A Proof of Theorem 1

Because P is a bistochastic matrix, and we know P* = ——1, we can lower bound
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Similarly, C'(S) < C¥,,,. Now given A < m we compute
max P(w)” P* = AC(S) > max P(w)” P* m
> max P(w)" P* (1 - min1||;ilﬁ\/ﬁ P(w;TP*)
> maz, P(w)" P* (1 — m min HPzH\/ﬁ)

> kmax P(w)” P*.
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B Auxiliary Lemmas
First, we make a few statements related to initialization of the process. Lemma 3.4 from [6] directly applies to this problem, and thus
o, € 10, 1] Vk.
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Lemma 4. <P’LU1, ;]l) > m

Proof follows equivalently to Lemma 3.1 from [6], with added caveat that our choice of weights is within x of maximum value.

Lemma 5. The cost aware geodesic alignment {ay, at,v, ) satisfies

(ak, Qk,vp,) > KTV I V f@),

for
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Proof. The lemma is equivalent to proving Lemma 3.6 in [6] with one caveat. Here our choice of node is vi, which comes from
choosing the cheapest cost node location from the set S = {v € V|[{ax, arv) > K{ar, @y, )} Because of this, we can recover all
results from (ax, arv, ) with only a constant « in front, as our choice satisfies (ax, Ao, ) > K{ak, Qroy )- O

We apply Lemma 5 to prove the following Theorem that is needed, and mirrors the results from [6].

Theorem 6. Assume a cost of sensor placement C(v) : V. — Ry and a slack parameter k. If we choose the set of points W and
weights a., using Algorithm 1 such that |W| = K, then
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where v = O((1 — £2€2)5/2) for some € and n = \/1 — k2 maxiev < H};il\ ) ﬁ1> .



Proof. We mimic the results from [6], incorporating the additional cost parameter. We denote J, := 1 — (ﬂ %1) If we

[Pwgll* vn
substitute this into the formula for §;, we get
Jrt1 = Je(1 — <at,ak’uk>2)'
Applying our bound from Lemma 5, we get
Jes1 < Je (1= K272 0%)

By applying the standard induction argument used in [6], we get
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Because B(k) still goes to 0, and f(B(k)) — ke, there exists a k™ such that f(B(k)) > x7+/B(k), and since f is monotonic
decreasing, f(J;) > f(B(k)). Using Lemma 5, we finish with
k
Je < BkAK) [T (= r2(Bs))

s=k*+1

We note that 1 J; = ||3* P(w) — P*[?, so this means
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for constant Cyc combining the denominator in B(k) and the product of [],_,._ , k1 — f 2(B(s)), and v/J1 = n. Notice that
f(B(k)) — ke shows a rate of decay of v = /1 — Kk2€2. O

C Proof of Theorem 2

We note that [27] proves multiple bounds on |+ >~ f (v) — = wsf (s)|. The main bound in the paper comes from using the
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fact that they assume > w, = 1, which allows them to break up the inner product ||[P>" ws8s — 11| into its subsequent terms

(1P >, wsbuw|® — 1) 2 We step away from this assumption and will instead work directly with the norm ’ Py wsbs — 11
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By the same logic as in [27], we know

LS )= wf (s)
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We can simply replace P = P' and inherit on P in Theorem 6, in particular that we still have %]51 = %1. Thus, we can apply

the guarantees of Algorithm 1 and Theorem 6 to bound ||3P‘w — 11| < "\/”g and attain the desired result.




