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A Omitted proofs

Proof of Theorem 1. From Lemma 2, we have,
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The only thing that remains to be proved is that L0  Sw (�)  U 0. However that is true, by just following an argument
similar to (5). Indeed,
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which implies L0  S� (w )  U 0.

Therefore Algorithm 1 provides a t2-approximation to S� (w ). The total number of calls to the MAX-oracle is
n0` + 1 = O (n log(n/� )). ⇤
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Proof of Lemma 2. Let t = q/r . Consider the set of bt j c heaviest con�gurations
�j = {�1, . . . � bt j c }.
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This proves the lemma. ⇤

Proof of Lemma 3. Notice that SA,R,b is a union of distinct cosets and therefore,
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Therefore, we have that

Pr(Z�1 = 1 ^ Z�2 = 1)

=
X

�1,�2:�1=�2

qn�m � 1
qn � 1 +

X

�1,�2:�1,�2

qn�m

qn � 1

= rm
✓qn�m � 1

qn � 1
◆
+
✓
r 2m � rm

◆ ✓ qn�m

qn � 1
◆

=
rm (rmqn�m � 1)

qn � 1 
✓ r
q

◆2m
= Pr(Z�1 = 1)2

and hence we have the statement of the lemma. ⇤

Proof of Lemma 4. We have,
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which proves the �rst claim. Next, for two distinct con�gurations �1,�2 2 Fnq , we have that
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B Experimental results on computing Total Variation distance

We show one more instance of discrete integration where MB-WISH is useful. The purpose of this experiment is to
show the e�ectiveness of MB-WISH by choosing counting problems where good theoretical results are available.

For this, we use Unconstrained MB-WISH to compute total variation distances between two high dimensional
(up to dimension 100) probability distributions, generated via an iid model. Although, it is computationally hard to
compute the total variation distance between two distributions, for the special case of product distributions, we can
derive theoretical expressions that are known to bound the total variation distance from above and below.



(a) Number of times, among 100 trials, the computed total
variation distance is above 4⇥ the theoretical upper bound
for � = 10�2

(b) Number of times, among 100 trials, the computed total
variation distance is above 4⇥ the theoretical upper bound
for � = 10�4

(c) Number of times, among 100 trials, the computed total
variation distance is above 4⇥ the theoretical upper bound
for � = 10�6

(d) The maximum ratio of the computed total variation
distance and the upper bound

Figure 3: Behavior of computed total variation distance by Algorithm 2 using r = 2 (Unconstrained MB-WISH or
UMB) and r = 1 (Single Bin or SB) with respect to the theoretical upper bound.

The total variation (TV) distance between any two discrete distributions P and Q with common sample space P is
de�ned to be
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which is in the exact form of Eq. (1). Therefore we can use MB-WISH algorithm to estimate the total variation
distance. The following are well-known upper and lower bounds on TV distance based on Hellinger distance,
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For ‘near-uniform’ distributions, it is known that the upper bound is a good approximation [20].

For the experiments, we choose two distributions de�ned over q points in the following manner: We choose a
vector v 2 [0, 1]q randomly and normalize the vector (so that the sum of the elements is 1) in order to have the �rst
distribution P ⌘ [p1,p2, . . . ,pq]. The second distribution Q is then chosen to be

Q ⌘ [p1,p2 + �,p3 � �, . . . ,pq � �].

where � is a small number chosen in order to make the two distributions very close to each other. Here the distribution
Pn and Qn are supported on {0, 1, 2, . . . ,q � 1}n where n can be any natural number. Now, we choose q = 5 and for
three di�erent values of � = 10�2, 10�4 and 10�6 and �ve di�erent values of n = 20, 40, 60, 80 and 100, we repeat the
experiment described above 100 times for each setting and use Unconstrained MB-WISH to compute the total
variation distance.

We perform our experiments in a time constrained manner (10 minute for each calls to MAX-oracle). We have shown
in Figure 3 histograms of the number of times the computed total variation distance is above four times the upper
bound for � = 10�2, 10�4 and 10�6 respectively in Figures 3a, 3b and 3c respectively. We chose a factor of four because
the theoretical approximation factor guaranteed by Unconstrained MB-WISH is ⇠ 4. We observed that the
total variation distance is always above the upper bound with Hellinger distance but on the other hand, in very few
trials the computed value is above four times the upper bound. Finally, we have also shown the maximum ratio of the
computed total variation distance and the upper bound for each value of � and n in Figure 3d.

We have compared the results obtained by Unconstrained MB-WISH with the corresponding results obtained
by its single bin counterpart (Ermon et al.’s method, choosing r = 1) in Figure 3. Even though q = 5 is not large,
the improvement in performance by using Unconstrained MB-WISH is clear. In Figures 3a, 3b, 3c, it can be
observed that in the case of single bin, the number of failures (solid red) is almost always larger than the corresponding
setting with multiple bins. Moreover, in Figure 3d, the maximum ratio in the setting of single bin (solid) is always
much higher than the the setting of multiple bins (hollow).

C Derandomization: structured hashes

For the analysis of [7, 8] to go through, we needed a family of hash functions that are pairwise independent1. A
hash familyH = {h : � ! �̃} is called uniform and pairwise independent if the following two criteria are met for a
randomly and uniformly chosen h fromH : 1) for every x 2 �, h(x ) is uniformly distributed in �̃ and 2) for any two
distinct x ,� 2 � and u,� 2 �̃, Pr(h(x ) = u,h(�) = � ) = Pr(h(x ) = u) Pr(h(�) = � ). By identifying � with Fn2 (and �̃
with Fm2 ) and by using a family of hashes {x 7! hA,b (x ) = Ax + b : A 2 Fm⇥n2 ,b 2 Fm2 } de�ned in (4), [7] show the
family to be pairwise independent and thereby achieve their objective.

The size of the hash family H determines how many random bits are required for the randomized algorithm to
work. By de�ning the hash family by a random binary matrix, Ermon et al. reduce the number of random bits from
potentiallym2n tomn +m =m(n + 1) bits (see, p. 3 of [7]). Here, we show that it is possible to construct pairwise
independent hash family {Fn2 ! Fm2 } using only O (n) random bits such that any hash function from the family still
has the structure h(x ) = Ax + b. While memory optimal pairwise independent hash functions are quite standard, we
feel for completeness it would be good to show that they can be represented as the above matrix-vector product form.
All of the statements of this section can be easily extended to q-ary alphabets.

Construction 1: Let f (x ) 2 F2[x] be an irreducible polynomial of degree n. We construct the �nite �eld F2n with the
� , root of f (x ) as a generator of F⇤2n . Now, any x 2 Fn2 can be written as a power of � via a natural map � : Fn2 ! F2n .
Indeed, for any element � k 2 F⇤2n consider the polynomial � k mod f (� ) of degree n � 1. The coe�cients of this

1It is su�cient to have the hash family satisfy some weaker constraints, such as being pairwise negatively correlated.



polynomial from an element of Fn2 . � is just the inverse of this map. Also, assume that the all-zero vector is mapped
to 0 under �.

Let x 2 Fn2 be the con�guration to be hashed. Suppose the hash function is h�,b , indexed by � 2 Fn2 and b 2 Fm2 . The
hash function is de�ned as follows: Let � 2 Fn2 . Compute z = ��1 (� (x ) · � (� ) mod f (� )) 2 Fn2 . Let � 2 Fm2 be the
�rstm bits of z. Finally, output � + b, where b 2 Fm2 .
Proposition 1. The hash function h�,b can be written as an a�ne transform (x 7! Ax + b) over Fn2 .

Proof. It is su�cient to show that z can be obtained as a linear transform of � . Note that the product of � (x ) and
� (� ) can be written as a convolution between x and � ⌘ (�1,�2, . . . ,�n ) (as we can view this as product between two
polynomials). Let � be the (2n � 1) ⇥ n matrix,

� =
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�1 0 0 . . . 0
�2 �1 0 . . . 0
�3 �2 �1 . . . 0
...

...
...

...
...

�n �n�1 �n�2 . . . �1
0 �n �n�1 . . . �2
...

...
...

...
...

0 0 0 . . . �n

3777777777777777777775

.

The reduction modulo f (� ) can also be written as a linear operation. Just consider the n ⇥ (2n � 1) matrix P whose
ith column contains the coe�cients of the polynomial � i�1 mod f (� ), 1  i  2n � 1. Note that the �rst n columns
of the matrix is simply the identity matrix. We can write, z = P�x . ⇤

Note that, to chose a random and uniform hash function from {h�,b ,� 2 Fn2 ,b 2 Fm2 }, one needsm + n random bits. It
follows that the hash family is pairwise independent.
Proposition 2. The hash family {h�,b ,� 2 Fn2 ,b 2 Fm2 } is uniform and pairwise independent.

Proof. Suppose � ,b are randomly and uniformly chosen. For any x1,x2 2 Fn2 and �1,�2 2 Fm2 , �rst of all
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1
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,
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2m .
Therefore the claim is proved. ⇤

Moreover the randomness used to construct this hash function is also optimal. It can be shown that, the size of a
pairwise independent hash family {h : {0, 1}n ! {0, 1}m } is at least 2m+n � 2n + 1 (see, [22]). This implies thatm + n
random bits were essential for the construction.

Construction 2: Toeplitz matrix. In [9], a Toeplitz matrix was used as the hash function. In a Toeplitz matrix, each
descending diagonal from left to right is �xed, i.e., if Ai, j is the (i, j )th entry of a Toeplitz matrix, then Ai, j = Ai�1, j�1.
So to specify anm ⇥ n Toeplitz matrix one needs to provide onlym + n � 1 entries (entries of the �rst row and �rst



column). Consider the randomm ⇥ n Toeplitz matrix AT where each of the entries of the �rst row and �rst column
are chosen with equal probability from {0, 1}, i.e., each entry in the �rst row and column is a Bernoulli(0.5) random
variable. The hash function hAT ,b : x 7! ATx + b, is constructed by choosing a uniformly random b 2 Fm2 .
Proposition 3. The hash family {hAT ,b } is uniform and pairwise independent [9].

Proof. First of all, the uniformity of the family is immediate since b is uniformly chosen. For any x1,x2 2 Fn2 and
�1,�2 2 Fm2 , Pr(hAT ,b (x1) = �1,hAT ,b (x2) = �2) =

1
2m Pr(hAT ,b (x2) = �2 |hAT ,b (x1) = �1) =

1
2m Pr(AT (x1 � x2) =

�1 � �2). It remains to prove that Pr(ATx = �) =
1
2m for any �xed x ,�. Let the kth coordinate of x is the �rst to be in

the support of x . Now consider the inner product of the jth row of AT with x . This product will contain the entry
AT (j,k ), the (j,k )th entry of AT . Note that, this entry would not have appeared in any of the inner products of ith
row of AT and x , for i < j . Therefore the probability that this inner product is any �xed value is exactly 1

2 given inner
product of all previous rows with x . Therefore, Pr(ATx = �) =

1
2m . ⇤

Note that, the number of random bits required from this construction is 2m + n � 1. Toeplitz matrix allow for much
faster computation of the hash function (matrix-vector multiplication with Toeplitz matrix takes only O (n logn) time
compared to �(mn) for unstructured matrices).

We remark that sparse Toeplitz Matrices also can be used as our hash family, further reducing the randomness. In
particular, we could construct a Toeplitz matrix with Bernoulli(p) entries for p < 0.5. While the pairwise independence
of the hash family is lost, it is still possible to analyze the MB-WISH algorithm with this family of hashes since they
form a strongly universal family [22]. The number of random bits used in this hash family is (m +n � 1)h(p) +m. This
construction allows us to have sparse rows in the matrix for small values of p, which can lead to further speed-up.

Both the constructions of this section extend to q-ary alphabet straightforwardly.

D MB-WISH for computing permanent

For computing the permanent, the domain of integration is the symmetric group Sn . However Sn can be embedded
in Fnq for a q � n. Therefore we can try to use MB-WISH algorithm and same set of hashes on elements of Sn
treating them as q-ary vectors, q � n. We need to be careful though since it is essential that the MAX-oracle returns
a permutation and not an arbitrary vector. The modi�ed MAX-oracle for permanents therefore must have some
additional constraints. However those being a�ne constraints, it turns out MAX-oracle is still implementable in
optimization softwares.

Recall the permanent of a matrix as de�ned in Eq. (2): Perm(D) ⌘ P� 2Sn
Qn

i=1 Di,� (i ) . We will show that it is possible
to approximate the permanent with a modi�cation of the MB-WISH algorithm and our idea of using multiple bins
for optimization in the calls to MAX-oracle. Also, recall from Section 3 that we set Fq ⌘ {�0,�1, . . . ,�q�1} where
there exists a �xed ordering among the elements. We set q � n and consider any � 2 Sn as an n-length vector
over Fq (that is by identifying 1, 2, . . . ,n as �0,�1, . . . ,�n�1 respectively). Then we de�ne a modi�ed hash family
Hm,n = {hA,b : A 2 Fm⇥nq ,b 2 Fmq } with hA,b : Sn ! Fmq : � 7! A� + b, the operations are over Fq .

However, when calling the MAX-oracle, we need to make sure that we are getting a permutation as the output. Hence
the modi�ed MAX-oracle for computing permanent will be:

max
� 2Fnq

w (� )

s.t., A� + b � �r · 1;� � �n�1 · 1;� (i ) , � (j )8i , j, (11)

where,w (� ) =
Qn

i=1 Di,� (i ) . These constraints ensures that the MAX-oracle returns a permutation over n elements.
With this change we propose Algorithm 3 to compute permanent of a matrix and call it PERM-WISH. The full
algorithm is provided as Algorithm 3.



Algorithm 3 PERM-WISH for and matrix D; � = Sn ; weight functionw (� ) =
Qn

i=1 Di,� (i )

Initialize: ` ! d 1� ln 2n
� e, q > n, r = b q�12 c,n0 = dn logq/r qe

M0 ⌘ max� 2Sn w (� )
for i 2 {1, 2, . . . ,n0} do
for k 2 {1, . . . , `} do
Sample hash functions hi ⌘ hAi ,b i uniformly at random fromHi,n as de�ned in (7)
w (k )
i = max� 2Fnq w (� ) such that Ai� + bi � �r · 1;� � �n�1 · 1;� (k ) , � (l )8k , l .

end for
Mi = Median(w (1)

i ,w
(2)
i , . . . ,w

(`)
i )

end for
ReturnM0 + ( qr � 1)

Pn0�1
i=0 Mi+1

⇣ q
r

⌘ i

The main result of this section is the following.
Theorem 3. Let D be any n⇥n matrix. Let q > n be a power of prime and r = b q�12 c. For any � > 0, Algorithm 3 makes
�(n2poly(log n

� )) calls to the MAX-oracle and, with probability at least 1�� outputs a ( qr )
2 = (4+O (1/n))-approximation

of Perm(D).

The proof of Theorem 3 follows the same trajectory as in Theorem 1. The constraints in MAX-oracle ensures that a
permutation is always returned. So in the proof of Theorem 1, thew (k )

i s can be though of as permutations instead
in this setting. It should be noted that, we must take q > n for PERM-WISH to work. That is the reason we get a
(4 +O (1/n))-approximation for the permanent.

It also has to be noted that, since q is large, the straightforward extension of WISH algorithm would have provided
only a q2 = n2-approximation of the permanent. Therefore the idea of using optimizations with multiple bins are
crucial here as it lead to a close to 4-approximation.


