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Abstract

The linear submodular bandit problem was
proposed to simultaneously address diversified
retrieval and online learning in a recommender
system. If there is no uncertainty, this prob-
lem is equivalent to a submodular maximiza-
tion problem under a cardinality constraint.
However, in some situations, recommendation
lists should satisfy additional constraints such
as budget constraints, other than a cardinal-
ity constraint. Thus, motivated by diversi-
fied retrieval considering budget constraints,
we introduce a submodular bandit problem un-
der the intersection of l knapsacks and a k-
system constraint. Here k-system constraints
form a very general class of constraints includ-
ing cardinality constraints and the intersection
of k matroid constraints. To solve this prob-
lem, we propose a non-greedy algorithm that
adaptively focuses on a standard or modified
upper-confidence bound. We provide a high-
probability upper bound of an approximation
regret, where the approximation ratio matches
that of a fast offline algorithm. Moreover,
we perform experiments under various com-
binations of constraints using a synthetic and
two real-world datasets and demonstrate that
our proposed method outperforms the existing
baselines.

1 INTRODUCTION

The multi-armed bandit (MAB) problem has been widely
used for practical applications. Examples include inter-
active recommender systems, Internet advertising, port-
folio selection, and clinical trials. In a typical MAB
problem, the agent selects one arm in each round. How-
ever, in practice, it is more convenient to select more than

Proceedings of the 36th Conference on Uncertainty in Artificial
Intelligence (UAI), PMLR volume 124, 2020.

one arm in each round. Such a problem is called a com-
binatorial bandit problem (W. Chen et al. 2013). For ex-
ample, in (Yue and Guestrin 2011; Radlinski et al. 2008),
they considered the problem where in each round, the
agent proposes multiple news articles or web documents
to a user.

When recommending multiple items to a user, agents
should select well-diversified items to maximize cover-
age of the information the user finds interesting (Yue and
Guestrin 2011) or to reduce item similarity in the list
(Ziegler et al. 2005). Recommending redundant items
leads to diminishing returns in terms of utility (Yu et al.
2016). It is well-known that properties such as diversity
or diminishing returns are well captured by submodular
set functions (Krause and Golovin 2014). To simulta-
neously address diversified retrieval and online learning
in a recommender system, Yue and Guestrin (2011) pro-
posed a combinatorial bandit problem (or more specifi-
cally a semi-bandit problem), called the linear submod-
ular bandit problem, where in each round a sequence re-
wards are generated by an unknown submodular func-
tion.

For a real-world application, recommendation lists
should satisfy several constraints. We explain this by
using a news article recommendation example. For a
comfortable user experience while selecting news arti-
cles from a recommendation list, the length of the list
should not be excessively long, which implies that the
list should satisfy a cardinality constraint. Furthermore,
a user may not wish to spend more than a certain amount
of time by reading news articles. This can be modeled as
a knapsack constraint. With only a knapsack constraint,
a system can recommend a long list of short (or low cost)
news articles. However, due to the space constraint of the
web site, such a list cannot be displayed. Therefore, it is
necessary to consider a submodular bandit problem un-
der the intersection of the knapsack and cardinality con-
straints.



Yue and Guestrin (2011) introduced a submodular bandit
problem under a cardinality constraint and proposed an
algorithm called LSBGreedy. Later, Yu et al. (2016) con-
sidered a submodular bandit problem under a knapsack
constraint and proposed two greedy algorithms called
MCSGreedy and CGreedy. However, such existing al-
gorithms fail to properly optimize the objective function
under complex constraints. In fact, we theoretically and
empirically show that such simple greedy algorithms can
perform poorly.

Under a simple constraint such as a cardinality or a knap-
sack constraint, there is a simple rule to select elements.
This rule is called the upper confidence bound (UCB)
rule or the modified UCB rule if the constraint is a car-
dinality or a knapsack constraint, respectively (Yu et al.
2016). For example, with the UCB rule, the algorithm
selects the element with the largest UCB sequentially in
each round. Considering that our problem is a general-
ization of both the problems, we should generalize both
the rules.

In this study, we solve the problem under a more general-
ized constraint, i.e., the intersection of l knapsacks and k-
system constraints. Here, the k-system constraints form
a very general class of constraints, including cardinality
constraints and the intersection of k matroid constraints.
For example, when recommending news articles, we can
restrict the number of news articles from each topic with
a k-system constraint. To solve the problem, we pro-
pose a non-greedy algorithm that adaptively focuses on
the UCB and modified UCB rules. Since the submodular
maximization problem is NP-hard, we theoretically eval-
uate our method by an α-approximation regret, where
α ∈ (0, 1) is an approximation ratio. In this study, we
provide an upper bound of the α-approximation regret in
the case when α = 1

(1+ε)(k+2l+1) , where ε is a param-
eter of the algorithm. We note that the approximation
ratio matches that of an offline algorithm (Badanidiyuru
and Vondrák 2014). To the best of our knowledge, no
known offline algorithm achieves a better approximation
ratio than α above and better computational complexity
than the offline algorithm, simultaneously 1. More pre-
cisely, our contributions are stated as follows:

OUR CONTRIBUTIONS

1. We propose a submodular bandit problem with
semi-bandit feedback under the intersection of l
knapsacks and k-system constraints (Section 4).
This is the first attempt to solve the submodular ban-

1After we submitted this paper to the conference, Li and
Shroff (2020) have updated their preprint. They improved the
approximation ratio of (Badanidiyuru and Vondrák 2014) to
1/(k + 7l/4 + 1)− ε.

dit problem under such complex constraints. The
problem is new even when the k-system constraint
is a cardinality constraint.

2. We propose a novel algorithm called AFSM-UCB
that Adaptively Focuses on a Standard or Modified
Upper Confidence Bound (Section 5).

3. We provide a high-probability upper bound of an
approximation regret for AFSM-UCB (Section 6).
We prove that the α-approximation regret Regα (T )
is given by O(

√
mT ln(mT/δ)) with probability in

least 1−δ and the computational complexity in each
round is given asO(m|N | ln |N |/ ln(1+ε)), where
α = 1

(1+ε)(k+2l+1) , ε is a parameter of the algo-
rithm, T is the time horizon, m is the cardinality of
a maximal feasible solution, andN is the ground set
(e.g., the set of all news articles in the news recom-
mendation example). We note that no known offline
fast2 algorithm achieves a better approximation ra-
tio than above.3

4. We empirically prove the effectiveness of our pro-
posed method by comprehensively evaluating it on
a synthetic and two real-world datasets. We show
that our proposed method outperforms the existing
greedy baselines such as LSBGreedy and CGreedy.

2 RELATED WORK

2.1 SUBMODULAR MAXIMIZATION

Although submodular maximization has been studied
over four decades, we introduce only recent results
relevant to our work. Badanidiyuru and Vondrák
(2014) provided a maximization algorithm for a non-
negative, monotone submodular function with l knap-
sack constraints and a k-system constraint that achieves

1
(1+ε)(k+2l+1) -approximation solution. Based on this
work and Gupta et al. (2010), Mirzasoleiman et al.
(2016) proposed a maximization algorithm called FAN-
TOM under the same constraint in the case when the ob-
jective function is not necessarily monotone. Our pro-
posed method is inspired by these two offline algorithms.
However, because of uncertainty due to semi-bandit
feedback, we need a nontrivial modification. Some al-
gorithms (Sarpatwar et al. 2019; Chekuri, Vondrak, et
al. 2010; Chekuri, Vondrák, et al. 2014) achieves bet-
ter approximation ratios than that of (Badanidiyuru and
Vondrák 2014) under narrower classes of constraints
(e.g., a matroid + l knapsacks). However, these algo-
rithms are not “fast” because their computational com-

2We refer to Section 2.1 for the meaning of “fast”.
3See footnote 1.



plexity is O(poly(|N |)) with a polynomial of high de-
gree, while that of (Badanidiyuru and Vondrák 2014) is
O( |N |ε2 ln2 |N |

ε ). For example, the computational com-
plexity of the algorithm provided in (Sarpatwar et al.
2019) is Õ(|N |6) when k = 1. We refer to (Sarpat-
war et al. 2019; Mirzasoleiman et al. 2016) for further
comparison with respect to an approximation ratio and
computational complexity.

2.2 SUBMODULAR BANDIT PROBLEMS

Yue and Guestrin (2011) introduced the linear submod-
ular bandit problem to solve a diversification problem
in a retrieval system and proposed a greedy algorithm
called LSBGreedy. Later, Yu et al. (2016) considered
a variant of the problem, that is, the linear submodular
bandit problem with a knapsack constraint and proposed
two greedy algorithms called MCSGreedy and CGreedy.
L. Chen et al. (2017) generalized the linear submodular
bandit problem to an infinite dimensional case, i.e., in
the case where the marginal gain of the score function
belongs to a reproducing kernel Hilbert space (RKHS)
and has a bounded norm in the space. Then, they pro-
posed a greedy algorithm called SM-UCB. Recently, Hi-
ranandani et al. (2019) studied a model combining linear
submodular bandits with a cascading model (Craswell et
al. 2008). Strictly speaking, their objective function is
not a submodular function. Table 2.2 shows a compari-
son with other submodular bandit problems with respect
to constraints.

Table 1: Comparison of other submodular bandit algo-
rithms with respect to constraints.

Methods Cardinality Knapsack k-system
LSBGreedy X

CGreedy X
SM-UCB X

Our method X X X

3 DEFINITION

In this section, we provide definitions of terminology
used in this paper. Throughout this paper, we fix a finite
set N called a ground set that represents the set of the
entire news articles in the news article recommendation
example.

3.1 SUBMODULAR FUNCTION

In this subsection, we define submodular functions. We
refer to (Krause and Golovin 2014) for an introduction to
this subject.

We denote by 2N the set of subsets ofN . For e ∈ N and
S ⊆ N , we write S + e = S ∪ {e}. Let f : 2N → R
be a set function. We call f a submodular function if
f satisfies ∆f(e|A) ≥ ∆f(e|B) for any A,B ∈ 2N

with A ⊆ B and for any e ∈ N \ B. Here, ∆f(e|A)
is the marginal gain when e is added to A and defined
as f(A + e) − f(A). We note that a linear combination
of submodular functions with non-negative coefficients
is also submodular. A submodular function f on 2N is
called monotone if f(B) ≥ f(A) for any A,B ∈ 2N

with A ⊆ B. A set function f on 2N is called non-
negative if f(S) ≥ 0 for any S ⊆ N . Although non-
monotone submodular functions have important applica-
tions (Mirzasoleiman et al. 2016), we consider only non-
negative, monotone submodular functions in this study
as in the preceding work (Yue and Guestrin 2011; Yu et
al. 2016; L. Chen et al. 2017).

3.2 MATROID, k-SYSTEM, AND KNAPSACK
CONSTRAINTS

For succinctness, we omit formal definitions of the ma-
troid and k-system. Instead, we introduce examples of
matroids and remark that the intersection of k matroids
is a k-system. For definitions of these notions, we refer
to (Calinescu et al. 2011).

First, we provide an important example of a matroid.
Let Ni ⊆ N (i = 1, . . . , n) be a partition of N ,
that is N is the disjoint union of these subsets. For
1 ≤ i ≤ n, we fix a non-negative integer di and let
P =

{
S ∈ 2N | |S ∩Ni| ≤ di, ∀i

}
. Then, the pair

(N ,P) is an example of a matroid and called a parti-
tion matroid. Let d be a non-negative integer and put
U =

{
S ∈ 2N | |S| ≤ d

}
. Then (N ,U) is a special case

of partition matroids and called a uniform matroid. Let
(N ,Mi) for 1 ≤ i ≤ k be k matroids, whereMi ⊆ 2N .
The intersection of matroids (N ,∩ki=1Mi) is not neces-
sarily a matroid but a k-system (or more specifically it
is a k-extendible system) (Calinescu et al. 2011; Mestre
2006; Mestre 2015). In particular, any matroid is a 1-
system. For a k-system (N , I) with I ⊆ 2N and a subset
S ⊆ N , we say that S satisfies the k-system constraint
if and only if S ∈ I. Trivially, a uniform matroid con-
straint is equivalent to a cardinality constraint.

Next, we provide a definition of knapsack constraint. Let
c : N → R>0 be a function. For e ∈ N , we suppose
c(e) represents the cost of e. Let b ∈ R>0 be a budget
and S ⊆ N a subset. We say that S satisfies the knapsack
constraint with the budget b if c(S) :=

∑
e∈S c(e) ≤ b.

Without loss of generality, it is sufficient to consider the
unit budget case, i.e., b = 1.



4 PROBLEM FORMULATION

Throughout this paper, we consider the following inter-
section of l knapsacks and k-system constraints:

cj(S) ≤ 1 (1 ≤ ∀j ≤ l) and S ∈ I (1)

Here for 1 ≤ j ≤ l, cj : N → R>0 is a cost and (N , I)
is a k-system.

In this study, we consider the following sequential
decision-making process for times steps t = 1, . . . , T .

(i) The algorithm selects a list St =
{
e
(1)
t , . . . , e

(mt)
t

}
⊆

N satisfying the constraints (1).

(ii) The algorithm receives noisy rewards y(1)t , . . . , y
(mt)
t

as follows:

y
(i)
t = ∆f

(
e
(i)
t | S

(1:i−1)
t

)
+ ε

(i)
t , for i = 1, . . . ,mt,

Here f is a submodular function unknown to the algo-
rithm, S(1:i−1)

t =
{
e
(1)
t , . . . , e

(i−1)
t

}
and ε(i)t is a noise.

We regard S(1:i−1)
t , e(i−1)t and ε(i)t as random variables.

The objective of the algorithm is to maximize the sum of
rewards

∑T
t=1 f(St).

Following (Yue and Guestrin 2011), we explain this
problem by using the news article recommendation ex-
ample. In each round, the user scans the list of the
recommended items St =

{
e
(1)
t , . . . , e

(mt)
t

}
one-by-

one in top-down fashion, where mt is the cardinality
of St at round t. We assume that the marginal gain
∆f(e

(i)
t | S

(1:i−1)
t ) represents the new information cov-

ered by e(i)t and not covered by S(1:i−1)
t . The noisy re-

wards y(1)t , . . . , y
(mt)
t are binary random variables and

the user likes e(i)t with probability ∆f(e
(i)
t | S

(1:i−1)
t ).

4.1 ASSUMPTIONS ON THE SCORE
FUNCTION f

Following (Yue and Guestrin 2011), we assume that there
exist d known submodular functions f1, . . . , fd on 2N

that are linearly independent and the objective submod-
ular function f can be written as a linear combination
f =

∑d
i=1 wifi, where the coefficients w1, . . . , wd are

non-negative and unknown to the algorithm. We fix a pa-

rameter B > 0 and assume that
√∑d

i=1 w
2
i ≤ B. We

also assume that for some A > 0, the L2-norm of vector
[∆fi(e | S)]di=1 is bounded above by

√
A for any e ∈ N

and S ∈ 2N .

We note that this can be generalized to an infinite dimen-
sional case as in (L. Chen et al. 2017). We discuss this
setting more in detail in the supplemental material and
provide a theoretical result in this setting.

4.2 ASSUMPTIONS ON NOISE STOCHASTIC
PROCESS

We assume that there exists m ∈ Z>0 such that mt ≤ m
for all t and consider the lexicographic order on the set
{(t, i) | t = 1, . . . , 1 ≤ i ≤ m}, i.e., (t, i) ≤ (t′, i′) if
and only if either t < t′ or t = t′ and i ≤ i′. Then, we
can identify the set with the set of natural numbers (as
ordered sets) and can regard {ε(i)t }t,i as a sequence. We

assume that the stochastic process
{
ε
(i)
t

}
t,i

is condition-

ally R-sub-Gaussian for a fixed constant R ≥ 0, i.e.,
E
[
exp

(
ξε

(i)
t

)
| Ft,i

]
≤ exp

(
ξ2R2

2

)
, for any (t, i)

and any ξ ∈ R. Here, Ft,i is the σ-algebra generated

by
{
S
(1:j)
u | (u, j) < (t, i)

}
and

{
ε
(j)
u | (u, j) < (t, i)

}
.

This is a standard assumption on the noise sequence
(Chowdhury and Gopalan 2017; Abbasi-Yadkori et al.
2011). For example, if {ε(i)t } is a martingale difference
sequence and |ε(i)t | ≤ R or {ε(i)t } is conditionally Gaus-
sian with zero mean and variance R2, then the condition
is satisfied (Lattimore and Szepesvári 2019).

4.3 APPROXIMATION REGRET

As usual in the combinatorial bandit problem, we evalu-
ate bandit algorithms by a regret called α-approximation
regret (or α-regret in short), where α ∈ (0, 1). The ap-
proximation regret is necessary for meaningful evalua-
tion. Even if the submodular function f is completely
known, it has been proved that no algorithm can achieve
the optimal solution by evaluating f in polynomial time
(Nemhauser and Wolsey 1978).

We denote by OPT the optimal solution, i.e., OPT =
argmaxS f(S), where S runs over 2N satisfying the
constraint (1). We define the α-regret as follows:

Regα (T ) =

T∑
t=1

{αf(OPT )− f(St)} .

This definition is slightly different from that given in
(Yue and Guestrin 2011) because our definition does not
include noise as in (Chowdhury and Gopalan 2017). In
either case, one can prove a similar upper bound. For
the proof in the cardinality constraint case, we refer
to Lemma 4 in the supplemental material of (Yue and
Guestrin 2011).

In this study, we take the same approximation ratio α =
1

(1+ε)(k+2l+1) as that of a fast algorithm in the offline set-
ting (Badanidiyuru and Vondrák 2014, Theorem 6.1). As
mentioned in Section 2, there exist offline algorithms that
achieve better approximation ratios than above, but they
have high computational complexity. Later, we remark
that our proposed method is also “fast”.



5 ALGORITHM

In this section, following (Yue and Guestrin 2011; Yu et
al. 2016), we first define a UCB score of the marginal
gain ∆f(e | S) and introduce a modified UCB score.
With a UCB score, one can balance the exploitation
and exploration tradeoff with bandit feedback. Then,
we propose a non-greedy algorithm (Algorithm 2) that
adaptively focuses on the UCB score and modified UCB
score.

5.1 UCB SCORES

For e ∈ N and S ∈ 2N , we define a column vec-
tor x(e | S) by (∆fi(e | S))

d
i=1 ∈ Rd and put x(i)t =

x
(
e
(i)
t | S

(1:i−1)
t

)
. Here, we use the same notation as in

Section 4. We define bt, wt ∈ Rd and Mt ∈ Rd×d as
follows:

bt :=

t∑
s=1

ms∑
i=1

y(i)s x(i)s ,

Mt := λI +

t∑
s=1

ms∑
i=1

x(i)s ⊗ x(i)s , wt := M−1t bt,

Here, λ > 0 is a parameter of the model and for a col-
umn vector x ∈ Rd, we denote by x ⊗ x ∈ Rd×d the
Kronecker product of x and x.

For e ∈ N and S ∈ 2N , we define µ(e | S) := wt ·x(e |
S) and σ(e | S) := x(e|S)TM−1t x(e|S). Then, we
define a UCB score of the marginal gain by

ucbt(e | S) = µt−1(e | S) + βt−1σt−1(e | S),

and a modified UCB score by ucbt(e | S)/c(e). Here,
βt := B + R

√
ln det (λ−1Mt) + 2 + 2 ln(1/δ) and

c(e) :=
∑l
j=1 cj(e). It is well-known that ucbt(e | φ, S)

is an upper confidence bound for ∆fφ(e | S). More pre-
cisely, we have the following result.

PROPOSITION 1. We assume there existsm ∈ Z≥1 such
that mt ≤ m for all 1 ≤ t ≤ T . We also assume that
1 < λ/A ≤ 1 + 2/(mT ). Then, with probability at least
1− δ, the following inequality holds:

|µt−1(e | S)−∆f(e | S)| ≤ βt−1σt−1(e | S),

for any t, S, and e.

Proposition 1 follows from the proof of (Chowdhury and
Gopalan 2017, Theorem 2). We note that this theorem
is a more generalized result than the statement above
(they do not assume that the objective function is linear
but belongs to an RKHS). In the linear kernel case, an
equivalent result to Proposition 1 was proved in (Abbasi-
Yadkori et al. 2011).

We also define the UCB score for a list S
=

{
e(1), . . . , e(m)

}
by ucbt(S) = µt−1(S) +

3βt−1σt−1(S). Here µt(S) and σt(S) are defined as∑m
i=1 µt(e

(i) | S(1:i−1)) and
∑m
i=1 σt(e

(i) | S(1:i−1)),
respectively. The factor 3 in the definition of ucbt(S)
is due to a technical reason as clarified by the proof of
Lemma 1 in the supplemental material.

5.2 AFSM-UCB

Input : Threshold ρ, round t
Output: A list S satisfying the constraints (1)
Set S = ∅, i = 1
while True do
NS =
{e ∈ N | S + e satisfies the constraint (1)}.
NS,≥ρ =

{
e ∈ NS | ucbt(e|S)/c(e)≥ρ and

ucbt(e|∅)/c(e)≥ρ

}
.

if NS,≥ρ = ∅ then
break;

ei = argmaxe∈NS,≥ρ ucbt(e | S).
Add ei to S. Set i← i+ 1

end
Return S

Algorithm 1: GM-UCB (Sub-algorithm)

Input : Parameters B,R, λ, δ, ν, ν′, ε
Output: A list S satisfying the constraints (1)
for t = 1, . . . , T do

U = ∅, r = 2
k+2l+1 , ρ = r(1 + ε)−1ν

while ρ ≤ rν′|N | do
S = Algorithm1(ρ, t)
Add S to U
Set ρ← (1 + ε)ρ

end
Select St = argmaxS∈U ucbt(S)

Receive rewards y(1)t , . . . , y
(mt)
t

end
Algorithm 2: AFSM-UCB (Main Algorithm)

In this subsection, we propose a UCB-type algorithm
for our problem. We call our proposed method AFSM-
UCB and its pseudo code is outlined in Algorithm 2.
Algorithm 2 calls a sub-algorithm called GM-UCB (an
algorithm that Greedily selects elements with Modified
UCB scores larger than a threshold, outlined in Algo-
rithm 1). Algorithm 1 takes a threshold ρ as a parame-
ter and returns a list of elements satisfying the constraint
1. Algorithm 1 selects elements greedily from the el-
ements whose modified UCB scores ucbt(e | S)/c(e)
and ucbt(e | ∅)/c(e) are larger or equal to the threshold
ρ. If the threshold ρ is small, then this algorithm is al-
most the same as a greedy algorithm, such as LSBGreedy



(Yue and Guestrin 2011). If the threshold ρ is large, then
the elements with large modified UCB scores will be se-
lected. Thus, the threshold ρ controls the importance of
the standard and modified scores. The main algorithm 2
calls Algorithm 1 repeatedly by changing the threshold ρ
and returns a list with the largest UCB score. We prove
that there exists a good list among these candidates lists.

As remarked before, Algorithm 2 is inspired by sub-
modular maximization algorithms in the the offline set-
ting (Badanidiyuru and Vondrák 2014; Mirzasoleiman et
al. 2016). However, we need a nontrivial modification
since the diminishing return property does not hold for
ucbt(e | S) unlike the marginal gain ∆f(e | S). We
note that ucbt(e | S) can be large not only when the
estimated value of ∆f(e | S) is large but also if the un-
certainty in adding e to S is high. Therefore, we need
additional filter conditions to ensure that e is a “good”
element. Natural candidates for the condition are that
ucbt(e | S(1:i))/c(e) ≥ ρ for some indices i. In Algo-
rithm 2, we require ucbt(e | ∅)/c(e) ≥ ρ in addition to
ucbt(e | S)/c(e) ≥ ρ.

In the algorithm, we introduce parameters ν and ν′.
The parameter ν (resp. ν′) is used for defining the ini-
tial (resp. terminal) value of the threshold ρ. In the
next section, for a theoretical guarantee, we assume that
ν ≤ maxe∈N f({e}) ≤ ν′. If the upper bound of the
reward is known, then we can take ν′ as the known up-
per bound. In practice, it is plausible that most users are
interested in at least one item in the entire item set N ,
which implies maxe∈N f({e}) is not very small. In ad-
dition, the number of iterations in the while loop in Algo-
rithm 2 is given by O(ln (ν′|N |/ν)). Therefore, taking
a very small ν does not increase the number of iterations
as much.

5.3 COMPUTATIONAL COMPLEXITY

We discuss the computational complexity of Algorithm
2 and that of existing methods. We consider a greedy
algorithm by applying LSBGreedy to our problem; i.e.,
we consider a greedy algorithm that selects the element
with the largest UCB score until the constraint is satis-
fied. By abuse of terminology, we call this algorithm
LSBGreedy. Similarly, when we apply CGreedy (resp.
MCSGreedy) to our problem, we also call this algorithm
CGreedy (resp. MCSGreedy). In each round, the ex-
pected number of times to compute ucbt(e | S) in Al-
gorithm 2 is given by O(m|N | ln(ν′|N |/ν)/ ln(1 + ε)),
while that of LSBGreedy is given by O(m|N |). The
computational complexity of MCSGreedy and CGreedy
is given as O(|N |3) and O(m|N |) respectively. There-
fore, ignoring unimportant parameters, our algorithms
incur an additional factor ln |N |/ ln(1 + ε) compared to

that of LSBGreedy and CGreedy.

6 MAIN RESULTS

The main challenge of this paper is to provide a strong
theoretical result for AFSM-UCB. In this section, un-
der the assumptions stated as in the previous section, we
provide an upper bound for the approximation regret of
AFSM-UCB and give a sketch of the proof. We also
show that existing greedy methods incur linear approx-
imation regret in the worst case for our problem.

6.1 STATEMENT OF THE MAIN RESULTS

THEOREM 1. Let the notation and assumptions be as
previously mentioned. We also assume that 1 < λ/A ≤
1+2/(mT ). We let α = 1

(1+ε)(k+2l+1) . Then, with prob-
ability at least 1−δ, the proposed algorithm achieves the
following α-regret bound:

Regα (T ) ≤ 4AβT
√

2(mT + 2) ln det (λ−1MT ).

In particular, ignoring A,B,R, we have Regα (T ) =
O(d
√
mT ln mT

δ ) with probability at least 1− δ.
REMARK 1. 1. There is a tradeoff between the ap-

proximation ratio and computational complex-
ity. As discussed in Section 5.3, the compu-
tational complexity of the algorithm is given as
O(m|N | ln(|N |)/ ln(1 + ε)) in each round, while
the approximation of the algorithm is given as

1
(1+ε)(k+2l+1) .

2. We assume the score function f is a linear combi-
nation of known submodular functions. We can re-
lax the assumption to the case when the function
(e, S) → ∆f(e|S) belongs to an RKHS and has
a bounded norm in the space as in (L. Chen et al.
2017). We discuss this setting more in detail and
provide a generalized result in the supplemental ma-
terial.

In the setting of (Yue and Guestrin 2011; Yu et al. 2016),
greedy methods have good theoretical properties. How-
ever, we show that for any α > 0, these greedy meth-
ods incur linear α-regret in the worst case for our prob-
lem. We denote by Regα,MCS(T ) and Regα,LSB(T ) the
α-regret of MCSGreedy and that of LSBGreedy, respec-
tively. Then the following proposition holds.
PROPOSITION 2. For any α > 0, there exists cost c1,
k-system I, a submodular function f , T0 > 0 and a con-
stant C > 0 such that with probability at least 1− δ,

Regα,MCS(T ) > CT,

for any T > T0. Moreover, the same statement holds for
Regα,LSB(T ).



We provide the proof in the supplemental material.

6.2 SKETCH OF THE PROOF OF THEOREM 1

We provide a sketch of the proof of Theorem 1 and pro-
vide a detailed and generalized proof in the supplemental
material. Throughout the proof, we fix the event F on
which the inequality in Proposition 1 holds.

We evaluate the solution St by AFSM-UCB in each
round t. The following is a key result for our proof of
Theorem 1.

PROPOSITION 3. Let C ⊆ N be any set satisfying the
constraint (1). Let S be a set returned by GM-UCB at
time step t. Then, on the event F , we have f(S) +

2βt−1σt−1(S) ≥ min
{
ρ
2 ,

1
k+1f(S ∪ C)− lρ

k+1

}
.

sketch of proof. This can be proved in a similar way to
the proof of (Badanidiyuru and Vondrák 2014, Theo-
rem 6.1) or (Mirzasoleiman et al. 2016, Theorem 5.1).
However, because of uncertainty and lack of diminishing
property of the UCB score, we need further analysis. We
divide the proof into two cases.

Case One. This is the case when GM-UCB terminates
because there exists an element e such that ucbt(e | S) ≥
ρc(e) and ucbt(e | ∅) ≥ ρc(e), but any element e satis-
fying ucbt(e | S),ucbt(e | ∅) ≥ ρc(e) does not sat-
isfy the knapsack constraints, i.e., cj(S + e) > 1 for
some 1 ≤ j ≤ l. We fix an element e′ satisfying
ucbt(e

′ | S),ucbt(e
′ | ∅) ≥ ρc(e′). Because any ele-

ment of S has enough modified UCB score, by Propo-
sition 1, we have f(S) + 2βt−1σt−1(S) ≥ ρc(S). By
the definition of e′, we also have ucbt(e

′ | ∅) ≥ ρc(e′).
Because f(S) + 2βt−1σt−1(S) ≥ ucbt(e

′ | ∅) ≥ ρc(e′)
and S + e′ does not satisfy the knapsack constraint, we
have f(S) + 2βt−1σt−1(S) ≥ ρ

2c(S + e′) ≥ ρ/2.

Case Two. This is the case when GM-UCB termi-
nates because for any element e satisfying ucbt(e |
S),ucbt(e | ∅) ≥ ρc(e), e satisfies the knapsack con-
straints but S+e does not satisfy the k-system constraint.
We note that this case includes the case when there does
not exist an element e satisfying ucbt(e | S),ucbt(e |
∅) ≥ ρc(e).

We define a set C<ρ as{
e ∈ C | ∃i such that ucbt(e | S(1:i)) < ρc(e)

}
,

and C≥ρ = C \ C<ρ. Let e ∈ C<ρ. Then on the event
F , by Proposition 1 and submodularity, we have

∆f(C<ρ | S) ≤
∑
e∈C<ρ

∆f(e | S) ≤
∑
e∈C<ρ

ρc(e) ≤ lρ.

(2)

Next, we consider C≥ρ. Running the greedy algorithm
(with respect to the UCB score) on S ∪ C≥ρ under
only the k-system constraint, we obtain S by the as-
sumption of this case. Then, it can be proved that
f(S) + 2βt−1σt−1(S) ≥ 1

k+1f(S ∪C≥ρ). We note that
this is a variant of the result proved in (Calinescu et al.
2011, Appendix B). By this inequality, inequality (2),
and submodularity, we can derive the desired result.

Using Proposition 3, we can bound the approximation re-
gret above by the sum of uncertainty βt−1σt−1(St). Be-
cause the algorithm selects St and obtain feedbacks for
St, the sum of uncertainty can be bounded above by a
sub-linear function of T .

7 EXPERIMENTAL ANALYSIS

In this section, we empirically evaluate our methods
by a synthetic dataset that simulates an environment
for news article recommendation and two real-world
datasets (MovieLens100K (Grouplens 1998) and the
Million Song Dataset (Bertin-Mahieux et al. 2011)).

We compare our proposed algorithm to the following
baselines:

• RANDOM. In each round, this algorithm selects el-
ements uniform randomly until no element satisfies
the constraints.

• LSBGreedy. This was proposed in (Yue and
Guestrin 2011) to solve the submodular bandit
problem under a cardinality constraint. In the lin-
ear kernel case, SM-UCB (L. Chen et al. 2017) is
equivalent to LSBGreedy.

• CGreedy. This is an algorithm for a submodular
bandit problem under a knapsack constraint and was
proposed in (Yu et al. 2016). They also proposed
an algorithm called MCSGreedy. However be-
cause MCSGreedy is computationally expensive (in
each round it calls functions f1, . . . , fd forO(|N |3)
times) and their experimental results show that both
algorithms have a similar empirical performance,
we do not add MCSGreedy to the baselines.

In Proposition 2, we showed that these greedy algorithms
incur linear approximation regret in the worst case. How-
ever, even without theoretical guarantee, it is empirically
known that a greedy algorithm achieve a good experi-
mental performance. In this section, we demonstrate that
our algorithm outperforms these greedy algorithms un-
der various combinations of constraints. As a special
case, such constraints include the case when there is a
sufficiently large budget for knapsack constraints and the



Figure 1: Cumulative average rewards on the synthetic news article recommendation dataset

Figure 2: Cumulative average rewards on the MovieLens dataset

case when the k-system constraint is sufficiently mild.
The greedy algorithms are algorithms for such cases. We
also show that our proposed method performs no worse
than the baselines even in these cases.

As in the preceding work (Yue and Guestrin 2011), we
assume the score function f is a linear combination
of known probabilistic coverage functions. We assume
there exists a set of topics (or genres) G with |G| = d
and for each item e ∈ N , there is a feature vector
x(e) := (Pg(e))g∈G ∈ Rd that represents the infor-
mation coverage on different genres. For each genre g,
we define the probabilistic coverage function fg(S) by
1 −

∏
e∈S(1 − Pg(e)) and we assume f =

∑
i wifi

with unknown linear coefficients wi. The vector w :=
[w1, . . . , wd] represents user preference on genres. We
assume that the noisy rewards y(i)t are sampled by y(i)t ∼
Ber

(
∆f(e

(i)
t | S

(1:i−1)
t )

)
. Below, we define these fea-

ture vectors x(e), w, and constraints explicitly. We note
that in the experiments, we use an un-normalized knap-
sack constraint c(S) ≤ b. In the following experiments,
using 100 users (100 vectors w), we compute cumulative
average rewards for each algorithm. When taking the
average, we repeated this experiment 10 times for each
user.

7.1 NEWS ARTICLE RECOMMENDATION

In this synthetic dataset, we assume d = 15 and |N | =
1000. We define x(e) and costs for a knapsack constraint
in a similar manner in (Yu et al. 2016). We sample each
entry of x(e) from two types of uniform distributions.
We assume that for each item e, the number of genres

that have high information coverage is limited to two.
More precisely, we randomly select two indices of x(e)
and sample entries from U(0.5, 0.8) and sample other
entries from U(0.0, 0.01). We generate 100 user prefer-
ence vectors w in a similar way to x(e). We also sample
the costs of items uniform randomly fromU(0.0, 1.0). In
this dataset, we consider the intersection of a cardinality
constraint and a knapsack constraint. The result is shown
in Figure 1.

7.2 MOVIE RECOMMENDATION

We perform a similar experiment in (Mirzasoleiman et
al. 2016) but with a semi-bandit feedback. In Movie-
Lens100K, there are 943 users and 1682 movies. We
take N as the set of 1682 movies in the dataset. There
are d = 18 genres in this dataset. First, we fill the rat-
ings for all the user-item pairs using matrix factorization
(Koren et al. 2009) and we normalized the ratings r so
that r ∈ [0, 1]. For each movie e ∈ N , we denote by
re ∈ [0, 1] the mean of the ratings of the movie for all
users. We define P (g | e) = re/|Ge| if g ∈ Ge, other-
wise we define P (g | e) = 0. We normalize P (g | e) as
previously mentioned, because if wi = 1 for all i, then
we have P ({e}) = re.

We define a similar knapsack, cardinality, and matroid
constraints to those of (Mirzasoleiman et al. 2016). For
e ∈ N , the cost c(e) is defined as c(e) = FBeta(10,2)(re),
where FBeta(10,2) is the cumulative distribution function
of the Beta(10, 2). For a budget b ∈ R>0, we con-
sider a knapsack constraint c(S) ≤ b. The beta distri-
bution lets us differentiate the highly rated movies from
those with lower ratings (Mirzasoleiman et al. 2016). We



Figure 3: Cumulative average rewards on the Million Song Dataset

generate 100 user preference vectors w in a similar way
to the news article recommendation example. In this
dataset, we consider the following constraints on gen-
res in addition to the knapsack c(S) ≤ b and cardinal-
ity |S| ≤ m constraints, There are k genres in Movie-
Lens100K, where k = d = 18. For each genre g, we
fix a non-negative integer a and consider the constraint
| {e ∈ S | e has genre g} | ≤ a for S ⊆ N . This can be
regarded as a partition matroid constraint. Therefore, the
intersection of the constraints for all genres is a k-system
constraint. One can prove that the intersection of this
k-system constraint and a cardinality constraint is also a
k-system constraint. The results are displayed in Figure
2 in the case of the matroid limit a = 3.

7.3 MUSIC RECOMMENDATION

From the Million Song Dataset, we select 1000 most
popular songs and 30 most popular genres. Thus, we
have |N | = 1000 and d = 30. For active 100 users,
we compute Pg(e) and user preference vector w in al-
most the same way as w(e, g) and θ∗ in (Hiranandani et
al. 2019) respectively. They assume that a user likes a
song e if the user listened to the song at least five times,
however, we assume that a user likes the song if the user
listened to the song at least two times. We consider the
intersection of a cardinality and a knapsack constraint
c(S) ≤ b. We define a cost c for the knapsack constraint
by the length (in seconds) of the song in the dataset. The
costs represent the length of time spent by users before
they decide to listen to the song and we assume that it is
proportional to the length of the song 4. The results are
displayed in Figure 3. We do not show the performance
of RANDOM in the figure since it achieves only very
low rewards.

7.4 RESULTS

In Figures 1a, 2a, 3a, we plot the cumulative average re-
wards for each algorithm up to time step T = 100. In
Figures 1b, 2b, and, 3b (resp. 1c, 2c, and, 3c), we show

4We can also assume that users listen to the song and give
feedbacks later.

the cumulative average rewards at the final round by
changing the budget b (resp. by changing the cardinality
limit m) and fixing the cardinality limit m (resp. fixing
the budget b). These results shows that overall our pro-
posed method outperforms the baselines. We note that
Figure 3 shows different tendency as compared to other
datasets since popular items in the Million Song Dataset
have high information coverage for multiple genres and
about 47 % of the items have low information coverage
(less than 0.01) for all genres. Figures 1b, 2b, and 3b
also show the results for the case when the budget is suf-
ficiently large. This is the case when LSBGreedy per-
forms well and our experimental results show that even
in this case, our method have comparable performance
to greedy algorithms. Moreover, Figures 1c, 2c, and 3c
also show the results in the case when the cardinality
constraints are sufficiently mild. In this case, CGreedy
performs well since the constraints are almost same as a
knapsack constraint. The experimental results show that
our method tends to have better performance than that of
CGreedy even in this case.

8 CONCLUSIONS

In this study, motivated by diversified retrieval consider-
ing cost of items, we introduced the submodular bandit
problem under the intersection of a k-system and knap-
sack constraints. Then, we proposed a non-greedy algo-
rithm to solve the problem and provide a strong theoret-
ical guarantee. We demonstrated our proposed method
outperforms the greedy baselines using synthetic and two
real-world datasets.

A possible generalization of this work is a generalization
to the full bandit setting. In this setting, a leaner observes
only a value f(St) + ε in each round. Since it needs
much work to derive a theoretical guarantee, we leave
this setting for future work.
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