
Exploration Analysis in Finite-Horizon Turn-based Stochastic Games

Jialian Li†, Yichi Zhou†, Tongzheng Ren‡, Jun Zhu†*
†Dept. of Comp. Sci. & Tech., BNRist Center, Institute for AI, Tsinghua-Bosch ML Joint Center, Tsinghua University

‡Computer Science Dept., Austin University

Abstract

Exploration and exploitation trade-off is one
of the key concerns in reinforcement learn-
ing. Previous work on one-player Markov De-
cision Processes has reached near-optimal re-
sults for both PAC and high probability re-
gret guarantees. However, such an analysis is
lacking for the more complex stochastic games
with multi-players, where all players aim to
find an approximate Nash Equilibrium. In this
work, we address the exploration issue for the
N -player finite-horizon turn-based stochastic
games (FTSG). We propose a framework, Up-
per Bounding the Values for Players (UBVP),
to guide exploration in FTSGs. UBVP lever-
ages the key insight that players choose the
optimal policy conditioning on the policies of
the others simultaneously; thus players can ex-
plore in the face of uncertainty and get close
to the Nash Equilibrium. Based on UBVP,
we present two provable algorithms. One is
Uniform-PAC with a sample complexity of
Õ(1/✏2) to get an ✏-Nash Equilibrium for ar-
bitrary ✏ > 0, and the other has a cumulative
exploitability of Õ(

p
T) with high probability.

1 INSTRUCTION

Sequential decision-making processes among
multi-players are common in practice, such as
board games [Silver et al., 2017a] and computer
games [Rouse III, 2010]. When the dynamics and re-
wards of the decision process (i.e., the environment) are
known, game theoretical methods can be applied to find
a Nash Equilibrium (NE) [Nisan et al., 2007], at which

*corresponding author (dcszj@tsinghua.edu.cn)

Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI), PMLR volume 124, 2020.

no player is willing to change its current policy individu-
ally. When the environment is unknown to players, as in
the Multi-agent Reinforcement Learning (MARL) set-
ting [Zhang et al., 2019], finding the NE requires players
to exploit their best policies as much as possible while
ensuring enough exploration to avoid being trapped in
sub-optimal policies. At the same time, players need to
take their mutual influence into consideration and finally
converge to some approximate NE [Nisan et al., 2007].
Thus, the exploration-exploitation trade-off among all
players is an essential issue for MARL problems.

For Markov Decision Process (MDP) that models the
interaction between a single player and the environ-
ment, substantial progress has been made on solving
the exploration-exploitation trade-off. For instance, Azar
et al. [2017] reach near optimal regrets of order Õ(

p
T)

for T time steps, while Dann and Brunskill [2015] fol-
low the Probably Approximately Correct (PAC) frame-
work to provide a sample complexity of Õ(1/✏2) for an
✏-optimal policy1. Such results handle the exploration-
exploitation trade-off with the Optimism in the Face of
Uncertainty (OFU) principle, i.e. choosing the policy
that is optimal under the current uncertainty estimation.

However, for MARL, it is non-trivial to solve the explo-
ration issue. The main difficulty is that the dynamics for
each player is no longer static — rewards of one player
would change when the policies of other players change.
Therefore, we cannot directly extend the techniques in
MDP for MARL. Previous efforts has been devoted to
solving the stochastic games and extensive games, the
two main frameworks for MARL (see [Zhang et al.,
2019] for detailed comparison). Methods considering
general stochastic games are usually hard to solve and
lack a non-asymptotic analysis for exploration [Littman,
1994, Hu and Wellman, 2003]. Many methods concen-

1We use Õ to denote the order ignoring poly-logarithmic
terms. Here we ignore other parameters and we leave detailed
analysis to latter sections.

trate on two-player (zero-sum) stochastic games and ap-
ply techniques from MDP [Wei et al., 2017]. However,
they are not suitable to extend to the more challenging
N -player cases. There are also some policy-gradient-
based methods [Lockhart et al., 2019], which mostly
lack provable and efficient exploration. For extensive
games, methods like Fictitious self-play (FSP) [Heinrich
et al., 2015] and Monte Carlo counterfactual regret min-
imization with outcome sampling (MCCFROS) [Lanctot
et al., 2009] also suffer from the problem of inefficient
exploration. Only a recent variant gives a provable solu-
tion for two-player zero-sum extensive games under the
Bayesian setting [Zhou et al., 2020].

In this work, we focus on the exploration-exploitation
trade-off in finding the NEs for Finite-horizon Turn-
based Stochastic Games (FTSG) with N players. Here,
finite-horizon denotes a finite time steps H for one game
and turn-based refers to that there is only one player tak-
ing an action at each time step. FTSG includes many
traditional games like Go [Silver et al., 2017b] and com-
puter games like Civilization series [Rouse III, 2010].

To our best knowledge, there is little work for solv-
ing the exploration issue in general FTSGs. Our work
follows the centralized-learning-decentralized-execution
paradigm to give a solution for learning NEs of FTSGs.
This paradigm assumes a centralized controller for train-
ing and is adopted by many MARL methods [Zhang
et al., 2019]. We define two performance measurements
for FTSGs, based on the concept of approximate NEs.
Then we propose our framework, Upper Bounding the
Values for Players (UBVP), to identify NEs for FTSGs.
UBVP applies the OFU principle in a way that all play-
ers are optimal conditioning on the others. Thus they can
converge to the best responses of each other. We give a
non-asymptotic analysis and show that UBVP can indeed
efficiently explore the unknown environment. We further
show that UBVP in fact converges to a subgame perfect
equilibrium (SPE), which is an NE for all subgames.

Based on UBVP, we present two concrete algorithms —
The first one is Uniform-PAC [Dann et al., 2017] and the
second one has a high probability exploitability bound.
Both algorithms have comparable theoretical results to
the state-of-the-art works for single-player MDPs. Fi-
nally, to demonstrate the effectiveness of our method, we
choose state-of-the-art exploration methods for stochas-
tic games and extensive games as our baselines. Empiri-
cal results show that our method performs well. Specif-
ically, on our designed cooperative game where the SPE
is the optimal solution, our method can approach the SPE
while other methods are trapped in sub-optimal NEs.

2 RELATED WORK

Our work relates to various topics, as reviewed below.

Markov Decision Process: Much work has been done
on the exploration and exploitation trade-off in finite-
horizon MDPs. There are mainly two kinds of perfor-
mance measurements. The first is regret, which measures
the culminated reward difference between the optimal
policy and the algorithm’s policies. UCBVI [Azar et al.,
2017] reaches the near optimal regret of Õ(H

p
SAT).2

The other one is sample complexity under the Probably
Approximately Correct (PAC) framework to measure the
number of time steps needed for an approximately op-
timal policy. UCFH [Dann and Brunskill, 2015] has
a sample complexity upper bound of Õ(H3S2A/✏2).
Moreover, Dann et al. [2017] propose a Uniform-PAC
framework to get a PAC solution without ✏ being given.

If the immediate reward is a d-dimensional vec-
tor, an MDP turns to be a Multi-Objective MDP
(MOMDP) [Roijers et al., 2013]. An MOMDP only in-
volves one agent, which just considers how to trade-off
the combination of the elements of the reward vector. In
contrast, in an FTSG, each agent only aims to maximize
its own reward and the agents can be adversarial.

Stochastic games: Solving (both finite-horizon and
infinite-horizon) N player stochastic games [Shapley,
1953] is a challenging task, especially under the Rein-
forcement Learning (RL) setting. Most work under the
RL setting concentrates on two-player zero-sum stochas-
tic games (TZSG) [Lagoudakis and Parr, 2002, Perolat
et al., 2015]. Recently UCSG [Wei et al., 2017] extends
techniques in MDP to TZSGs and gives a sample com-
plexity of Õ(poly(1/✏)). Our work considers the finite-
horizon turn-based games and presents a first provable
framework, which enjoys comparable performance to the
algorithms for MDPs.

Extensive games: Extensive games represent another
type of sequential games in MARL. Fictitious Self-play
(FSP) [Heinrich et al., 2015], an important method in ex-
tensive games, uses a naive exploration strategy similar
to ✏-greedy. Monte Carlo Counterfactual Regret Mini-
mization with Outcome Sampling (MCCFROS) [Lanc-
tot et al., 2009], which can be applied to solve extensive
games (TZEG) under the RL setting, suffers from high
variance. CFR-PSRL [Zhou et al., 2020] gives a provable
solution for TZEGs under the Bayesian setting. Methods
for extensive games may suffer from redundant calcula-
tion when used in stochastic games as they usually learn
policies for histories rather than states.

2In this work, we follow [Dann et al., 2017] and consider
time-dependent dynamics. We list the results in our setting.

Monte Carlo Tree Search (MCTS): MCTS [Coulom,
2006] is an efficient forward-search method which can
be applied to turn-based games. MCTS combining with
OFU exploration and estimated Q values reaches super-
human performance in game Go [Silver et al., 2017a].
Since MCTS finds solutions by forward search, it can
be myopic and cannot approach SPE solutions for games
with large horizon.

3 PROBLEM FORMULATION

In this section, we formally define Finite-horizon Turn-
based Stochastic Games (FTSG), the Nash Equilibrium
(NE) and the performance measurements in FTSGs.

3.1 Finite-horizon Turn-based Stochastic games

We concentrate on games with a reset action. That is,
the environment will reset to an initial state after a fixed
number of time steps. We use episode to describe the
steps between one initial state and its next reset state,
and use depth to describe the steps from the initial state
of the current episode.

Formally, a Finite-horizon Turn-based Stochastic game
(FTSG) is a six-tuple G = hN,S,A,R, P,Hi:

• N is the number of players. We use [N] =
{1, 2, ..., N} to denote the player set.

• H is the largest depth of the game (i.e. the horizon).

• S is the state space with size S. For player i 2 [N],
Si ⇢ S is its state space and Si \ Sj = ; if i 6= j.

• A is the action space with size A and Ai is the action
space of player i 2 [N]. Thus, A = [i2[N]Ai.

• Reward function R maps each state-action-depth tuple
(s, a, h) 2 S ⇥ A ⇥ [H] to a probability distribution
over [0, 1]N . We use R(s, a, h) to represent one vec-
tor sampled from the distribution and Ri(s, a, h) rep-
resents the sampled reward for player i. We denote
r(s, a, h) (a vector) as the expectation of R(s, a, h).

• P (·|s, a, h) is the transition probability over S from
state s, action a and depth h. Here we consider a gen-
eral time-dependent dynamics and thus P depends on
h. We further use P (s, a, h) to denote the transition
vector for state s, action a and depth h.

We have no more assumptions on the game. The player
order is not pre-defined but decided by the dynamics.
Therefore, the FTSG class can include a large number
of problems. For instance, if Si = S , FTSG reduces to
MDP. For convenience, we assume that the game begins

from a specific state s1 2 S . The extension to random
initial states is straightforward.

The policy of player i (i 2 [N]), denoted as ⇡i, maps
each state s 2 Si and its current depth h to an action
a 2 Ai. We use ⇧i to denote the set of all possi-
ble policies for ⇡i. The policies we define here are de-
terministic.3 In one episode of the game, players fol-
low ⇡ = (⇡1, ...⇡N). Further, we use ⇡�i to denote
the policy tuple that removes ⇡i from ⇡. For notation
clarity, we denote ⇡(s, h) = ⇡i(s, h) if s 2 Si. For
the kth episode, we denote the policy tuple we use as
⇡k = (⇡k

1 ,⇡
k

2 , ...,⇡
k

N
).

Following the common convention as in MDPs, we use
V and Q values to represent the expected rewards for
states and state-action pairs. For player i 2 [N], depth
h 2 [H], state s 2 S and action a for s, we define:

V ⇡

i,h(s) := E
"

HX

h0=h

ri(sh0 ,⇡(sh0 , h0), h0)|sh = s

#
,

Q⇡

i,h(s, a) := E
"

HX

h0=h

ri(sh0 ,⇡(sh0 , h0), h0)|sh = s, ah = a

#
,

where sh0 is the state at depth h0. Note that even if s /2
Si, we also define V and Q for player i. Further, we use
V ⇡

i,h
without indicating the state to represent the vector

for all states of horizon h.

The Bellman equation for the FTSG is

V ⇡

i,h(s) = Q⇡

i,h(s,⇡(s, h))

=ri(s,⇡(s, h), h) + P (s,⇡(s, h), h)>V ⇡

i,h+1,

for h 2 [H]. Specifically, we define V ⇡

i,H+1(s) = 0 for
all i 2 [N], s 2 S and any ⇡. We also define sH+1 as a
terminal state for the convenience of notation.

3.2 Nash Equilibrium for Stochastic games

With the above definition, we now introduce the general
learning goal for FTSGs, Nash Equilibrium (NE), and
subgame perfect equilibrium (SPE), a refinement of NEs.
Definition 1. A policy tuple ⇡⇤ = (⇡⇤

1 ,⇡
⇤
2 , ...,⇡

⇤
N
),

where ⇡⇤
i
2 ⇧i, i 2 [N], is a Nash Equilibrium (NE)

of FTSG G if for all i and any ⇡0
i
2 ⇧i,

V ⇡
⇤

i,1 (s1) � V
(⇡0

i,⇡
⇤
�i)

i,1 (s1).

Definition 2. A policy tuple ⇡ = (⇡1,⇡2, ...,⇡N), where
⇡i 2 ⇧i, i 2 [N], is an ✏-Nash Equilibrium (✏-NE) of
FTSG G if for any ⇡0

i
2 ⇧i,

V ⇡

i,1(s1) � V
(⇡0

i,⇡�i)
i,1 (s1)� ✏.

3They are usually called pure strategies in game theory.

A refinement of NE is the Subgame Perfect Equilibrium
(SPE) [Nisan et al., 2007] where ⇡ is also a NE for any
s 2 S and depth h 2 [H]. The SPE is a more suitable
solution for FTSGs, since each FTSG has at least one de-
terministic policy tuple that is SPE. This can be proved
with backward induction as in perfect-information exten-
sive games [Osborne and Rubinstein, 1994]. However,
this backward induction can only be conducted with full
knowledge of the environment functions. In the RL set-
ting, players must interact with the environment to ex-
plore the unknown transitions and rewards.

3.3 Performance Measurement

Our goal for learning is to find approximate NEs for
FTSGs. Therefore, we define our performance measure-
ment based on the concept of NE. In the analysis part
we will show that the solution of our method has close
relationship with SPEs.

We define the number of episodes in which the algorithm
does not choose ✏-NE as a performance measure:

L✏ =
X

k2N
I
n
⇡k is not an ✏�NE

o
.

By upper bounding L✏, we measure the sample com-
plexities of algorithms.

We further use exploitability [Lanctot et al., 2009], a
closely related concept with approximate NE, to measure
the peformance of algorithms over time. We define the
cumulative exploitability for player i up to time T as

Expli(T) =
TX

t=1

max
⇡i

V
(⇡i,⇡

t
�i)

i,1 (s1)�
TX

t=1

V ⇡
t

i,1 (s1).

Then we define the total exploitability as

Expl(T) =
X

i2[N]

Expli(T).

Our definition of Expl corresponds to the regret in MDP.
Similarly, we use high-probability exploitability bound
as the performance measurement up to time T .

4 Exploration in FTSG

In this section, we analyze the challenges on exploration
in FTSG in order to motivate our methods.

4.1 Exploration in MDP

We start by reviewing the key insight of exploration in
single-player MDPs, for which Azar et al. [2017] have
proposed efficient exploration algorithms following the
Optimism in the Face of Uncertainty (OFU) principle.

The essential idea of OFU is to choose the policy with
maximum expected rewards under the current estimation
for the true model. The upper bounds of Q values for
state-action pairs can be calculated by backward induc-
tion. As illustrated in Fig. 1(a), we consider an MDP
with 3 states and deterministic transitions. Rewards are
only given at terminal nodes. We use colorful bars to
indicate the confidence set for the optimal V values of
nodes. Then the OFU principle chooses the actions with
highest upper bounds. Therefore, the chosen policy for
this iteration follows the trajectory of the yellow bar.

4.2 NE UNCERTAINTY ESTIMATION

It is nontrivial to extend the above OFU insight to
stochastic games since the environment for each player
is no longer static. We cannot identify the optimal policy
for a player without taking other players into considera-
tion. A straightforward idea is to estimate the uncertainty
of the NE values and choose the optimal policy tuple ac-
cordingly. However, the chosen policy under this NE
uncertainty estimation fails to explore efficiently since
players cannot reach optimality simultaneously.

We use Fig. 1 (b) for an illustration. Consider a two-
player zero-sum FTSG with 3 states and horizon 2.
Player 1 acts at s1 and player 2 acts at s2 and s3. Then a
sampled reward for player 1 is returned. The color bars
indicate the confidence bounds of NE values for player
1. The uncertainty of the four terminal nodes can be cal-
culated and we get the NE bounds for the other nodes
via back-propagation. For example for state s3, player
2 here always chooses the minimum value of its two ac-
tions, and thus the NE value for s3 is bounded by the
minimum of upper and lower bounds of its children, i.e.
the upper bound of red bar and the lower bound of yellow
bar. However, such uncertainty estimation of NEs fails to
guide exploration. Following the OFU principle, player
1 should choose the action on the right for the largest
NE value and then player 2 should choose the left for s3.
However, we can see that the yellow bar does not directly
contribute to the NE value estimation of s1. That is, the
trajectory in this episode is not the one we aim to explore.
This happens because the two players cannot reach their
optima at the same time in the face of uncertainty. This
mismatch cannot guarantee efficient convergence to NEs.

4.3 Reaching optimality simultaneously

With the above observations, we realize that players need
to reach optima at the same time such that they can gain
the desired information for exploration. Notice that in
FTSGs, the player at some depth can exactly infer the
best choices for the nodes below it. Thus this player can
choose its optimal action conditioning on the choices of

Figure 1: A simple example with 3 states (i.e., the decision points), 2 actions and horizon 2 to illustrate the exploration.

below states. In this way, we are able to design proper
uncertainty estimations for players.

We revisit the game in Sec 4.2. As shown in Fig. 1 (c),
player 2 should choose the green bar for s2 and the yel-
low bar for s3 since they have smaller lower bounds. The
two bars are back-propagated to s1 and player 1 chooses
the yellow. By operating like this, each player reaches its
optimum conditioning on the choices of the other. Hence
they gradually converge to a NE. Furthermore, this idea
makes no assumption on NEs and can be easily extended
to N -player FTSGs. Based on this insight, we present
our algorithm as well as the analysis in the next section.

5 OUR METHOD

We now present our framework, Upper Bounding the
Values for Players (UBVP), as well as an analysis.

5.1 UBVP procedure

UBVP is motivated by the Optimism in the Face of
Uncertainty (OFU) principle to conduct efficient explo-
ration to find an approximate NE for FTSGs. The key
part for exploration is to estimate the uncertainty of the
values and design proper policies to interact with the en-
vironment. As analyzed in Sec. 4, we aim to find policies
for players such that they reach optima conditioning on
the policies of the other players. In order to do so, UBVP
upper bounds the values of states based on the actions of
states from deeper depths. UBVP is applicable to differ-
ent implementations for the value estimations in order to
satisfy different learning goals.

For convenience, we use sk
0

h
, ak

0

h
and Rk

0

h
to respec-

tively denote the reached state, corresponding action
and immediate reward at depth h of episode k0. Be-
fore episode k, the set of observed data is defined
as H

k := {(sk
0

h
, ak

0

h
, Rk

0

h
, sk

0

h+1) : h 2 [H], k0 2

[k � 1]}. With H
k, we calculate the count of vis-

iting the state-action-depth tuple (s, a, h), denoted by
nk(s, a, h), and the count of transiting to state s0 im-

Algorithm 1 Upper Bounding the Values for Players
1: Input: N , S , A, H , H1 = ;, �
2: for episode k = 1, 2, ... do
3: for h = H,H � 1, ..., 1, s 2 S do
4: for all possible actions a 2 A and i 2 [N] do
5: Compute r̄k

i
(s, a, h) and P̄ k(s0|s, a, h) with

Eq. (1) and (2) for possible s0

6: Compute Q̃k

i,h
(s, a) = ComputingQ

7: end for
8: j = Player(s)
9: ⇡k(s, h) = ⇡k

j
(s, h) = argmaxa Qk

j,h
(s, a)

10: V k

i,h
(s) = Qk

i,h
(s,⇡k(s, h)) for all i 2 [N]

11: end for
12: for step h = 1, ..., H do
13: Choose action ak

h
= ⇡k(sk

h
, h)

14: Get to state sk
h+1 and get reward vector Rk

h

15: end for
16: Update H

k+1 = H
k
[{(sk

h
, ak

h
, Rk

h
, sk

h+1)}
H

h=1
17: end for

mediately from (s, a, h), denoted by nk(s, a, s0, h). We
have nk(s, a, h) =

P
s0 n

k(s, a, s0, h). For (s, a, h) at
episode k with nk(s, a, h) > 0, we have

r̄ki (s, a, h) =
X

k02[k�1]

Rk
0

h I(sk
0

h = s, ak
0

h = a)/nk(s, a, h),

(1)

P̄ k(s0|s, a, h) = nk(s, a, s0, h)/nk(s, a, h), (2)

where s0 is any possible next state.

Algorithm 2 ComputingQ
1: Input: V k

i,h+1, P̄ k(s, a, h), r̄k
i
(s, a, h),

{nk(s, a, s0, h)}s0 , H , S, �
2: bk

h
(s, a) = �({nk(s, a, s0, h)}s0 , P̄ (s, a, h), V k

i,h+1, �)

3: Qk

i,h
(s, a) = min{Qk�1

i,h
(s, a), H, r̄i(s, a, h) +

P̄ k(s, a, h)>V k

i,h+1 + bk
h
(s, a)}

4: Output: Qk

i,h
(s, a)

Then we calculate the upper bounds of Q and V values
from depth H to 1. Specifically, for each player i, with
the calculated V -value upper bounds at depth h+ 1, de-
noted by V k

i,h+1, we upper bound Qk

i,h
(s, a) by adding

r̄i(s, a, h)+P̄ k(s, a, h)>V k

i,h+1 with an extra bonus term
bk
h
(s, a) = �({nk(s, a, s0, h)}s0 , P̄ (s, a, h), V k

i,h+1, �).
Here bk

h
is the bonus to bound the uncertainty of the esti-

mation for the current Q value, and � is a bonus function
which can be defined in different ways to satisfy differ-
ent performance measurements. We require it to satisfy
the following property:
Property 1. The bonus function � for UBVP should sat-
isfy that with a probability at least 1� �, for all i 2 [N],
k > 0, h 2 [H] and (s, a) 2 S ⇥A:

|(rki � r̄ki)(s, a, h) + (P k � P̄ k)(s, a, h)>V ⇤,k
i,h+1| bkh(s, a),

where V ⇤,k
i,h+1(s) = max⇡i2⇧i V

(⇡i,⇡
k
�i)

i,h+1 (s).

This property of � can ensure that our calculated

Qk

i,h
(s, a) is a proper upper bound for max⇡i Q

(⇡i,⇡
k
�i)

i,h
,

as we will prove in Lemma 2. This is the key that UBVP
can guide proper exploration and converge to the NE.

The pseudo code of the UBVP algorithm is given in
Alg. 1. Specifically, in line 8, we use Player(s) to show
the player to take action at state s. From line 3 to line
15, we calculate the upper bounds of V values for all N
players through backward induction. At the same time,
we work out the policy tuple ⇡k by letting each player
choose the optimal action. This tuple is then used to
play the game of this episode and collect data. The upper
bounds calculation for Q values are given in Alg. 2.

5.2 Analysis for UBVP

Up to now, we have presented the framework of UBVP,
except for the exact form of �. Here based on the prop-
erty of �, we give a general analysis outline.

Firstly, we define the best response distance to describe
how close a policy tuple is to the NE.
Definition 3. For a policy tuple ⇡ = (⇡1,⇡2, ...,⇡N)
where ⇡i 2 ⇧i, i 2 [N], the best response distance (Bsd)
of player i for ⇡ is defined as

Bsdi(⇡) := max
⇡
0
i2⇧i

V
(⇡0

i,⇡�i)
i,1 (s1)� V (⇡)

i,1 (s1).

Intuitively, Bsdi(⇡) measures the difference between the
largest expected value that player i can get against ⇡�i

and the actual value with ⇡i. Recall the definition of NE,
it is natural to connect this value with ✏-NE.
Lemma 1. For policy tuple ⇡ = (⇡1,⇡2, ...,⇡N) where
⇡i 2 ⇧i, i 2 [N], if Bsdi(⇡) ✏ for all player i, then ⇡
is an ✏-NE.

Although the proof is straightforward, we give it in Ap-
pendix A for completeness.

With Bsdi, we now bound L✏ and Expl(T) with

L✏
X

k2N+

I
h
9i 2 [N], Bsdi(⇡

k) > ✏
i
,

Expl(T) =
X

i2[N]

X

k2[T]

Bsdi(⇡
k),

where N+ := {1, 2, ...} is the set of positive integers.
Therefore, we can turn to analyze Bsdi to measure the
performance of UBVP.

It is easy to see that in UBVP, players are symmetric, and
thus the result for one can be adapted to the others. Now
we consider player i 2 [N] and give the key lemma that
connects the upper bound V and Bsdi.

Lemma 2. With a probability at least 1 � �, for UBVP
with bonus function satisfying Property 1, for any i 2

[N], k 2 N, h 2 [H] and s 2 S ,

max
⇡i2⇧i

V
(⇡i,⇡

k
�i)

i,h
(s) V k

i,h
(s).

This lemma can be proved by using Property 1 and in-
duction on h. More specifically, we can first prove this
result for h = H and then use induction to prove all h.
We complete this proof in Appendix B.

This is the key that UBVP can conduct exploration and
converge to a NE. Intuitively, this is because we construct
V k

i,h
such that it is the upper bound of the optimal V for

player i conditioning on other players’ policies. Besides,

V
(⇡i,⇡

k
�i)

i,h
(s) has the same action with ⇡k on states not

in Si and thus we ensure the upper bound property. Fur-
thermore, the inequalities hold for all players at the same
time, and this ensures them to converge to the best re-
sponse of other players. This is exactly why we can con-
verge to NEs.

Now we define �k

i
:= V k

i,1(s1) � V ⇡
k

i,1 (s1). Using
Lemma 2, with high probability, we have

Bsdi(⇡
k) �k

i
.

Then we turn to upper bound the sample complexity of
�k

i
. Notice that the two terms in �k

i
follow the same

policy tuple ⇡k but are calculated under different FTSGs.
Inspired by techniques in MDP, we can decompose �k

i

and upper bound the separated terms.

For clarity, we use x to denote a state-action pair (s, a).
For episode k and depth h, we use wk

h
(x) to denote the

probability of reaching state-action pair x at depth h fol-

lowing policy ⇡k. Now we can decompose �k

i
as

V k

i,1(s1)� V ⇡
k

i,1 (s1)

=r̄ki (s1,⇡(s1, 1), 1)� ri(s1,⇡(s1, 1), 1) + bk1(s1,⇡(s1, 1))

+ P̄ k(s1,⇡(s1, 1), 1)
>V k

i,2 � P (s1,⇡(s1, 1), 1)
>V ⇡

k

i,2

=
HX

h=1

X

x2S⇥A

wk

h(x)
�
(r̄ki � ri)(x, h)

+
⇣
P̄ k � P

⌘
(x, h)>V k

i,h+1 + bkh(x)
�
. (3)

Therefore, we can design a proper bonus function � such
that Eq. (3) can be upper bounded. This bound for �k

i
is

also the bound for Bsdi(⇡k). And finally, we can get the
upper bound for either Expl(T) or L✏.

The specific theoretical analysis can vary for different
forms of � and different performance measurements.
Fortunately, there exit various value-based algorithms on
MDPs in UCB-type. Many of them can be be adapted to
UBVP. Sec. 6 shall present two examples.

5.3 Relationship with SPE

We have shown above that UBVP can approach an NE.
In fact, UBVP is also approaching a SPE, a refined con-
cept of NE. This can be shown by considering Lemma 2.
Notice that this lemma holds for all s and h with a high
probability. Recall that we use backward induction to
calculate policies. Therefore for each time we reach state
s at depth h, UBVP also solves the NE of this subgame.
At the same time, since efficient exploration is required,
UBVP allocates more resources to subgames with higher
utilities. Hence the solution of UBVP is indeed an ap-
proximated SPE, while this solution might have rela-
tively high approximate errors on low utility subgames.

6 TWO ALGORITHMS ON UBVP

As analyzed above, we can design different � for differ-
ent performance measurements. Below we give two con-
crete examples for UBVP. The first is a Uniform-PAC al-
gorithm with L✏ bounded by Õ(1/✏2) and the second has
a cumulative exploitability of order Õ(

p
T) with high

probability. The former is suitable for cases where we
aim to identify an approximate NE and the latter can be
used when we wish to get small exploitability over time.

6.1 A Uniform-PAC algorithm

Uniform-PAC [Dann et al., 2017] is a framework describ-
ing the sample complexity of an algorithm to reach an
approximate solution with high probability. Formally, an
algorithm is Uniform-PAC if with a probability at least
1��, for all ✏ > 0, L✏ is upper bounded by some function

fUPAC(N,S,A,H, ✏, �). Here we follow the design of
UBEV in [Dann et al., 2017] and choose the bonus term
�UPAC as:

�UPAC = (H + 1)

s
2 ln ln(max{e, nk(s, a, h)}) + ⌧)

nk(s, a, h)
,

where ⌧ = ln((24N+30)SA/�. Following the proof of
Corollary E.1 in [Dann et al., 2017], we verify �UPAC

satisfies Property 1 . We give a proof in the Appendix C.

We give the sample complexity for UBVP with �UPAC .
Theorem 1. (Uniform-PAC bound) If UBVP chooses the
bonus function as �UPAC , then for � 2 (0, 1) and ✏ > 0,
with a probability at least 1� �, L✏ is upper bounded by

O

✓
H4SA
✏2

min{S,N + ✏(N + S2A)}L
◆
,

where L = polylog(N,H, S,A, 1/�, 1/✏).

The proof for this theorem is given in Appendix C, which
is inspired by the analysis of Dann et al. [2017].

The complexity of UBVP on FTSGs is comparable with
the related work on MDPs. Specifically, the previous
Uniform-PAC algorithm for MDPs, UBEV, achieves the
sample complexity upper bound of O(H

4
SA

✏2
min{S, 1+

✏S2A}polylog
�
H,S,A, 1

�
, 1
✏

�
). Therefore, for rela-

tively large ✏, UBVP solves FTSG with a sample com-
plexity the same as that of UBEV, except for an extra N
in logarithmic terms. Considering that UBVP works out
a policy tuple with N policies as the solution for FTSG,
the extra cost on N is indeed cheap. For a fixed ✏ > 0,
the lower bound of the sample complexity for MDPs
is ⌦̃(H

3
SA

✏2
ln(SA

�
)) [Dann et al., 2017] for sufficiently

small ✏. This lower bound is also suitable for FTSGs.

6.2 An algorithm with High Probability
Exploitability Bound

For this case, we choose two kinds of bonus functions:

�HPR

1 = 8H⌧ 0p1/nk(s, a, h),

�HPR

2 =

s
8⌧ 0V ars0⇠P̄ (s,a,h)V

k

i,h+1(s
0)

nk(s, a, h)
+

14H⌧ 0

3nk(s, a, h)

+HL

s
1

nk(s, a, h)
+

s
8
P

s0 P̄ (s, a, s0, h)C(s0)

nk(s, a, h)
,

where C(s0) = min{104H3S2A⌧ 02/nk(s, a, s0, h), H2
}

and ⌧ 0 = ln(5HSATN/�). The two � functions are
designed by extending UCB-VI [Azar et al., 2017].
We add H⌧ 0

p
1/nk(s, a, h) to bonuses of UCB-VI to

design �. The extra term is designed to upper bound
reward functions. The two kinds of � satisfy Property
1 using the analysis of Lemma 18 and Sec.5.2 in [Azar
et al., 2017]. Then we have:

Theorem 2. (High Probability Exploitability Bound) If
UBVP uses �HPR

1 as its bonus function, then with a
probability at least 1 � �, the cumulative exploitability
Expl(T) of UBVP has an order of:

O
⇣
NH⌧ 0pHSAT +H3S2A⌧ 02

⌘
.

If UBVP uses �HPR

2 as its bonus function, then with a
probability at least 1 � �, the cumulative exploitability
Expl(T) of UBVP has an order of:

O
⇣
N⌧ 0H

p
SAT +NH3S2A⌧ 02 +NH

p
T ⌧ 0

⌘
.

The proof is straightforward by combining Lemma 2
with the analysis in [Azar et al., 2017]. Notice that the
setting in [Azar et al., 2017] is time-independent dynam-
ics. Thus we only need to replace S with SH when the
pigeon-hole principle is used.

6.3 Other extensions

We have presented two concrete examples of UBVP. In
fact, many other algorithms on MDP can be adapted to
UBVP. For example, recent work provides tighter bounds
by considering the lower bounds for Q values [Dann
et al., 2019, Zanette and Brunskill, 2019]. Then we can
build similar lower bounds for Qk

i,h
and V k

i,h
in UBVP:

˜
Qk

i,h(s, a) = min{Qk�1
i,h

(s, a), H,

r̄i(s, a, h) + P̄ k(s, a, h)>
˜
V k

i,h+1 � bkh(s, a)},

˜
V k

i,h+1(s) =
˜
Qk

i,h(s,⇡
k(s, h)).

Then we can still choose � following existing
work [Dann et al., 2019, Zanette and Brunskill, 2019]
to give the corresponding exploitability bounds or PAC
sample complexity. Notice that these designs of � highly
rely on the estimated Q values and thus the exploitabil-
ity bound or sample complexity should be N times the
regret bound or sample complexity in MDP.

7 EXPERIMENTS

We now provide empirical evaluation. We compare the
performances of algorithms under three game settings.

We choose the average exploitability Expl(t)/t as
our performance measure. Baselines are state-of-the-
art methods in MARL. Specifically, FSPFQI [Heinrich
et al., 2015], MCCFROS [Lanctot et al., 2009] and CFR-
PSRL [Zhou et al., 2020] are RL methods for extensive
games. MCTS [Coulom, 2006] is an efficient forward
search method and NashQ [Hu and Wellman, 2003] is an
important method for stochastic games. For UBVP, we
choose �HPR

1 as our bonus function. We test each algo-
rithm for 10 times in each setting. More details of the
implementation and games are deferred to Appendix E.

7.1 Two-player zero-sum FTSG

In a two-player zero-sum FTSG, players take actions al-
ternately and there are only two states at each depth.
Each state-action pair has a non-zero probability to tran-
sit to the two states at next depth. We design this game
such that rewards are only generated at the last depth. We
generate 10 games with random transitions and rewards,
and test our methods on them.

We choose the horizon to be 4. The average exploitabil-
ities are shown in Fig. 2(a). We can see that only MCTS
and UBVP efficiently decrease the exploitability.

7.2 Cooperative two-player FTSG

The second experiment is on a more difficult game where
sufficient exploration is needed. We design a tree game
with deterministic transitions. Each state has two ac-
tions and two players have the same rewards. For the
initial state s1, if its player chooses action a1, the ex-
pected rewards for both players will always be 0.5. If
the player at s1 chooses a2, the expected rewards for
both players are 0.4 except only one trajectory, which
gets an expected reward of 0.6. The reward function
is a Bernoulli function. We set H = 8. Here the
SPE value is the optimal solution and we specifically use
Expl(T) = 0.6T �

P
T

t=0 V
t

0,1 as the SPE exploitability.

Fig. 2(b) shows the results. We can see that FSPFQI and
MCCFROS are decreasing quite slowly. MCTS, NashQ
and CFR-PSRL converge to a sub-optimal NE and only
UBVP can find the optimal SPE solution.

7.3 Multi-player FTSG

We also test the methods on a multi-player FTSG. We
test methods on different kinds of multi-player games.
The games have the same structures as the two-player
zero-sum FTSG in Sec. 7.1, except that the expected re-
ward for each player at the terminal nodes is drawn from
a uniform distribution.

Methods are tested for ten times on randomly generated
games. We choose three kinds of games with (N,H) 2
{(3, 6), (4, 6), (3, 8)}. We show the averaged expl and
computation time for algorithms when T = 100000 in
Table 1. For game with (N,H) = (3, 6), the aver-
age expl is shown in Fig. 2(c). UBVP has comparable
performance with state-of-the-art methods MCTS. No-
tice CFR-based methods are very slow since they need to
consider each history separately. Other methods lack ef-
ficient exploration strategies and have poor performance.

These empirical results demonstrate that UBVP has
competitive performance with state-of-the-art methods,

(a) Adversarial FTSG (b) Cooperative FTSG (c) Three-player FTSG

Figure 2: Average Expl(t)/t over t of UBVP and various baseline methods on three FTSG games.

Table 1: Averaged exploitablity and time when T = 100000. For each game (N,H), the above line is the averaged
exploitablity and the below line is the calculating time.

GAMES UBVP FSPFQI MCCFROS MCTS CFR-PSRL NashQ

(3, 6) 0.017± 0.022 0.19± 0.06 0.19± 0.06 0.010± 0.003 0.004± 0.002 0.031± 0.027
73± 4 272± 18 105± 6 33± 2 321± 16 31± 2

(3, 8) 0.017± 0.009 0.16± 0.07 0.17± 0.07 0.013± 0.004 0.008± 0.006 0.063± 0.061
104± 2 378± 13 925± 19 43± 4 4571± 73 40± 1

(4, 8) 0.027± 0.024 0.20± 0.09 0.20± 0.09 0.015± 0.010 0.005± 0.003 0.084± 0.053
99± 1 363± 2 1103± 32 40± 1 3623± 54 38± 1

which shows that it can indeed efficiently explore the en-
vironment. At the same time, UBVP can guarantee suf-
ficient exploration and approach the SPE solution.

8 DISCUSSION

As known in game theory, it is possible for a game to
have more than one NE. The solution of UBVP can en-
sure that players converge to the same NE. Moreover,
we can ensure that our solution is an approximation of
an SPE, as analyzed in Sec. 5.3. If multiple SPEs exist,
UBVP would explore them all by tightening their upper
bounds. It may be possible for UBVP to recommend a
specific SPE with some extra designs for policy chosen.
We think this should be an interesting future work.

Our algorithm ensures the convergence to approximate
NE only if all players follow UBVP. The exploration of
the unknown environment requires all players to cooper-
ate. Otherwise it is possible that some potential policies
are not identified. Therefore if the learning goal is to effi-
ciently identify an NE, it is necessary that all players can
explore together. In the decentralized cases, each player
aims rewards without considering other players. UCSG
[Wei et al., 2017] provides a decentralized solution for
two-player zero-sum stochastic games. Intuitively, we
think it might be possible that there exist some central-
ized methods can also perform well, e.g. low regret, in
the decentralized case.

9 CONCLUSIONS

We present UBVP to extend the OFU principle in MDP
to N -player FTSGs. UBVP guides efficient exploration
to converge to approximate NEs, and it is the first method
that gives a non-asymptotic analysis of NEs for FTSG in
the Reinforcement Learning setting. We propose two al-
gorithms based on UBVP, which have Uniform-PAC and
high probability exploitability guarantees, respectively.
Our analysis shows that these algorithms match the re-
sults on finite-horizon MDPs except for the term N .

Stochastic games that are not turn-based or infinite-
horizon are more complicated cases and the exploration
for such games is still an open challenge. Our work could
provide some insights for solving this challenge. Essen-
tially, UBVP mainly provides a way for players to choose
actions that can be optimal against others. We believe
that this is also one of the key issues for these more gen-
eral cases and is worthy of a systematic investigation.

Acknowledgement

This work was supported by NSFC Projects (Nos.
61620106010, U19B2034, U1811461), Beijing NSF
Project (No. L172037), Beijing Academy of Artificial
Intelligence (BAAI), and a grant from Tsinghua Institute
for Guo Qiang.

References
David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-

nis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, et al. Mastering chess and shogi by self-
play with a general reinforcement learning algorithm.
arXiv preprint arXiv:1712.01815, 2017a.

Richard Rouse III. Game design: Theory and practice.
Jones & Bartlett Learning, 2010.

Noam Nisan, Tim Roughgarden, Eva Tardos, and Vi-
jay V Vazirani. Algorithmic game theory. Cambridge
university press, 2007.

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar.
Multi-agent reinforcement learning: A selective
overview of theories and algorithms. arXiv preprint
arXiv:1911.10635, 2019.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi
Munos. Minimax regret bounds for reinforcement
learning. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages
263–272. JMLR. org, 2017.

Christoph Dann and Emma Brunskill. Sample complex-
ity of episodic fixed-horizon reinforcement learning.
In Advances in Neural Information Processing Sys-
tems, pages 2818–2826, 2015.

Michael L Littman. Markov games as a framework for
multi-agent reinforcement learning. In Machine learn-
ing proceedings 1994, pages 157–163. Elsevier, 1994.

Junling Hu and Michael P Wellman. Nash q-learning
for general-sum stochastic games. Journal of machine
learning research, 4(Nov):1039–1069, 2003.

Chen-Yu Wei, Yi-Te Hong, and Chi-Jen Lu. Online
reinforcement learning in stochastic games. In Ad-
vances in Neural Information Processing Systems,
pages 4987–4997, 2017.

Edward Lockhart, Marc Lanctot, Julien Pérolat, Jean-
Baptiste Lespiau, Dustin Morrill, Finbarr Timbers,
and Karl Tuyls. Computing approximate equilibria in
sequential adversarial games by exploitability descent.
arXiv preprint arXiv:1903.05614, 2019.

Johannes Heinrich, Marc Lanctot, and David Silver. Fic-
titious self-play in extensive-form games. In Interna-
tional Conference on Machine Learning, pages 805–
813, 2015.

Marc Lanctot, Kevin Waugh, Martin Zinkevich, and
Michael Bowling. Monte carlo sampling for regret
minimization in extensive games. In Proceedings of
the 22nd International Conference on Neural Informa-
tion Processing Systems, pages 1078–1086, 2009.

Yichi Zhou, Jialian Li, and Jun Zhu. Posterior sampling
for multi-agent reinforcement learning: solving exten-
sive games with imperfect information. In Interna-
tional Conference on Learning Representations, 2020.

David Silver, Julian Schrittwieser, Karen Simonyan,
Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. Mastering the game of go without hu-
man knowledge. Nature, 550(7676):354, 2017b.

Christoph Dann, Tor Lattimore, and Emma Brunskill.
Unifying pac and regret: Uniform pac bounds for
episodic reinforcement learning. In Advances in
Neural Information Processing Systems, pages 5713–
5723, 2017.

Diederik M Roijers, Peter Vamplew, Shimon Whiteson,
and Richard Dazeley. A survey of multi-objective se-
quential decision-making. Journal of Artificial Intelli-
gence Research, 48:67–113, 2013.

Lloyd S Shapley. Stochastic games. Proceedings of
the National Academy of Sciences, 39(10):1095–1100,
1953.

Michail G Lagoudakis and Ronald Parr. Value func-
tion approximation in zero-sum markov games. In
Proceedings of the Eighteenth conference on Uncer-
tainty in artificial intelligence, pages 283–292. Mor-
gan Kaufmann Publishers Inc., 2002.

Julien Perolat, Bruno Scherrer, Bilal Piot, and Olivier
Pietquin. Approximate dynamic programming for
two-player zero-sum markov games. In International
Conference on Machine Learning, pages 1321–1329,
2015.

Rémi Coulom. Efficient selectivity and backup oper-
ators in monte-carlo tree search. In Proceedings of
the 5th international conference on Computers and
games, pages 72–83. Springer-Verlag, 2006.

Martin J Osborne and Ariel Rubinstein. A course in game
theory. MIT press, 1994.

Christoph Dann, Lihong Li, Wei Wei, and Emma Brun-
skill. Policy certificates: Towards accountable rein-
forcement learning. In International Conference on
Machine Learning, pages 1507–1516, 2019.

Andrea Zanette and Emma Brunskill. Tighter problem-
dependent regret bounds in reinforcement learning
without domain knowledge using value function
bounds. In International Conference on Machine
Learning, pages 7304–7312, 2019.

