
Finite-sample Analysis of Greedy-GQ with Linear Function Approximation
under Markovian Noise

Yue Wang
Electrical Engineering
University at Buffalo

ywang294@buffalo.edu

Shaofeng Zou
Electrical Engineering
University at Buffalo
szou3@buffalo.edu

Abstract

Greedy-GQ is an off-policy two timescale al-
gorithm for optimal control in reinforcement
learning [18]. This paper develops the first
finite-sample analysis for the Greedy-GQ al-
gorithm with linear function approximation
under Markovian noise. Our finite-sample
analysis provides theoretical justification for
choosing step-sizes for this two timescale al-
gorithm for faster convergence in practice, and
suggests a trade-off between the convergence
rate and the quality of the obtained policy.
Our paper extends the finite-sample analyses
of two timescale reinforcement learning algo-
rithms from policy evaluation to optimal con-
trol, which is of more practical interest. Specif-
ically, in contrast to existing finite-sample anal-
yses for two timescale methods, e.g., GTD,
GTD2 and TDC, where their objective func-
tions are convex, the objective function of the
Greedy-GQ algorithm is non-convex. More-
over, the Greedy-GQ algorithm is also not a
linear two-timescale stochastic approximation
algorithm. Our techniques in this paper provide
a general framework for finite-sample analy-
sis of non-convex value-based reinforcement
learning algorithms for optimal control.

1 INTRODUCTION

Reinforcement learning (RL) is to find an optimal control
policy to interact with a (stochastic) environment so that
the accumulated reward is maximized [27]. It finds a wide
range of applications in practice, e.g., robotics, computer
games and recommendation systems [21, 20, 25, 14].

When the state and action spaces of the RL problem
are finite and small, RL algorithms based on the tabular

Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI), PMLR volume 124, 2020.

approach, which stores the action-values for each state-
action pair, can be applied and usually have convergence
guarantee, e.g., Q-learning [32] and SARSA [24]. How-
ever, in many RL applications, the state and action spaces
are very large or even continuous. Then, the approach of
function approximation can be used. Nevertheless, with
function approximation in off-policy training, classical
RL algorithms may diverge to infinity, e.g., Q-learning,
SARSA and TD learning [2, 11].

To address the non-convergence issue in off-policy train-
ing, a class of gradient temporal difference (GTD) learn-
ing algorithms were developed in [18, 17, 28, 29], includ-
ing GTD, GTD2, TD with correction term (TDC), and
Greedy-GQ. The basic idea is to construct squared ob-
jective functions, e.g., mean squared projected Bellman
error, and then to perform stochastic gradient descent. To
address the double sampling problem in gradient estima-
tion, a weight doubling trick was proposed in [28], which
leads to a two timescale update rule. One great advantage
of this class of algorithms is that they can be implemented
in an online and incremental fashion, which is memory
and computationally efficient.

The asymptotic convergence of these two timescale al-
gorithms has been well studied under both i.i.d. and
non-i.i.d. settings [28, 29, 18, 34, 4, 5, 13]. Further-
more, the finite-sample analyses of these algorithms are of
great practical interest for algorithmic parameter tuning
and design of new sample-efficient algorithms. How-
ever, these problems remain unsolved until very recently
[8, 31, 16, 12, 33]. But, existing finite-sample analyses
are only for the GTD, GTD2 and TDC algorithms, which
are designed for evaluation of a given policy. The finite-
sample analysis for the Greedy-GQ algorithm, which is
to directly learn an optimal control policy, is still not
understood and will be the focus of this paper.

In this paper, we will develop the finite-sample analysis
for the Greedy-GQ algorithm with linear function approx-
imation under Markovian noise. More specifically, we

focus on the general case with a single sample trajectory
and non-i.i.d. data. We will develop explicit bounds on the
convergence of the Greedy-GQ algorithm and understand
its sample complexity as a function of various parameters
of the algorithm.

1.1 Summary of Major Challenges and
Contributions

The major challenges and our main contributions are sum-
marized as follows.

The objective function of the Greedy-GQ algorithm is
the mean squared projected Bellman error (MSPBE). Un-
like the objective functions of GTD, GTD2 and TDC,
which are convex, the objective function of Greedy-GQ
is non-convex since the target policy is also a function
of the action-value function approximation (see (9) for
the objective function). In this case, the Greedy-GQ algo-
rithm may not be able to converge to the global optimum,
and existing analyses for GTD, GTD2 and TDC based
on convex optimization theory cannot be directly applied.
Moreover, the Greedy-GQ algorithm cannot be viewed
as a linear two timescale stochastic approximation due
to its non-convexity, and thus existing analyses for linear
two timescale stochastic approximation are not applicable.
Due to the non-convexity of the objective function, con-
vergence to the global optimum may not be guaranteed.
Therefore, we study the convergence of the gradient norm
to zero (in an on-average sense, i.e., randomized stochas-
tic gradient method [10]), and we focus on convergence
to stationary points. In this paper, we develop a novel
methodology for finite-sample analysis of the Greedy-GQ
algorithm, which solves reinforcement learning problems
from a non-convex optimization perspective. This may be
of independent interest for a wide range of reinforcement
learning problems with non-convex objective functions.

In this paper, we focus on the most general scenario where
there is a single sample trajectory and the data are non-
i.i.d.. This non-i.i.d. setting will invalidate the martingale
noise assumption commonly used in stochastic approx-
imation (SA) analysis [18, 8, 5]. Our approach is to
analyze RL algorithms from a non-convex optimization
perspective, and does not require the martingale noise
assumption. Thus, our approach has a much broader ap-
plicability.

Moreover, the propagation of the stochastic bias in the
gradient estimate caused by the Markovian noise in the
two timescale updates makes the analysis even more chal-
lenging. We develop a comprehensive characterization
of the stochastic bias and establish the convergence rate
of the Greedy-GQ algorithm under constant step-sizes.
More importantly, we develop a novel recursive approach

of bounding the bias caused by the tracking error, i.e.,
the error in the fast timescale update. Specifically, our
approach is to recursively plug the obtained bound back
into the analysis to tighten the final bound on the bias.

We show that under constant step-sizes, i.e., αt = 1
Ta

and βt = 1
T b

for 0 ≤ t ≤ T , the Greedy-GQ algorithm

converges as fast as O
(

1
T 1−a + log T

Tmin{b,a−b}

)
. We also

derive the best choice of a and b so that the above rate
is the fastest. Specifically, when a = 2

3 and b = 1
3 , the

Greedy-GQ algorithm converges as fast as O
(

log T

T
1
3

)
. We

further characterize the trade-off between the convergence
speed and the quality of the obtained policy. Specifically,
the algorithm needs more samples to converge if the target
policy is more “greedy”, e.g., a larger parameter σ in
softmax makes the policy more “greedy”, and will require
more samples to converge. Our experiments also validate
this theoretical observation.

1.2 Related Work

In this subsection, we provide an overview of closely
related work. Specifically, we here focus on value-based
RL algorithms with function approximation. We note that
there are many other types of approaches, e.g., policy
gradient and fitted value/policy iteration, which are not
discussed in this paper.

TD, Q-learning and SARSA with function approxima-
tion. TD with linear function approximation was shown
to converge asymptotically in [30], and its finite-sample
analysis was established in [9, 15, 3, 26] under both i.i.d.
and non-i.i.d. settings. Moreover, the finite-sample analy-
sis of TD with over–parameterized neural function approx-
imation was developed in [6]. Q-learning and SARSA
with linear function approximation were shown to con-
verge asymptotically under certain conditions [19, 23]
and their finite-sample analyses were developed in [35, 7].
Although they may have a faster convergence rate [35, 7],
however, these algorithms may diverge under off-policy
training, e.g., Baird’s counterexample [2]. Different from
TD, Q-learning and SARSA, the Greedy-GQ algorithm
follows a stochastic gradient descent type update. How-
ever, the updates of TD, Q-learning and SARSA do not
exactly follow a gradient descent type, since the “gra-
dient” therein is not gradient of any function [18]. The
Greedy-GQ algorithm is a two timescale one, and thus
requires more involved analysis than these one timescale
methods. Moreover, the Greedy-GQ algorithm is essen-
tially a non-convex optimization problem, for which the
convergence is in general slower than that of a convex
problem.

GTD algorithms. The GTD, GTD2 and TDC algorithms

were shown to converge asymptotically in [29, 28, 34].
Their finite-sample analyses were further developed re-
cently in [8, 31, 16, 12, 33] under i.i.d. and non-i.i.d. set-
tings. The Greedy-GQ algorithm studied in this paper is
fundamentally different from the above three algorithms.
This is due to the fact that the Greedy-GQ algorithm is for
optimal control and its objective function is non-convex;
whereas the GTD, GTD2 and TDC algorithms are for
policy evaluation, and their objective functions are con-
vex. Therefore, new techniques need to be developed to
tackle the non-convexity for the finite-sample analysis
for Greedy-GQ. Moreover, general linear two timescale
stochastic approximation has also been studied. Although
the Greedy-GQ algorithm follows a two timescale up-
date rule, but it is not linear. Furthermore, the general
non-linear two timescale stochastic approximation was
studied in [5]. However, the Greedy-GQ algorithm under
Markovian noise does not satisfy the martingale noise as-
sumption therein. Moreover, our paper uses a non-convex
optimization based approach to develop the finite-sample
analysis, which is different from the approach used in [5].

2 PRELIMINARIES

2.1 Markov Decision Process

In RL problems, a Markov Decision Process (MDP) is
usually used to model the interaction between an agent
and a stochastic environment. Specifically, an MDP con-
sists of (S,A,P, r, γ), where S ⊂ Rd is the state space,
A is a finite set of actions, and γ ∈ (0, 1) is the discount
factor. Denote the state at time t by St, and the action
taken at time t by At. Then the measure P denotes the
action-dependent transition kernel of the MDP:

P(St+1 ∈ U |St = s,At = a) =

∫
U

P(dx|s, a), (1)

for any measurable set U ⊆ S. The reward at time t is
given by rt = r(St, At, St+1), which is the reward of
taking action At at state St and transitioning to a new
state St+1. Here r : S × A × S → R+ is the reward
function, and is assumed to be uniformly bounded, i.e.,

0 ≤ r(s, a, s′) ≤ rmax,∀(s, a, s′) ∈ S×A× S. (2)

A stationary policy maps a state s ∈ S to a probability
distribution π(·|s) over A, which does not depend on
time. For a policy π, its value function V π : S → R is
defined as the expected accumulated discounted reward
by executing the policy π to obtain actions:

V π (s0) = E

[∞∑
t=0

γtr(St, At, St+1)|S0 = s0

]
. (3)

The action-value function Qπ : S×A→ R of policy π
is defined as

Qπ(s, a) = ES′∼P(·|s,a) [r(s, a, S′) + γV π(S′)] . (4)

The goal of optimal control in RL is to find the optimal
policy π∗ that maximizes the value function for any initial
state, i.e., to solve the following problem:

V ∗(s) = sup
π
V π(s), ∀s ∈ S. (5)

We can also define the optimal action-value function as

Q∗(s, a) = sup
π
Qπ(s, a), ∀(s, a) ∈ S×A. (6)

Then, the optimal policy π∗ is greedy w.r.t. Q∗. The
Bellman operator T is defined as

(TQ)(s, a) =

∫
S

(r(s, a, s′)

+ γmax
b∈A

Q(s′, b))P(ds′|s, a). (7)

It is clear that T is contraction in the sup norm defined
as ‖Q‖sup = sup(s,a)∈S×A |Q(s, a)|, and the optimal
action-value function Q∗ is the fixed point of T [22].

2.2 Linear Function Approximation

In many modern RL applications, the state space is usually
very large or even continuous. Therefore, classical tabular
approach cannot be directly applied due to memory and
computational constraint [27]. In this case, the approach
of function approximation can be applied, which uses
a family of parameterized function to approximate the
action-value function. In this paper, we focus on linear
function approximation.

Consider a set of N fixed base functions φ(i): S×A→
R, i = 1, . . . , N . Further consider a family of real-valued
functions Q = {Qθ : θ ∈ RN} defined on S×A, which
consists of linear combinations of φ(i), i = 1, . . . , N .
Specifically,

Qθ(s, a) =

N∑
i=1

θ(i)φ(i)
s,a = φ>s,aθ. (8)

The goal is to find a Qθ with a compact representation in
θ to approximate the optimal action-value function Q∗.

2.3 Greedy-GQ Algorithm

In this subsection, we introduce the Greedy-GQ algo-
rithm, which was originally proposed in [18] to solve
the problem of optimal control in RL under off-policy
training.

For the Greedy-GQ algorithm, a fixed behavior policy πb
is used to collect samples. It is assumed that the Markov
chain {Xt, At}∞t=0 induced by the behavior policy πb and
the Markov transition kernel P is uniformly ergodic with
the invariant measure denoted by µ.

The main idea of the Greedy-GQ algorithm is to design
an objective function, and further to employ a stochastic
gradient descent optimization approach together with a
weight doubling trick (a two timescale update) [29] to
minimize the objective function. Specifically, the goal is
to minimize the following mean squared projected Bell-
man error (MSPBE):

J(θ) , ||ΠTπθQθ −Qθ||µ. (9)

Here ‖Q(·, ·)‖µ ,
∫
s∈S,a∈A dµs,aQ(s, a); Tπ is the

Bellman operator:

TπQ(s, a) , ES′,A′ [r(s, a, S′) + γQ(S′, A′))], (10)

where S′ ∼ P(·|s, a), and A′ ∼ π(·|S′); Π is a pro-
jection operator which projects an action-value func-
tion to the function space Q with respect to || · ||µ, i.e.,
ΠQ̂ = arg minQ∈Q ‖Q − Q̂‖µ; and πθ is a stationary
policy, which is a function of θ.

We note that the objective function in (9) is non-convex
since the parameter θ is also in the Bellman operator, i.e.,
πθ. Moreover, unlike GTD, GTD2 and TDC, the objective
function of the Greedy-GQ algorithm is not a quadratic
function of θ. Thus, the Greedy-GQ algorithm is not a
linear two timescale stochastic approximation algorithm.

Define δs,a,s′(θ) = r(s, a, s′) + γV̄s′(θ) − θ>φs,a, and
V̄s′(θ) =

∑
a′ πθ(a

′|s′)θ>φs′,a′ . In this way, the ob-
jective function in (9) can be rewritten equivalently as
follows

J(θ) =Eµ[δS,A,S′(θ)φS,A]>Eµ[φS,Aφ
>
S,A]−1

× Eµ[δS,A,S′(θ)φS,A], (11)

where (S,A) ∼ µ, and S′ ∼ P(·|S,A) is the subsequent
state.

To compute a gradient to J(θ), we will need to compute
the gradient to δS,A,S′(θ), and thus the gradient to V̄S′(θ).
Suppose φ̂S′(θ) is an unbiased estimate of the gradient to
V̄S′(θ) given S′, then ψS,A,S′(θ) = γφ̂S′(θ)− φS,A is a
gradient of δS,A,S′(θ). Then, the gradient to J(θ)/2 can
be computed as follows:

Eµ[ψS,A,S′(θ)φ
>
S,A]Eµ[φS,Aφ

>
S,A]−1Eµ[δS,A,S′(θ)φS,A]

= −Eµ[δS,A,S′(θ)φS,A] + γEµ[φ̂S′(θ)φ
>
S,A]ω∗(θ),

(12)

where ω∗(θ) = Eµ[φS,Aφ
>
S,A]−1Eµ[δS,A,S′(θ)φS,A]. To

get an unbiased estimate of (12), two independent samples

of (S,A, S′) are needed, which is not applicable when
there is a single sample trajectory. Then, a weight dou-
bling trick [29] was used in [18] to construct the Greedy-
GQ algorithm with the following updates (see Algorithm
1 for more details):

θt+1 = θt + αt(δt+1(θt)φt − γ(ω>t φt)φ̂t+1(θt)),
(13)

ωt+1 = ωt + βt(δt+1(θt)− φ>t ωt)φt, (14)

where αt > 0 and βt > 0 are non-increasing step-sizes,
δt+1(θ) , δst,at,st+1

(θ) and φt , φst,at . For more
details of the derivation of the Greedy-GQ algorithm, we
refer the readers to [18].

Algorithm 1 Greedy-GQ [18]
Initialization:
θ0, ω0, s0, φ(i), for i = 1, 2, ..., N
Method:
πθ0 ← Γ(φ>θ0)
for t = 0, 1, 2, ... do

Choose at according to πb(·|st)
Observe st+1 and rt
V̄st+1(θt)←

∑
a′∈A πθt(a

′|st+1)θ>t φst+1,a′

δt+1(θt)← rt + γV̄st+1
(θt)− θ>t φt

φ̂t+1(θt)← gradient of V̄st+1(θt)

θt+1 ← θt + αt(δt+1(θt)φt − γ(ω>t φt)φ̂t+1(θt))
ωt+1 ← ωt + βt(δt+1(θt)− φ>t ωt)φt
Policy improvement: πθt+1 ← Γ(φ>θt+1)

end for

In Algorithm 1, Γ is a policy improvement operator, which
maps an action-value function to a policy, e.g., greedy,
ε-greedy, and softmax and mellowmax [1].

3 FINITE-SAMPLE ANALYSIS FOR
GREEDY-GQ

In this section, we will first introduce some technical
assumptions, and then present our main results.

We make the following standard assumptions.

Assumption 1 (Problem solvability). The matrix C =
Eµ[φtφ

>
t] is non-singular.

Assumption 2 (Bounded feature). ‖φs,a‖2 ≤
1,∀(s, a) ∈ S×A.

Assumption 3 (Geometric uniform ergodicity). There
exists some constants m > 0 and ρ ∈ (0, 1) such that

sup
s∈S

dTV (P(st|s0 = s), µ) ≤ mρt, (15)

for any t > 0, where dTV is the total-variation distance
between the probability measures.

In this paper, we focus on policies that are smooth. Specif-
ically, πθ(a|s) and ∇πθ(a|s) are Lipschitz functions of
θ.

Assumption 4 (Policy smoothness). The policy πθ(a|s)
is k1-Lipschitz and k2-smooth, i.e., for any (s, a) ∈ S×A,

‖∇πθ(a|s)‖ ≤ k1,∀θ, (16)

and,

‖∇πθ1(a|s)−∇πθ2(a|s)‖ ≤ k2‖θ1 − θ2‖,∀θ1, θ2.
(17)

We note that the smaller the k1 and k2 are, the smoother
the policy is. This family contains many policies as spe-
cial cases, e.g., softmax and mellowmax [1]. We also
note that the greedy policy is not smooth, since it is not
differentiable.

To justify the feasibility of Assumption 4 in practice, in
the following, we first provide an example of the softmax
policy, and show that it is Lipschitz and smooth in θ.
Consider the softmax operator, where for any (a, s) ∈
A× S and θ ∈ RN ,

πθ(a|s) =
eσθ
>φs,a∑

a′∈A e
σθ>φs,a′

, (18)

for some σ > 0.

Lemma 1. The softmax policy πθ(a|s) is 2σ-Lipschitz
and 8σ2-smooth, i.e., for any (s, a) ∈ S×A, and for any
θ1, θ2 ∈ RN ,

|πθ1(a|s)− πθ2(a|s)| ≤ 2σ‖θ1 − θ2‖, (19)

‖∇πθ1(a|s)−∇πθ2(a|s)‖ ≤ 8σ2‖θ1 − θ2‖. (20)

As σ →∞, the softmax policy approximates the greedy
policy asymptotically, however its Lipschitz and smooth-
ness constants also go to infinity.

It can be seen from (9) that the objective function of the
Greedy-GQ algorithm is non-convex. It may not be possi-
ble to guarantee the convergence of the algorithm to the
global optimum. Therefore, to measure the convergence
rate, we consider the convergence rate of the gradient
norm to zero. Furthermore, motivated by the randomized
stochastic gradient method in [10], which is designed to
analyze non-convex optimization problems, in this paper,
we also consider a randomized version of the Greedy-
GQ algorithm in Algorithm 1. Specifically, let M be an
independent random variable with probability mass func-
tion PM . For steps from 1 to M , call the Greedy-GQ
algorithm in Algorithm 1. The final output is then θM .

In the following theorem, we provide the convergence
rate bound for E[‖∇J(θM)‖2] when constant step-sizes

are used. Specifically, let M ∈ {1, 2, ...T} and

P(M = k) =
αk∑T
t=1 αt

. (21)

Theorem 1. Consider the following step-sizes: β = βt =
1
T b

, and α = αt = 1
Ta , where 1

2 < a ≤ 1 and 0 < b ≤ a.
Then we have that for T ≥ 1,

E[‖∇J(θM)‖2] = O

(
1

T 1−a +
log T

Tmin{b,a−b}

)
. (22)

Here we only provide the order of the bound in terms of
T . An explicit bound can also be derived, which however
is cumbersome and tedious. To understand how different
parameters, e.g., L,C,m, ρ, affect the convergence speed,
we refer the readers to equation (99) in the appendix.

Although it is not explicitly characterized in (22), we
note that as k1 and k2 increases, the bound will become
looser and thus the algorithm will need more samples to
converge. For a more “greedy” target policy with larger
k1 and k2, it will require more samples to converge. This
suggests a practical trade-off between the quality of the
obtained policy and the sample complexity.

Theorem 1 characterizes the relationship between the
convergence rate and the choice of the step-sizes αt and
βt. We further optimize over the choice of the step-sizes
and obtain the best bound as in the following corollary.

Corollary 1. If we choose a = 2
3 and b = 1

3 , then the
best rate of the bound in (22) is obtained as follows:

E[‖∇J(θM)‖2] = O

(
log T

T
1
3

)
. (23)

For the general non-convex optimization problem with a
Lipschitz gradient, the convergence rate of the random-
ized stochastic gradient method is O(T−

1
2) [10]. How-

ever, the gradient estimate in that problem is unbiased,
and the update is one timescale. In our problem, we have
a two timescale update rule. Although the fast timescale
updates much faster than the slow timescale, there still ex-
ists an estimation error, which we call it “tracking error”.
Specifically, the tracking error is defined as

zt = wt − w∗(θt). (24)

Moreover, in this paper, we consider the practical scenario
where a single sample trajectory with Markovian noise
is used. Therefore, for the Greedy-GQ algorithm, there
exists bias in the gradient estimate, which justifies the
difference in the convergence rate from the one for general
non-convex optimization problems [10].

4 PROOF SKETCH

In this section, we provide an outline of the proof, and
highlight our major technical contributions. For a com-
plete proof, we refer the readers to the appendix.

The proof can summarized in the following five steps.

1. We first prove that J(θ) is Lipschitz and smooth.

2. We then decompose the error recursively.

3. We provide a comprehensive characterization of
stochastic bias terms and the tracking error in the
two timescale updates.

4. We then recursively plug the obtained bound on
E[‖∇J(θM)‖2] back into the analysis, and repeat
recursively to obtain the tightest bound.

5. We then optimize the convergence rate over the
choice of step-sizes.

In the following, we discuss the proof sketch step by step
with more details.

Step 1. We first provide a characterization of the geomet-
ric property of the objective function J(θ). Specifically,
we show that if πθ is Lipschitz and smooth (satisfying
Assumption 4), then J(θ) is also Lipschitz andK-smooth
for some K > 0, i.e., for any θ1 and θ2,

‖∇J(θ1)−∇J(θ2)‖ ≤ K||θ1 − θ2||. (25)

Here, larger k1 and k2 imply a larger K. As will be seen
later in Step 2 and Step 3, a largerK means a looser bound
and a higher sample complexity. This theoretical assertion
will also be validated in our numerical experiments.

Recall that J(θ) can be equivalently written as
Eµ[δS,A,S′(θ)φS,A]>Eµ[φS,Aφ

>
S,A]−1Eµ[δS,A,S′(θ)φS,A],

which has a quadratic form in Eµ[δS,A,S′(θ)φS,A].
Therefore, it suffices to show that Eµ[δS,A,S′(θ)φS,A] is
bounded, Lipschitz and smooth, which is clear from its
definition and the fact that πθ is Lipschitz and smooth.

Step 2. Since the object function J(θ) is Lipschitz and
K-smooth, then by Taylor expansion, we have that

J(θt+1)− J(θt)− 〈θt+1 − θt,∇J(θt)〉

≤ K

2
‖θt+1 − θt‖2. (26)

Denote byGt+1(θ, ω) = (δt+1(θ)φt−γ(ω>φt)φ̂t+1(θ)).
Then, the difference between θt and θt+1 is
αtGt+1(θt, ωt). The inequality (26) can be further

written as

J(θt+1)− J(θt)− αt〈Gt+1(θt, ωt),∇J(θt)〉

≤ Kα2
t

2
‖Gt+1(θt, ωt)‖2. (27)

Note that Gt+1(θt, ωt) is the stochastic gradient used
in the Greedy-GQ algorithm. Due to the two timescale
update and the Markovian noise, the stochastic gradient
is biased. For a finite-sample analysis, we will then need
to characterize the stochastic bias in the gradient estimate
Gt+1(θt, ωt) explicitly.

We first consider the difference between the true gradient
∇J(θt) and the gradient estimate Gt+1(θt, ωt) used in
the Greedy-GQ algorithm, which is denoted by ∆t =
−2Gt+1(θt, ωt) − ∇J(θt). Plug this in the inequality
(27), and we obtain that

J(θt+1)− J(θt) +
αt
2
〈(∆t +∇J(θt)),∇J(θt)〉

= J(θt+1)− J(θt) +
αt
2
‖∇J(θt)‖2

+ αt

〈
1

2
∆t,∇J(θt)

〉
≤ α2

t

K

2
‖Gt+1(θt, ωt)‖2. (28)

Recall the definition of the random variable M in (21).
Applying (28) recursively, we have that

E[‖∇J(θM)‖2]

≤ 1∑T
t=0 αt

(
(J(θ0)− J(θT+1))

+
K

2

T∑
t=0

α2
tE[‖Gt+1(θt, ωt)‖2]

−
T∑
t=0

αt
2
〈∆t,∇J(θt)〉

)
. (29)

From (29), it can be seen that to understand the conver-
gence rate of E[‖∇J(θM)‖2], we need to bound the three
terms on the right hand side of (29). The first and second
terms are straightforward to bound since J(θ) is non-
negative for any θ, and ‖Gt+1‖ is uniformly bounded by
some constant.

For the third term 〈∆t,∇J(θt)〉, it can be further decom-
posed into the following two parts〈
∇J(θt),−2Gt+1(θt, ωt) + 2Gt+1(θt, ω

∗(θt))
〉

−
〈
∇J(θt),∇J(θt) + 2Gt+1(θt, ω

∗(θt))
〉
, (30)

where the first part is corresponding to the tracking error,
and the second part is corresponding to the stochastic bias
caused by the Markovian noise.

Step 3. We then provide bounds for each term in (29)
and (30). For the first and second terms in (29), it is
straightforward to develop their upper bounds. For the
first term in (30), it can be upper bounded by exploiting
the Lipschitz property of Gt+1(θ, ω) in ω. Specifically,〈
∇J(θt),−2Gt+1(θt, ωt) + 2Gt+1(θt, ω

∗(θt))
〉

≤ ξ1‖∇J(θt)‖‖ωt − ω∗(θt)‖, (31)

for some ξ1 > 0. Thus, it suffices to bound the tracking
error ‖ωt − ω∗(θt)‖. The bound on the tracking error
is difficult due to the complicated coupling between the
parameter ωt, θt and the sample trajectory. We decouple
such the dependence between ωt, θt and the samples by
looking τ steps back, where τ is the mixing time of the
MDP. By the geometric uniform ergodicity, conditioning
on ωt−τ and θt−τ , the distribution of (st, at) is close to
the stationary distribution µ. Thus, the expectation of the
tracking error can be bounded.

We then bound the second term in (30). We know that for
any fixed θ, Eµ[∇J(θ) + 2Gt+1(θ, ω∗(θ))] = 0. How-
ever, θt and St, At, St+1 are not independent. Similarly,
we exploit the geometric uniform ergodicity of the MDP.
For simplicity, we denote by

ζ(θt, Ot) =
〈
∇J(θt),∇J(θt) + 2Gt+1(θt, ω

∗(θt))
〉
,

(32)

where Ot = {St, At, St+1, rt}. We can show that
ζ(θ,Ot) is Lipschitz in θ. Thus, if we look τ step back,
then

|ζ(θt, Ot)− ζ(θt−τ , Ot)| ≤ cζ‖θt − θt−τ‖, (33)

for some cζ > 0. Therefore,

ζ(θt, Ot) ≤ ζ(θt−τ , Ot) + cζ‖θt − θt−τ‖. (34)

Since we are using small step-sizes, then ‖θt − θt−τ‖
should be small. In other words, the difference between
ζ(θt, Ot) and ζ(θt, Ot) is small. By the geometric uni-
form ergodicity, for any θt−τ , the distribution of Ot is
close to the stationary distribution µ. Thus, even θt−τ
and Ot are not independent, we can still upper bound
E[ζ(θt−τ , Ot)]. In this way, we decouple the dependence
between θt and Ot, and we can obtain the bound on the
gradient bias.

Step 4. After Step 3, we can obtain the following bound
on E[‖∇J(θM)‖2]:

E[‖∇J(θM)‖2] = O

(
1

T 1−a +

√
log T

T
1
2 min{b,a−b}

)
.

(35)

This bound is obtained by upper bounding ‖∇J(θt)‖ on
the right hand side of (29) using a constant. Obviously,

E[‖∇J(θM)‖2] → 0 as T → ∞, and thus using a con-
stant to upper bound∇J(θt) is not tight.

In this step, we recursively use the obtained bound to
further tighten the bound on E[‖∇J(θM)‖2]. Specifi-
cally, we plug (35) back into (31) in Step 3. If 1 − a >
min{b, a − b}, then the second term on the right hand
side of (35) dominates. Plugging (35) back into (31) will
further tighten the bound to the following one:

E[‖∇J(θM)‖2] = O

(
1

T 1−a +
log

3
4 T

T
3
4 min{b,a−b}

)
.

(36)

Repeat this procedure, we can then obtain the following
bound:

E[‖∇J(θM)‖2] = O

(
1

T 1−a +
log T

Tmin{b,a−b}

)
. (37)

If 1 − a ≤ 1
2 min{b, a − b}, then the first term in (35)

dominates. Therefore, the above recursive refinement
will not improve the convergence rate. If 1

2 min{b, a −
b} ≤ 1− a ≤ min{b, a− b}, we can apply our recursive
bounding trick finite times until the first term O

(
1

T 1−a

)
in (35) dominates. Combining the analyses for the three
cases, the overall convergence rate bound can be obtained,
which is as in (37).

Step 5. Given the convergence rate bound in (37), in
this step, we optimize over the choice of the step-sizes to
obtain the fastest convergence rate. Recall that 1

2 < a ≤ 1
and 0 < b ≤ a. Then, it can be derived that when a = 2

3
and b = 1

3 , the best convergence rate that is achievable in

(37) is O
(

log T

T
1
3

)
.

5 NUMERICAL EXPERIMENTS

In this section, we present our numerical experiments.
Specifically, we investigate how the Lipschitz and smooth-
ness constants affect the convergence of the Greedy-GQ
algorithm. We use the the softmax operator as an example.
Recall that in Lemma 1, the Lipschitz and smoothness
constants of the softmax operator is an increasing function
of σ in (18).

As has been observed in our finite-sample analysis, the
upper bound on the gradient norm increases with K, and
thus increases with σ. This suggests a higher sample com-
plexity as the target policy becomes more “greedy”. We
will numerically validate this observation by simulating
the Greedy-GQ algorithm for different values of σ in (18).

We consider a simple example: S = {1, 2, 3, 4} and A =
{1, 2}. For the first MDP we consider, taking any action
at any state will have the same probability to transit to any

state, i.e. P(s′|s, a) = 1
4 for any (s, a, s′). Five different

values of σ are considered: σ = 1, 2, 3, 15, 20.

We randomly generate two base functions. We initialize
s0 = 2, θ0 = (1, 2)> and ω0 = (0.1, 0.1)>. At each
iteration, we choose At ∼ πb, update θt+1 and ωt+1

according to Algorithm 1, and compute ‖∇J(θt)‖2. As
for T , we consider T = 1000.

For the same state and action spaces, we vary the behavior
policy and Markov transition kernel, and repeat our ex-
periment for three more times, the more specific settings
are followed:
MDP1: πb(a|s) = 0.5 for all (s, a) ∈ S × A and
P(s′|s, a) = 0.25 for all (s, a, s′) ∈ S×A× S;
MDP2: πb(a = 1|s) = 0.4, πb(a = 2|s) = 0.6 for all
s ∈ S and P(s′|s, a) = 0.25 for all (s, a, s′) ∈ S×A×S;
MDP3: πb(a|s) = 0.5 for all (s, a) ∈ S×A, P(s|s, a =
1) = 1 for all s ∈ S and P(s′|s, a = 2) = 0.25 for all
(s, s′) ∈ S× S;
MDP4: πb(a = 1|s) = 0.3, πb(a = 2|s) = 0.7 for all
s ∈ S and P(s′|s, a) = 0.25 for all (s, a, s′) ∈ S×A×S.

For all the four MDPs, we set r(s, a, s′) = 1 for all
(s, a, s′) ∈ S×A× S.

We plot the gradient norm as a function of the number of
iterations in Fig. 1.

It can be seen from Fig. 1, as σ increases, the conver-
gence of the Greedy-GQ algorithm is getting slower. This
observation matches with our theoretical bound that the
Greedy-GQ algorithm has a higher sample complexity if
the targeted policy is less smoother.

6 CONCLUSION

In this paper, we developed the first finite-sample analysis
for the Greedy-GQ algorithm with linear function approx-
imation under Markovian noise. Our analysis is from a
novel optimization perspective to solve RL problems. We
comprehensively characterized the stochastic bias in the
gradient estimate and designed a novel technique which
recursively applies the obtained bound back into the bias
analysis to tighten the convergence rate bound. We charac-
terized the convergence rate of the Greedy-GQ algorithm,
and provided a general guide for choosing step-sizes in
practice. The convergence rate obtained by our analysis is
O
(

log T

T
1
3

)
, and is close to the convergence rate O

(
1

T
1
2

)
for general non-convex optimization problems with un-
biased gradient estimate. Such a different is mainly due
to the Markovian noise and the tracking error in the two
timescale updates. The techniques developed in this paper
may be of independent interest for a wide range of rein-
forcement learning problems with non-convex objective
function and Markovian noise.

(a) MDP 1

(b) MDP 2

(c) MDP 3

(d) MDP 4

Figure 1: Comparison among different σ for the Greedy-
GQ algorithm with softmax operator.

In this paper, we provided the finite-sample analysis and
the convergence rate for the case with constant step-sizes.
The convergence rate for the case with diminishing step-
sizes can be derived similarly. One interesting future
direction is to investigate the Greedy-GQ algorithm with
the greedy policy. Specifically,

πθ(a|s) = 1 if a = arg max
a′∈A

φ>s,aθ.

Due to this max operator, the objective function J(θ) be-
comes non-differentiable and non-smooth. To the best
of the author’s knowledge, there does not exist a general
methodology to analyze non-convex non-differentiable
optimization problems. One possible solution is to ex-
plore the special geometry of the objective function, i.e.,
J(θ) is a piece-wise quadratic function of θ. It is also of
further interest to investigate the Greedy-GQ algorithm
with general function approximation, e.g., neural network.

References

[1] K. Asadi and M. L. Littman. An alternative softmax
operator for reinforcement learning. In Proceedings
of the 34th International Conference on Machine
Learning-Volume 70, pages 243–252. JMLR. org,
2017.

[2] L. Baird. Residual algorithms: Reinforcement learn-
ing with function approximation. In Machine Learn-
ing Proceedings 1995, pages 30–37. Elsevier, 1995.

[3] J. Bhandari, D. Russo, and R. Singal. A finite
time analysis of temporal difference learning with
linear function approximation. arXiv preprint
arXiv:1806.02450, 2018.

[4] V. S. Borkar. Stochastic approximation: a dynami-
cal systems viewpoint, volume 48. Springer, 2009.

[5] V. S. Borkar and S. Pattathil. Concentration bounds
for two time scale stochastic approximation. In Proc.
Annu. Allerton Conf. Communication, Control and
Computing, pages 504–511. IEEE, 2018.

[6] Q. Cai, Z. Yang, J. D. Lee, and Z. Wang. Neural
temporal-difference learning converges to global
optima. In Proc. Advances in Neural Information
Processing Systems (NeurIPS), pages 11312–11322,
2019.

[7] Z. Chen, S. Zhang, T. T. Doan, S. T. Maguluri, and
J.-P. Clarke. Performance of Q-learning with linear
function approximation: Stability and finite-time
analysis. arXiv preprint arXiv:1905.11425, 2019.

[8] G. Dalal, B. Szörényi, G. Thoppe, and S. Mannor.
Finite sample analysis of two-timescale stochastic
approximation with applications to reinforcement
learning. Proceedings of Machine Learning Re-
search, 75:1–35, 2018.

[9] G. Dalal, B. Szrnyi, G. Thoppe, and S. Mannor.
Finite sample analyses for TD(0) with function ap-
proximation. In Proc. AAAI Conference on Artificial
Intelligence (AAAI), pages 6144–6160, 2018.

[10] S. Ghadimi and G. Lan. Stochastic first-and zeroth-
order methods for nonconvex stochastic program-
ming. SIAM Journal on Optimization, 23(4):2341–
2368, 2013.

[11] G. J. Gordon. Chattering in SARSA (λ)-a CMU
learning lab internal report. 1996.

[12] H. Gupta, R. Srikant, and L. Ying. Finite-time per-
formance bounds and adaptive learning rate selec-
tion for two time-scale reinforcement learning. In
Proc. Advances in Neural Information Processing
Systems (NeurIPS), pages 4706–4715, 2019.

[13] P. Karmakar and S. Bhatnagar. Two time-scale
stochastic approximation with controlled Markov
noise and off-policy temporal-difference learning.
Mathematics of Operations Research, 43(1):130–
151, 2018.

[14] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement
learning in robotics: A survey. The International
Journal of Robotics Research, 32(11):1238–1274,
2013.

[15] C. Lakshminarayanan and C. Szepesvari. Linear
stochastic approximation: How far does constant
step-size and iterate averaging go? In Proc. Inter-
national Conference on Artifical Intelligence and
Statistics (AISTATS), 2018.

[16] B. Liu, J. Liu, M. Ghavamzadeh, S. Mahadevan, and
M. Petrik. Finite-sample analysis of proximal gradi-
ent td algorithms. In Proc. International Conference
on Uncertainty in Artificial Intelligence (UAI), pages
504–513. Citeseer, 2015.

[17] H. R. Maei. Gradient temporal-difference learning
algorithms. Thesis, University of Alberta, 2011.

[18] H. R. Maei, C. Szepesvári, S. Bhatnagar, and R. S.
Sutton. Toward off-policy learning control with
function approximation. In Proc. International Con-
ference on Machine Learning (ICML), 2010.

[19] F. S. Melo, S. P. Meyn, and M. I. Ribeiro. An
analysis of reinforcement learning with function ap-
proximation. In Proc. International Conference on
Machine Learning (ICML), pages 664–671. ACM,
2008.

[20] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lil-
licrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement
learning. In Proc. International Conference on Ma-
chine Learning (ICML), pages 1928–1937, 2016.

[21] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu,
J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, and G. Ostrovski. Human-
level control through deep reinforcement learning.
Nature, 518:529–533, 2015.

[22] D. P and Bertsekas. Dynamic programming and op-
timal control, volume 1. Athena scientific Belmont,
MA, 1995.

[23] T. J. Perkins and D. Precup. A convergent form of
approximate policy iteration. In Proc. Advances in
Neural Information Processing Systems (NeurIPS),
pages 1627–1634, 2003.

[24] G. A. Rummery and M. Niranjan. Online Q-learning
using connectionist systems. Technical Report, Cam-
bridge University Engineering Department, Sept.
1994.

[25] D. Silver, A. Huang, C. J. Maddison, A. Guez,
L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, and M. Lanc-
tot. Mastering the game of Go with deep neural
networks and tree search. nature, 529(7587):484,
2016.

[26] R. Srikant and L. Ying. Finite-time error bounds
for linear stochastic approximation and TD learning.
In Proc. Annual Conference on Learning Theory
(CoLT), 2019.

[27] R. S. Sutton and A. G. Barto. Reinforcement Learn-
ing: An Introduction, Second Edition. The MIT
Press, Cambridge, Massachusetts, 2018.

[28] R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar,
D. Silver, C. Szepesvári, and E. Wiewiora. Fast
gradient-descent methods for temporal-difference
learning with linear function approximation. In
Proc. International Conference on Machine Learn-
ing (ICML), pages 993–1000, 2009.

[29] R. S. Sutton, H. R. Maei, and C. Szepesvári. A
convergent O(n) temporal-difference algorithm for

off-policy learning with linear function approxima-
tion. In Advances in neural information processing
systems, pages 1609–1616, 2009.

[30] J. N. Tsitsiklis and B. Roy. An analysis of temporal-
difference learning with function approximation.
IEEE Transactions on Automatic Control, 42(5):674–
690, May 1997.

[31] Y. Wang, W. Chen, Y. Liu, Z.-M. Ma, and T.-Y. Liu.
Finite sample analysis of the gtd policy evaluation
algorithms in markov setting. In Proc. Advances in
Neural Information Processing Systems (NeurIPS),
pages 5504–5513, 2017.

[32] C. J. Watkins and P. Dayan. Q-learning. Machine
learning, 8(3-4):279–292, 1992.

[33] T. Xu, S. Zou, and Y. Liang. Two time-scale off-
policy TD learning: Non-asymptotic analysis over
Markovian samples. In Proc. Advances in Neural
Information Processing Systems (NeurIPS), pages
10633–10643, 2019.

[34] H. Yu. On convergence of some gradient-based
temporal-differences algorithms for off-policy learn-
ing. arXiv preprint arXiv:1712.09652, 2017.

[35] S. Zou, T. Xu, and Y. Liang. Finite-sample analysis
for SARSA with linear function approximation. In
Advances in Neural Information Processing Systems,
pages 8665–8675, 2019.

	INTRODUCTION
	Summary of Major Challenges and Contributions
	Related Work

	PRELIMINARIES
	Markov Decision Process
	Linear Function Approximation
	Greedy-GQ Algorithm

	FINITE-SAMPLE ANALYSIS FOR GREEDY-GQ
	PROOF SKETCH
	NUMERICAL EXPERIMENTS
	CONCLUSION

