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Abstract

We propose two nonparametric statistical tests
of goodness of fit for conditional distributions:
given a conditional probability density func-
tion p(y|x) and a joint sample, decide whether
the sample is drawn from p(y|x)rx(x) for
some density rx. Our tests, formulated with
a Stein operator, can be applied to any differ-
entiable conditional density model, and require
no knowledge of the normalizing constant. We
show that 1) our tests are consistent against
any fixed alternative conditional model; 2) the
statistics can be estimated easily, requiring no
density estimation as an intermediate step; and
3) our second test offers an interpretable test re-
sult providing insight on where the conditional
model does not fit well in the domain of the
covariate. We demonstrate the interpretability
of our test on a task of modeling the distribution
of New York City’s taxi drop-off location given
a pick-up point. To our knowledge, our work is
the first to propose such conditional goodness-
of-fit tests that simultaneously have all these
desirable properties.

1 INTRODUCTION

Conditional distributions provide a versatile tool for cap-
turing the relationship between a target variable and a
conditioning variable (or covariate). The last few decades
has seen a broad range of modeling applications across
multiple disciplines including econometrics in particular
(Moreira, 2003; Zheng, 2000), machine learning (Dutor-
doir et al., 2018; Uria et al., 2016), among others. In many
cases, estimating a conditional density function from the
observed data is a one of the first crucial steps in the data
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analysis pipeline. While the task of conditional density
estimation has received a considerable attention in the
literature, fewer works have investigated the equally im-
portant task of evaluating the goodness of fit of a given
conditional density model.

Several approaches that address the task of conditional
model evaluation take the form of a hypothesis test. Given
a conditional density model, and a joint sample contain-
ing realizations of both target variables and covariates,
test the null hypothesis stating that the model is correctly
specified, against the alternative stating that it is not. The
model does not specify the marginal distribution of the
covariates. We refer to this task as conditional goodness-
of-fit testing. One of the early nonparametric tests is
Andrews (1997), which extended the classic Kolmogorov
test to the conditional case. Zheng (2000) considered
the first-order linear expansion of the Kullback-Leibler
divergence as the test statistic, and showed that the result-
ing test is consistent against any fixed alternative under
technical assumptions. The conditional Kolmogorov test
however requires estimation of the cumulative distribu-
tion function (CDF), and may only be applied to data of
low dimension. Zheng’s test involves density estimation
as part the test statistic, and test consistency is only guar-
anteed with a decaying smoothing bandwidth whose rate
can be challenging to control. While there are other tests
which are more computationally tractable, these tests are
only designed for conditional models from a specific fam-
ily: Moreira (2003) for structural equation models, Stute
and Zhu (2002) for generalized linear models, to name a
few.

Another line of work which is prominent in econometrics
is based on the conditional moment restrictions (CMR).
In CMR based tests, the conditional model is specified by
a conditional moment function which has an important
property that its conditional expectation under the true
data distribution is zero if and only if the model is correct.
This formulation is general, and in fact nests testing a con-
ditional mean regression model as a special case (Tripathi



et al., 2003; Bierens, 1982). To guarantee consistency,
Bierens and Ploberger (1997); Bierens (1990) use a class
of weight functions indexed by a continuous nuisance
parameter so that an infinite number of moment condi-
tions can be considered, resulting in a powerful test which
detects any departure from the null model. For testing the
conditional mean of a regression model, the conditional
moment function can be set to the squared loss between
the model output and the target variable. However, for
testing the goodness of fit of a conditional density model,
specifying the conditional moment function is challeng-
ing, especially for a complex model whose normalizing
constant is intractable.

A related thread of development of omnibus tests for
model goodness of fit has arisen in the machine learning
community recently through the use of kernel methods
and Stein operators. The combination of Stein’s identity
and kernel methods was investigated in Oates et al. (2017)
for the purpose of reducing the variance of Monte Carlo
integration. Chwialkowski et al. (2016); Liu et al. (2016)
independently proposed a consistent, nonparametric test
of goodness of fit of a marginal density model known
as the Kernel Stein Discrepancy (KSD) test. The KSD
test has proved successful in many applications and has
spawned a number of further studies including Gorham
and Mackey (2017) which considered the KSD for check-
ing the convergence of an MCMC procedure, Yang et al.
(2018) which extended the KSD test to a discrete domain,
and Huggins and Mackey (2018); Jitkrittum et al. (2017a)
which developed linear-time variants of the KSD. While
proven to be powerful, an issue with the KSD is that
it is only applicable to marginal (unconditional) density
models. To our knowledge, there has been no attempt
of extending the KSD test to handle conditional density
models.

In the present work, we are interested in constructing om-
nibus statistics which can detect any departure from the
specified conditional density model in the null hypothe-
sis. We propose two nonparametric, general conditional
goodness-of-fit tests which require no density estimation
as an intermediate step. Our first test, the Kernel Con-
ditional Stein Discrepancy (KCSD, described in Section
3), generalizes the KSD to conditional goodness-of-fit
testing. Briefly, we consider the KSD’s Stein witness
function conditioned on the covariate. The KCSD statis-
tic is defined as the norm, in a vector-valued reproducing
kernel Hilbert space (RKHS), of a kernel integral operator
applied to the conditional witness function. The use of the
kernel integral operator ensures that the discrepancy be-
tween the conditional model and the data can be detected
for any realization of the conditioning variable. We prove
that the KCSD test is consistent against any fixed alter-
native conditional model, for any C0-universal positive

definite kernels used; importantly, in the case of Gaussian
kernels, the consistency holds regardless of the bandwidth
parameter (not necessarily decaying in contrast to Zheng
(2000)).

Our second proposed test, referred to as the Finite Set
Conditional Discrepancy (FSCD, described in Section 4),
further extends the KCSD test to also return test locations
(a set of points) that indicate realizations of the covariate
at which the conditional model does not fit well. The
FSCD test thus offers an interpretable indication of where
the conditional model fails as evidence for rejecting the
null hypothesis. Thanks to the Stein operator, our pro-
posed tests do not require the normalizing constant of the
conditional model. In experiments on both homoscedastic
and heteroscedastic models, we show that the KCSD test
is suited for detecting global differences, whereas the use
of test locations in the FSCD makes it more sensitive to
local departure from the null model.

2 BACKGROUND

This section gives background materials which will be
needed when we propose our new tests: the Kernel Condi-
tional Stein Discrepancy (KCSD, Section 3) and the Finite
Set Conditional Discrepancy (FSCD, Section 4). We de-
scribe two known (unconditional) goodness-of-fit tests:
the Kernel Stein Discrepancy (KSD) test of Chwialkowski
et al. (2016); Liu et al. (2016) in Section 2.1, and the Finite
Set Stein Discrepancy (FSSD) of Jitkrittum et al. (2017b)
in Section 2.2. We will see in Sections 3 and 4 that our
proposed KCSD and FSCD are generalizations of KSD
and FSSD, respectively, to the conditional goodness-of-fit
testing problem.

2.1 KERNEL STEIN DISCREPANCY (KSD)

Consider probability distributions supported on an open
subset X ⊆ Rd for d ∈ N. The Kernel Stein Dis-
crepancy (KSD) between probability distributions P
and R is a divergence measure defined as SP (R) :=
sup‖f‖Fd≤1 |Ex∼RTP f(x)− Ex∼PTP f(x)|, where f ∈
Fd, Fd = ×dj=1F , and F is the reproducing ker-
nel Hilbert space (RKHS, Berlinet and Thomas-Agnan
(2011)) associated with a positive definite kernel k :
Rd × Rd → R.

Key to the KSD is TP , a Stein operator constructed such
that the expectation under the distribution P vanishes,
i.e., Ex∼PTP f(x) = 0, for any function f ∈ Fd. For
a distribution P admitting a differentiable, strictly pos-
itive density p : X → (0,∞), the Langevin Stein op-
erator of differentiable functions defined by Tpf(x) =
sp(x)>f(x) + ∇xf(x) ∈ Rd satisfies the aforemen-



tioned condition, where sp(x) := ∇x log p(x) is the
score function (under suitable boundary conditions (Oates
et al., 2017, Assumption A2’)). Thus, the KSD can be
equivalently written as sup‖f‖Fd≤1 |Ex∼RTpf(x)| It can
be shown that if the kernel k is C0-universal (Sripe-
rumbudur et al., 2011), and R has a density r such
that Ex∼r‖∇x log p(x) − ∇x log r(x)‖22 < ∞, then
Sp(r) = 0 if and only if p = r (Chwialkowski et al.,
2015, Theorem 2.2).

The KSD can be rewritten in a form that can be
estimated easily. Assume that the kernel k is dif-
ferentiable. Then, for any function f ∈ Fd, we
have Tpf(x) = 〈f , ξp(x, ·)〉Fd where ξp(x, ·) :=
sp(x)k(x, ·)+∇xk(x, ·), due to the reproducing property
of k, where 〈f ,g〉Fd =

∑d
j=1〈fj , gj〉F is the inner prod-

uct on Fd. Assuming Bochner integrability of ξp(x, ·) as
in Chwialkowski et al. (2016); Liu et al. (2016), it follows
that

Sp(r) = sup
f∈Fd

|〈f ,Ex∼rξp(x, ·)〉Fd | = ‖gp,r‖Fd,

where gp,r(·) = Ex∼rξp(x, ·) ∈ Fd is the function that
achieves the supremum, and is known as the Stein wit-
ness function (Jitkrittum et al., 2017a). The squared
KSD admits the expression S2

p(r) = ‖gp,r‖2Fd, =

Ex,x′∼rhp(x,x
′) where

hp(x,x
′) : = k(x,x′)s>p (x)sp(x

′) +

d∑
i=1

∂2k(x,x′)

∂xi∂x′i

+ s>p (x)∇x′k(x,x′) + s>p (x′)∇xk(x,x′).

Given a sample {xi}ni=1 ∼ r, the squared KSD has an
unbiased estimator Ŝ2

p(r) := 1
n(n−1)

∑
i 6=j hp(xi,xj),

which is a U-statistic (Serfling, 2009). Since the KSD
only depends on p through ∇x log p(x), the normaliz-
ing constant of p is not required. The squared KSD has
been successfully used in Chwialkowski et al. (2016); Liu
et al. (2016) as the test statistic for goodness-of-fit test-
ing: given a marginal density model p (known up to the
normalizing constant), and a sample {xi}ni=1 ∼ r, test
whether p is the correct model.

2.2 FINITE SET STEIN DISCREPANCY (FSSD)

The Finite Set Stein Discrepancy (FSSD, Jitkrittum et al.
(2017a)) is one of several extensions of the original KSD
aiming to construct a goodness-of-fit test of an uncondi-
tional density model that runs in linear time (i.e., O(n)
runtime complexity), and that offers an interpretable test
result. Key to the FSSD is the observation that the KSD
Sp(r) = 0 if and only if p = r, assuming conditions de-
scribed in Section 2.1. As a result, gp,r is a zero function

if and only if p = r, implying that the departure of gp,r
from the zero function can be used to determine whether
p and r are the same. In contrast to the KSD which relies
on the RKHS norm ‖ · ‖Fd , the FSSD statistic evaluates
the Stein witness function to check this departure. Specif-
ically, given a finite set V := {v1, . . . ,vJ} ⊂ X (known
as the set of test locations), the squared FSSD is defined
as FSSD2

p(r) := 1
dJ

∑J
j=1 ‖gp,r(vj)‖22. It is shown in

Jitkrittum et al. (2017b) that if V is drawn from a distribu-
tion with a density supported on X , then FSSD2

p(r) = 0
if and only if p = r. The squared FSSD can be estimated
in linear time, and V can be optimized by maximizing the
test power of the FSSD statistic. The optimized V reveals
where p and r differ.

3 THE KERNEL CONDITIONAL STEIN
DISCREPANCY (KCSD)

In this section, we propose our first test statistic called the
Kernel Conditional Stein Discrepancy (KCSD) for dis-
tinguishing two conditional probability density functions.
All omitted proofs can be found in Section A (appendix).

Problem Setting Let X and Y be two random vectors
taking values in X × Y ⊂ Rdx × Rdy . Let p = p(y|x)
be a conditional density function representing a candidate
model for modeling the conditional distribution of y given
x.1 Given a joint sample Zn = {(xi,yi)}ni=1

i.i.d.∼ rxy
where rxy(x,y) = r(y|x)rx(x) is a joint density defined
on X × Y , conditional goodness-of-fit testing tests

H0 : p
rx= r vs H1 : p

rx
6= r, (1)

where we write p rx= r if for rx-almost all x and for all
y ∈ Y , p(y|x) = r(y|x). The alternative hypothesis
H1 is the negation of H0 and is equivalent to the state-
ment “there exists a set U ⊆ X with rx(U) > 0 such
that p(·|x) 6= r(·|x) for all x ∈ U .” Note that rxy is only
observed through the joint sample Zn; and p only speci-
fies the conditional model. That is, p does not specify a
marginal model for x. This subtlety is what distinguishes
the conditional goodness-of-fit testing from testing the
difference between two joint distributions.

Rationale For machine learning applications, the pro-
posed null hypothesis in (1) allows testing the goodness
of fit of a wide range of conditional density models, in-
cluding regression models with homoscedastic or het-
eroscedastic noise. The underlying prediction function
can be a neural network or other arbitrarily nonlinear
functions as long as∇y log p(y|x) is differentiable, and

1Note that p and r are conditional density functions from
Section 3 onward.



satisfies conditions in Theorem 1. In this work we con-
sider Y to be a continuous random vector. However, our
proposed tests can be extended to handle a discrete Y
to allow testing, for instance, Bayesian classifier models
p(y|x) where y represents the classification label. While
the formulated hypothesis in the current form allows test-
ing only a fixed conditional model (i.e., all model param-
eters if any must have been learned before the test) and
may appear restrictive in some cases, our goal is not to
advocate this particular null hypothesis. Rather, we see
this formulation as a first step for more realistic null hy-
potheses that are yet to come; for instance, testing whether
p(y|x, θ) = r(y|x) for some parameter vector θ ∈ Θ, or
testing the relative fit (with respect to the true distribution
r) of two competing candidate conditional models p and
q. Future tests that consider these hypotheses can build
on the results in this paper. We leave these questions for
future work.

Vector-valued reproducing kernels We will require
vector-valued reproducing kernels for the construction
of our new tests. We briefly give a brief introduction to
this concept here. For further details, please see Section
2.2 of Carmeli et al. (2008) and Carmeli et al. (2006);
Sriperumbudur et al. (2011); Szabó and Sriperumbudur
(2018). Let L(H;H′) be the Banach space of bounded
operators from a Hilbert space H to H′ endowed with
the uniform norm. We write L(H) for L(H;H). A ker-
nel K : X × X → L(Z) is said to be a Z-reproducing
kernel if

∑N
i=1

∑N
j=1 〈K(xi,xj)zi, zj〉Z ≥ 0 for any

N ≥ 1, {xi}Ni=1 ⊂ X , {zi}Ni=1 ⊂ Z, and 〈�, �〉Z de-
notes the inner product on Z . Given x ∈ X , we write
Kx : Z → L(X ;Z) to denote the linear operator such
that Kxz ∈ L(X ;Z) and (Kxz)(t) = K(x, t)z ∈ Z ,
for all x, t ∈ X and all z ∈ Z . As in the case of a real-
valued reproducing kernel, given a Z-reproducing kernel
K, there exists a unique reproducing kernel Hilbert space
(RKHS) FK such that Kx ∈ L(Z;FK) and f(x) =
K∗xf (the reproducing property) for all x ∈ X , f ∈ FK
and K∗x : FK → Z denotes the adjoint operator of Kx.

Let C(X ;Z) be the vector space of continuous functions
mapping from X to Z . In this work, we will assume that
X and Z are Banach spaces. Let C0(X ;Z) ⊂ C(X ;Z)
denote the subspace of continuous functions that van-
ish at infinity i.e., ‖f(x)‖Z → 0 as ‖x‖ → ∞. A Z-
reproducing kernel K : X × X → L(Z) is said to be C0

if FK is a subspace of C0(X ;Z) (Carmeli et al., 2008,
Section 2.3, Definition 1). A C0-kernel K is said to be
universal if FK is dense in L2(X , µ;Z) for any probabil-
ity measure µ (Carmeli et al., 2008, Section 4.1).

Let l : Y×Y → R be a positive definite kernel associated
with the RKHS Fl. Write Fdyl := ×dyi=1Fl and define
〈a,b〉Fdy

l

:=
∑dy
i=1 〈ai, bi〉Fl

to be the inner product on

Fdyl for a := (a1, . . . , ady ),b := (b1, . . . , bdy ) ∈ Fdyl .
Let K : X × X → Fdyl be a Fdyl -reproducing kernel i.e.,
Z = Fdyl . Let k : X × X → R be a real-valued kernel
associated with the RKHS Fk. For brevity, we write Exy

for E(x,y)∼rxy
. In what follows, we will interchangeably

write p|x and p(·|x).

Proposed statistic Consider the following population
statistic defining a discrepancy between p and r:

Dp(r) : =
∥∥E(x,y)∼rxy

Kxξp|x(y, �)
∥∥2
FK
, (2)

where ξp|x(y, ·) := l(y, ·)∇y log p(y|x) + ∇yl(y, ·) ∈
Fdyl . We refer to Dp(r) as the Kernel Conditional Stein
Discrepancy (KCSD). Our first result in Theorem 1 shows
that the KCSD is zero if and only if p rx= r.

Theorem 1 (Dp(r) distinguishes conditional density
functions). Let K : X × X → L(Fdyl ) and l : Y × Y →
R be positive definite kernels. Define gp,r(w|x) :=

Ey∼r|xξp|x(y,w) ∈ Rdy where gp,r(·|x) ∈ Fdyl for
each x. Assume that

1. K and l are C0-universal;

2. rx-ess supx Ey∼r(y|x)
∥∥∇y log p(y|x)

r(y|x)
∥∥2
2
<∞;

3.
∫
X ‖gp,r(�|x)‖2

Fdy
l

rx(x) dx <∞.

4. Exy‖Kxξp|x(y, �)‖FK
<∞;

Then Dp(r) = 0 if and only if p rx= r i.e., for rx-almost
all x ∈ X , p(·|x) = r(·|x).

Proof (sketch). The idea is to rewrite (2) into a form
that involves the Stein witness function (as described
in Section 2) gp,r(�|x) between p(·|x) and r(·|x). It
then amounts to showing that gp,r(�|x) is a zero func-
tion for rx-almost all x. This is done by applying the
integral operator fx 7→

∫
Kxfxrx(x) dx on gp,r(�|x)

to incorporate (rx-almost) all x. The result is Gp,r =∫
Kxgp,r(�|x)rx(x) dx. Since K is C0-universal, this

operator is injective, implying Gp,r is zero if and only
if gp,r(�|x) is a zero function for rx-almost all x. But,
Gp,r = E(x,y)∼rxy

Kxξp|x(y, �). Thus, taking the norm
gives (2). See Section A.1 for the complete proof.

In the proof sketch, we can see the application of the
integral operator fx 7→

∫
Kxfxrx(x) dx as taking into ac-

count the conditional Stein witness function gp,r(�|x)
of (rx-almost) all x at the same time. Theorem 1
states that the population statistic in (2) distinguishes
two conditional density functions under regularity con-
ditions given above. In particular, it is required that the



two kernels K and l are C0-universal. Examples of a
real-valued C0-universal kernels are the Gaussian kernel
l(y,y′) := exp

(
−‖y−y

′‖22
2σ2

y

)
∈ R, Laplace kernel, and

the inverse multiquadrics kernel (Sriperumbudur et al.,
2011, p. 2397). An example of a Fdyl -reproducing, C0-
universal kernel K is K(x,x′) = k(x,x′)I where k is a
real-valued C0-universal kernel, and I ∈ L(Fdyl ) is the
identity operator (Carmeli et al., 2008, Example 14). For
simplicity, in this work, we will assume a kernel K that
takes this form.

3.1 HYPOTHESIS TESTING WITH KCSD

To construct a statistical test for conditional goodness of
fit, we start by rewriting Dp(r) in (2) in a form that can
be estimated easily as shown in Proposition 2.
Proposition 2. Assume that K(x,x′) := k(x,x′)I for
a positive definite kernel k : X × X → R. Define
sp(y|x) := ∇y log p(y|x). Then,

Dp(r) = ExyEx′y′k(x,x′)hp((x,y), (x′,y′)), (3)

where hp((x,y), (x′,y′))

:= l(y,y′)s>p (y|x)sp(y
′|x′) +

dy∑
i=1

∂2

∂yi∂y′i
l(y,y′)

+ s>p (y|x)∇y′ l(y,y′) + s>p (y′|x′)∇yl(y,y
′), (4)

Define Hp((x,y), (x′,y′)) :=
k(x,x′)hp((x,y), (x′,y′)). Given an i.i.d. sam-
ple {(xi,yi)}ni=1 ∼ rxy. an unbiased, consistent
estimator for (3) is given by

D̂p :=
1

n(n− 1)

∑
i 6=j

Hp((xi,yi), (xj ,yj)), (5)

which is a second-order U-statistic with Hp as the U-
statistic kernel (Serfling, 2009, Section 5), and can be
computed easily. It is clear from (4) that the KCSD statis-
tic (both population and its estimator) depends on the
model p only through ∇y log p(y|x) = ∇y log p(y,x)
which is independent of the normalizer p(x). The fact
that the KCSD does not require the normalizer is a big
advantage since modern conditional models tend to be
complex and their normalizers may not be tractable. A
consequence of being a U-statistic is that its asymptotic
behaviors can be derived straightforwardly, as given in
Proposition 3.

Proposition 3 (Asymptotic distributions of D̂p). As-
sume all conditions in Theorem 1 and assume that
ExyEx′y′H2

p ((x,y), (x′,y′)) <∞. Then,

1. Under H0, nD̂p
d→ ∑∞

j=1 λj(χ
2
j1 − 1), where

{χ2
1j}j are independent χ2

1 random variables, λj are

eigenvalues of the operator A defined as (Aϕ)(z) =∫
Hp(z, z

′)ϕ(z′)rxy(z′) dz′ for non-zero ϕ, z :=
(x,y) and z′ := (x′,y′);

2. Under H1,
√
n
(
D̂p −Dp(r)

)
d→ N (0, σ2

H1
)

where σ2
H1

:= 4V[Exy[Hp((x,y), (x′,y′))]].

A proof of Proposition 3 can be found in Section A.3 (ap-
pendix). Proposition 3 suggests that under H0, nD̂p con-
verges to a limit distribution given by an infinite weighted
sum of chi-squared random variables. Under H1, for
any fixed p and r, we have nD̂p = Op(

√
n), which di-

verges to +∞, and allows the test to reject H0 when n
is sufficiently large. The behaviors are common in many
recently developed nonparametric tests (Yang et al., 2018;
Chwialkowski et al., 2016; Liu et al., 2016; Gretton et al.,
2008, 2012a). A consistent test that has an asymptotic
false rejection rate no larger than a specified significance
level α ∈ (0, 1) can be constructed by setting the rejection
threshold (critical value) to be γ1−α = (1− α)-quantile
of the asymptotic null distribution. That is, the test rejects
the null hypothesis H0 if nD̂p > γ1−α. In practice how-
ever, the limiting distribution under H0 is not available
in closed form, and we have to resort to approximating
the test threshold either by bootstrapping (Arcones and
Gine, 1992; Huskova and Janssen, 1993) or estimating the
eigenvalues {λj}j which can cost O(n3) runtime (Gret-
ton et al., 2009).

Test threshold In our work, we use the bootstrap
procedure of Arcones and Gine (1992); Huskova and
Janssen (1993) as also used in the KSD test of Liu
et al. (2016); Yang et al. (2018) (with a U-statistic
estimator) and Chwialkowski et al. (2015) (with a V-
statistic estimator). To generate a bootstrap sample,
we draw w1, . . . , wn ∼ Multinomial

(
n; 1

n , . . . ,
1
n

)
,

define w̃i := 1
n (wi − 1), and compute D̂p

∗
=∑n

i=1

∑
j 6=i w̃iw̃jHp((xi,yi), (xi,yj)). By bootstrap-

pingm times to generate D̂p

∗
1, . . . D̂p

∗
m, the test threshold

can be estimated by computing the empirical (1 − α)-
quantile of these bootstrapped samples. The overall com-
putational cost of this bootstrap procedure is O(mn2),
which is the same cost as testing a marginal probability
model in the KSD test.

4 THE FINITE SET CONDITIONAL
DISCREPANCY (FSCD)

In this section, we extend the KCSD statistic presented in
Section 3 to enable it to also pinpoint the location(s) in
the domain of X that best distinguish p(·|x) and r(·|x).
The result is a goodness-of-fit test for conditional density



functions which gives an interpretable output (in terms of
locations inX ) to justify a rejection of the null hypothesis.

We start by noting that Theorem 1 and (2) im-
plies that Gp,r : X → Fdyl defined as Gp,r(v) :=[
E(x,y)∼rxy

Kxξp|x(y, �)
]

(v) ∈ Fdyl is a zero func-
tion if and only if p rx= r, under the conditions de-
scribed in the theorem statement. Note that the KCSD
Dp(r) = ‖Gp,r‖2FK

. For a fixed v ∈ X , the function
v 7→ 1

dy
‖G(v)‖2

Fdy
l

≥ 0 can be seen as quantifying the

extent to which p and r differ, as measured at v ∈ X ;
that is, the higher 1

dy
‖G(v)‖2

Fdy
l

, the larger the discrep-

ancy between p(·|v) and r(·|v). Inspired by Jitkrittum
et al. (2017b), one can thus construct a variant of the
KCSD statistic as follows. Given a set of J test locations
V := {vi}Ji=1 ⊂ X , we evaluate Gp,r(v) at these loca-
tions instead of taking the norm ‖ · ‖FK

(Jitkrittum et al.,
2016, 2017a,b; Scetbon and Varoquaux, 2019). More
formally, we propose a statistic defined as

TVp (r) :=
1

Jdy

J∑
i=1

‖Gp,r(vi)‖2Fdy
l

, (6)

which we refer to as the Finite Set Conditional Discrep-
ancy (FSCD). Later in Section 4.2, we will describe how
V can be automatically optimized by maximizing the test
power of the FSCD test. The optimized test locations in
V are interpretable in the sense that they specify points
{vi}Ji=1 in X that best reveal the differences between
the two conditional density functions. For the purpose
of describing the statistic in this section, we assume that
V is given. We first show in Theorem 4 that the FSCD
almost surely distinguishes two conditional probability
density functions.

Theorem 4. Assume all conditions in Theorem 1. Fur-
ther assume that X ⊆ Rdx is a connected open set, and
K(x,x′) = k(x,x′)I where k : X × X → R is a real
analytic kernel i.e., for any x ∈ X , v 7→ k(x,v) is a real
analytic function. Then, for any J ∈ N, the following
statements hold:

1. Under H0, TVp (r) = 0 for any V = {vj}Jj=1 ⊂ X .

2. Under H1, if v1, . . . ,vJ in V are drawn from a
probability density η whose support is X , then η-
almost surely TVp (r) > 0.

Theorem 4 states that given p and r, TVp (r) = 0 if and
only if p rx= r when V is drawn from any probability den-
sity supported on X . The core idea is that ‖Gp,r(v)‖2

Fdy
l

is a real analytic function of v if k is a real analytic kernel.
It is known that the set of roots of a non-zero real analytic

function has zero Lebesgue measure (Mityagin, 2015).
So, pointwise evaluations at the J random test locations
suffice to check whether Gp,r is a zero function, and the
result follows. The FSCD statistic in (6) can thus be seen
as quantifying the average discrepancy between p(·|x)
and r(·|x) as measured at the locations x ∈ V .

4.1 HYPOTHESIS TESTING WITH FSCD

To perform hypothesis testing the FSCD, we first show
in Proposition 5 that TVp (r) in (6) can be written as a
U-statistic.

Proposition 5. Given a set of test locations
V = {vj}Jj=1 ⊂ X , in (6), ‖Gp,r(v)‖2

Fdy
l

=

ExyEx′y′k(x,v)k(x′,v)hp((x,y), (x′,y′)) (hp is
defined in (4)) and

TVp (r) = ExyEx′y′H
V

p ((x,y), (x′,y′)), (7)

where H
V

p ((x,y), (x′,y′)) :=
1
dy
kV (x,x′)hp((x,y), (x′,y′)) and kV (x,x′) :=

1
J

∑J
i=1 k(x,vi)k(x′,vi).

Similarly to (5), an unbiased estimator of TVp

is given by a second-order U-statistic: T̂Vp :=
1

n(n−1)
∑
i 6=j H

V

p ((xi,yi), (xj ,yj)). It is clear from (7)

and the definition of H
V

p that the FSCD statistic is in
fact a special case of the KCSD with the kernel k in (3)
replaced with kV . For this reason, the asymptotic distri-
butions of T̂Vp under both H0 and H1 are almost identical
to those of the KCSD. We omit the result here and present
it in Proposition 9 in the appendix. Since T̂Vp is also a de-
generate U-statistic, the test threshold can be obtained by
bootstrapping with weights drawn from the multinomial
distribution as in the case of the KCSD.

4.2 OPTIMIZING TEST LOCATIONS

While Theorem 4 guarantees that the FSCD can distin-
guish two conditional density functions with any V drawn
from any probability density supported on X , in practice,
optimizing V will further increase the power of the test,
and allow us to interpret V as the locations in X for
which the difference between p(·|x) and r(·|x) can be
detected with largest probability. Inspired by the recent
approaches of Jitkrittum et al. (2017b); Sutherland et al.
(2016); Gretton et al. (2012b), we propose optimizing
the test locations in V by maximizing the asymptotic test
power of the test statistic T̂Vp . The test power is defined as
the probability of rejecting H0 when it is false. We start
by giving the expression for the asymptotic test power of
T̂Vp in Corollary 6. For brevity, we write TVp for TVp (r).



Corollary 6. Assume that H1 holds. Given a set V
of test locations, and a rejection threshold γ ∈ R,
the test power of the FSCD test is P

(
T̂Vp > γ

)
≈

Φ

(√
n
TV
p

σV
− γ√

nσV

)
for sufficiently large n, where Φ

is the CDF of the standard normal distribution, and

σV =

√
4V[Exy[H

V

p ((x,y), (x′,y′))]] is the standard

deviation of the distribution of T̂Vp under H1.

The result directly follows from the fact that T̂Vp is asymp-
totically normally distributed (see Proposition 9 in the
appendix). Following the same line of reasoning as in
Jitkrittum et al. (2017b); Sutherland et al. (2016), for large
n, the power expression is dominated by TVp /σV , which
is called the power criterion (Jitkrittum et al., 2017b).
Assume that n is sufficiently large. It follows that find-
ing the test locations V which maximize the test power
amounts to finding V ∗ = arg maxV P

(
T̂Vp > γ

)
≈

arg maxV T
V
p /σV . We also use the same objective func-

tion to tune the two kernels k and l.

To optimize, we split the data into two independent sets:
training and test sets. We then optimize this ratio with its
consistent estimator T̂Vp /σ̂V estimated from the training
set. The hypothesis test is performed on the test set us-
ing the optimized parameters. Indeed, this data splitting
scheme has also been used in several modern statistical
tests (Jitkrittum et al., 2016; Sutherland et al., 2016; Jitkrit-
tum et al., 2018; Scetbon and Varoquaux, 2019). There
are two reasons for doing so: firstly, conducting a test on
an independent test set avoids overfitting to the training
set — the false rejection rate of H0 may be higher than
the specified significance level α otherwise; secondly, for
the statistic to be a U-statistic, its U-statistic kernel (i.e.,
H
V

p ) must be independent of the samples used to estimate
the summands. In Section 5, we shall see that finding V in
this way leads to a higher test power when the difference
between p and r is localized.

5 EXPERIMENTS

In this section, we empirically investigate the two pro-
posed tests.2

1. Illustration of the FSCD power criterion Our first
task is to illustrate that the power criterion of the proposed
FSCD test reveals where p and r differ in the domain of
the conditioning variable (x). We consider a simple uni-
variate problem where the model is p(y|x) := N (x/2, 1),
the data generating distribution is r(y|x) := N (x, 1), and

2Code is available at https://github.com/
wittawatj/kernel-cgof.
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Figure 1: The power criterion of FSCD as a function of x
is high where the difference between p(y|x) and r(y|x)
can be best detected.

rx(x) = N (0, 1). We use Gaussian kernels for both k
and l. The power criterion function is shown in Figure 1.
More examples can be found in Section B (appendix).

2. Test power We investigate the test power of the fol-
lowing methods.

KCSD: our proposed KCSD test using Gaussian ker-
nels k(x,x′) = exp

(
−‖x−x

′‖2
2σ2

x

)
and l(y,y′) =

exp
(
−‖y−y

′‖2
2σ2

y

)
where the bandwidths are set with

σx := median
(
{‖xi − xj‖2}ni,j=1

)
and σy :=

median
(
{‖yi − yj‖2}ni,j=1

)
. This median heuristic has

been used to set the bandwidth in many existing kernel-
based tests (Gretton et al., 2012a; Bounliphone et al.,
2015; Liu et al., 2016; Chwialkowski et al., 2016).

FSCD: our proposed FSCD test using Gaussian kernels
for k and l. There are two variations of the FSCD. In
FSCD-rand, the J test locations are randomly drawn
from a Gaussian distribution fitted to the data with maxi-
mum likelihood. In the second variant FSCD-opt, 30%
of the observed data are used for optimizing the two band-
widths and the J test locations by maximizing the power
criterion, and the rest 70% of the data are used for testing.
All parameters of FSCD-opt are optimized jointly with
Adam (Kingma and Ba, 2014) with default parameters
implemented in Pytorch. We consider J ∈ {1, 5}.
MMD: the Maximum Mean Discrepancy (MMD) test (Gret-
ton et al., 2012a). The MMD test was originally cre-
ated for two-sample testing. Here, we adapt it to condi-
tional goodness-of-fit testing by splitting the data into two
disjoint sets {(x(1)

i ,y
(1)
i )}n/2i=1 and {(x(2)

i ,y
(2)
i )}n/2i=1} of

equal size n/2. We then sample y′i ∼ p(·|x
(2)
i ) for each i.

The test is performed on the first set, and {(x(2)
i ,y′i)}

n/2
i=1.

The data splitting is performed to guarantee the indepen-
dence between the two sets of samples, which is a require-

https://github.com/wittawatj/kernel-cgof
https://github.com/wittawatj/kernel-cgof
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Figure 2: Rejection rates of of the five tests with significance level α = 0.05. (a): H0 is true. All test have false
rejection rates no larger than α (up to sampling noise). (b): H1 is true. FSCD-opt is good for detecting local difference.
(c): KCSD is good for detecting global difference.

ment of the MMD test. We use the product of Gaussian
kernels with bandwidths chosen by the median heuristic.
This approach serves as a nonparametric baseline where
the conditional model p may be sampled easily.

Zheng: Zheng’s test (Zheng, 2012) is a specification test
for parametric families of conditional distributions. It
is based on an (average) squared difference between the
empirical and the model CDFs, which is estimated by
a U-statistic combined with a kernel density estimator.
We found that Epanechnikov kernel suggested in (Zheng,
2012) resulted in a poor performance and therefore choose
the standard Gaussian density as the smoothing kernel.
We use a heuristic similar to (Zheng, 2012) to choose the
kernel width parameters hj = ŝ

j
n−1/(12dx), where hj is

the bandwidth for the j-th coordinate of the covariate x,
and ŝj the standard deviation of the coordinate. The test
requires the best fitting parameter in order to determine
the fit of a given parametric family. Instead of a maximum
likelihood estimator as proposed by Zheng (2012), in our
experiments, the reference and the model distributions
share the same parameter values, as the model family is a
singleton set in our setting.

These methods are tested on the following problems:

Linear Gaussian Model (LGM): In this problem,
(x, y) ∈ R5 × R and we set p(y|x) = N

(∑5
i=1 ixi, 1

)
,

set r := p and rx(x) = N (0, I). H0 is true.

Heteroscedastic Gaussian Model (HGM): (x, y) ∈
R3 × R and p(y|x) = N

(∑3
i=1 xi, σ

2(x)
)

where

σ2(x) := 1 + 10 exp
(
−‖x−c‖

2

2×0.82

)
and c = 2

31. We set

the observation model to be r(y|x) = N
(∑3

i=1 xi, 1
)

and set rx(x) = N (0, I). In this problem, the observa-
tions are drawn from r given by a linear Gaussian model
with unit variance. The model p is heteroscedastic (i.e.,
the noise depends on x) where the variance function is
created such that it is roughly 1 everywhere in the do-
main of x, except in the region near c. This problem is

challenging since the difference is local in X .

Quadratic Gaussian Model (QGM): (x, y) ∈ R ×
R and we define p(y|x) = N (x+ 1, 1), r (y|x) =
N
(
0.1x2 + x+ 1, 1

)
, and rx(x) = Uniform (−2, 2).

Here, the conditional mean of the true distribution r is
given by a quadratic function, whereas the model p is
linear. This simulates a typical scenario where the model
is too simplistic to model the data. Note that the quadratic
term carries a small weight of 0.1, making the difference
between p and r challenging to detect. In this case, H1 is
true.

We report the rejection rates of these tests on all the three
problems in Figure 2, where we conduct 300 indepen-
dent trials for each experiment with the significance level
set to α = 0.05. In Figure 2a, we observe that all the
tests correctly have their false rejection rates no larger
than α = 0.05 (up to sampling noise) since H0 is true.
In the HGM problem (Figure 2b) where the difference
between p and r is local in the domain X , we observe
the optimized test locations of FSCD-opt are effective in
identifying where to pinpoint to difference in X . This
can be seen by noting that the performance of FSCD-rand
(random test locations) is significantly lower than FSCD-
opt, since the test locations are randomized, and may be
far from c which specifies the neighborhood that reveals
the difference (see the specification of the HGM problem).
While FSCD-opt has less test data since 30% of the data
is spent on parameter tuning, the gain in the test power
from having optimized test locations in the right region
outweighs the small reduction of the test sample size.

In the QGM problem (Figure 2c), while the quadratic term
in r carries a small weight, as the sample size increases,
all the power of all the tests increases as expected. We
observe that the KCSD has higher performance than all
variants of the FSCD in this case. This is because the
difference between p and r is spatially diffuse in a man-
ner that a pointwise evaluation of v 7→ ‖Gp,r(v)‖2

Fdy
l

(recall the FSCD statistic in (6)) is small everywhere in
X = (−2, 2). Thus, evaluating Gp,r is less effective in
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Figure 3: Mixture Density Network p(y|x) (black con-
tour) trained on five million records in the NYC taxi
dataset. Here, y is the drop-off location and x is the pick-
up location. Blue points indicate real drop-off locations
conditioned on the pick-up location at N (shown in pur-
ple). The FSCD power criterion is evaluated at J = 1 test
location set to be at N. Since the model p(y|x = N) fits
less well in Figure 3b, the power criterion is larger than
in Figure 3a.

this problem. In the case where the difference is spatially
diffuse, it is more appropriate to take the norm of Gp,r,
which explains the superior performance of the KCSD.
We also note that in constrast to the HGM problem, in
this case, FSCD-rand has higher performance than FSCD-
opt because there is no particular region in X that gives
higher signal than other. As a result, optimizing for test lo-
cations is less effective, and the test power drops because
of smaller test sample size. Finally, we observe that in
both HGM and QGM problems, the MMD has lower test
power than other approaches due to the loss of informa-
tion from representing a model p with samples. Zheng’s
test performs well in the QGM problem. Its statistic given
by the expected squared difference between the empirical
and the model CDFs can be seen as capturing global dif-
ferences. However, its use of kernel density estimation
may suffer when the data dimension is high as hinted in
Figure 2a where it is overly conservative.

3. Informative power criterion In our final experiment,
we show with real data that the power criterion of the
FSCD, as a function of v ∈ X is a dimensionless quan-
tity that roughly coincides with the degree of mismatch
between p(y|v) and the data. We train a Mixture Density
Network (MDN, Bishop (2006, Section 5.6)) on the New
York City (NYC) taxi dataset. The dataset contains mil-
lions of trip records that include pick-up locations, drop-
off locations, time, etc. The MDN models the conditional

probability of the drop-off location y given a pick-up
location x, expressed as a latitude/longitude coordinate
(i.e., X ,Y ⊂ R2). We train the model on five million
trip records of yellow cabs from January 2015 using 20
Gaussian components, and a ReLU-based architecture for
the mean, mixing proportion, and variance functions. For
simplicity, only trips with pick-up and drop-off locations
within or close to Manhattan are used.

We use Gaussian kernels for both k and l with their band-
widths chosen by the median heuristic, and separately
compute the power criterion of the FSCD test at two man-
ually chosen test locations, using a held-out data of size
12000. The results are shown in Figure 3 where blue
points indicate observed drop-off locations conditioned
on the pick-up location denoted by N. We consider con-
ditioning separately on two pick-up locations N1 and N2,
shown in Figure 3a and Figure 3b, respectively.

In Figure 3a, p(y|x = N1) fits relatively well to the data
compared to p(y|x = N2) shown in 3b. In Figure 3b,
the observed data (blue) do not respect the multimodality
suggested by the model. As a result, the power criterion
evaluated at N2 is higher, indicating a poorer fit at N2.
This suggests that the power criterion function of the
FSCD gives an interpretable indication for where the
conditional model does not fit well. More details on
the MDN and more results can be found in Section C
(appendix).

6 CONCLUSION

We have proposed two novel conditional goodness-of-fit
tests: the Kernel Conditional Stein Discrepancy (KCSD),
and the Finite Set Conditional Discrepancy (FSCD). We
prove that the population statistics of the two test define
a proper divergence measure between two conditional
density functions. There are several possible future direc-
tions. Both KCSD and FSCD can be extended to handle
a discrete domain Y by considering a Stein operator de-
fined in terms of forward and backward differences as in
Yang et al. (2018). Further, our two tests can be sped up
to have a runtime complexity linear in the sample size
(instead of quadratic in the current version) by consider-
ing random Fourier features as in Huggins and Mackey
(2018). The two tests can also be extended to compare
the relative fit of two competing models as in Jitkrittum
et al. (2018); Bounliphone et al. (2015). We leave these
research directions for future work.
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