions based on deep networks.
Our method stands out from other neural probability es-
timators by encoding directly the CDF. This comple-
ments other methods for problems where the CDF rep-
resentation is particularly helpful, such as computing
tail area probabilities and computing small dimensional
marginals. As future work, we will exploit its relation-
ship to graphical models for CDFs (Huang and Frey,
2008; Silva et al., 2011), using PUMONDE to param-
eterize small dimensional factors. Variations on soft-
recursive partitioning, such as hierarchical mixture of ex-
perts (Jordan and Jacobs, 1994), can also be implemented
using tail events to define the partitioning criteria. An-
other interesting and less straightforward venue of future
research is to exploit approximations to the likelihood
based on the link between differentiation, latent variable
models and message passing, as exploited in the con-
text of graphical CDF models (Silva, 2015; Huang et al.,
2010) and automated differentiation (Minka, 2019).

References
C. Bishop. Mixture density networks. Technical report, NCRG

4288, Aston University, Birmingham, 1994.

T. Chen and C. Guestrin. XGBoost: A scalable tree boosting
system. In KDD, 2016.

N. De Cao and I. Titov. Block neural autoregressive flow. In
UAI, 2019.

L. Dinh, D. Krueger, and Y. Bengio. NICE: Non-linear inde-
pendent components estimation. In ICLR, 2015.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation
using Real NVP. In ICLR, 2017.

G. Elidan. Copulas in machine learning. In Copulae in Mathe-
matical and Quantitative Finance. Springer, Berlin, 2013.

M. Germain, K. Gregor, I. Murray, and H. Larochelle. MADE:
Masked autoencoder for distribution estimation. In ICML,
2015.

G.A. Holton. Value-at-risk: Theory and Practice. Academic
Press Inc, 2003.

C-W. Huang, D. Krueger, A. Lacoste, and A. Courville. Neural
autoregressive flows. In ICML, 2018.

J. Huang and B. Frey. Cumulative distribution networks and
the derivative-sum-product algorithm. In UAI, 2008.

J. Huang, N. Jojic, and C. Meek. Exact inference and learning
for cumulative distribution func- tions on loopy graphs. In
NIPS, 2010.

H. Joe. Multivariate models and dependence concepts. Mono-
graphs on statistics and applied probability. CRC Press,
1997.

M. Jordan and R. Jacobs. Hierarchical mixtures of experts and
the EM algorithm. Neural Computation, 6:181–214, 1994.

T. Minka. From automatic differentiation to message pass-
ing. Invited talk at the Advances and challenges in
Machine Learning Languages workshop (ACMLL 2019),
2019. URL https://tminka.github.io/papers/
acmll2019/.

J. Oliva, A. Dubey, M. Zaheer, B. Póczos, R. Salakhutdinov,
E. Xing, and J. Schneider. Transformation autoregressive
networks. In ICML, 2018.

G. Papamakarios, T. Pavlakou, and I. Murray. Masked autore-
gressive flow for density estimation. In NIPS, 2017.

T. Schmidt. Coping with copulas. In Copulas – From Theory
to Applications in Finance, pages 3–34. Risk Books, 2006.

R. Silva. Bayesian inference in cumulative distribution fields.
Interdisciplinary Bayesian Statistics, pages 83–95, 2015.

R. Silva, C. Blundell, and Y-W. Teh. Mixed cumulative distri-
bution networks. In AISTATS, 2011.

A. Sklar. Fonctions de répartition à n dimensions et
leurs marges. Publications de l’Institut de Statistique de
l’Université de Paris, 8, 1959.

B. Uria, I. Murray, and H. Larochelle. RNADE: the real-valued
neural autoregressive density-estimator. In NIPS, 2013.

B. Uria, I. Murray, and H. Larochelle. A deep and tractable
density estimator. In ICML, 2014.

C. Varin, N. Reid, and D. Firth. An overview of composite
likelihood methods. Statistica Sinica, 21(1), 2011.

https://tminka.github.io/papers/acmll2019/
https://tminka.github.io/papers/acmll2019/

	CONTRIBUTION
	THE MONOTONIC NEURAL DENSITY ESTIMATOR
	UNIVARIATE CASE
	AUTOREGRESSIVE MONDE
	GAUSSIAN COPULA MODELS
	PUMONDE: PURE MONOTONIC NEURAL DENSITY ESTIMATOR
	Composite Log-likelihood

	RELATED WORK
	EXPERIMENTS
	TASK I: DENSITY ESTIMATION
	TASK II: TAIL EVENT CLASSIFICATION
	TASK III: TAIL DEPENDENCE
	TASK IV: MUTUAL INFORMATION
	TASK V: BIVARIATE LIKELIHOOD

	DISCUSSION

