SUPPLEMENTARY MATERIAL

THE POP-EB FULL BAYES APPROXIMATION

Recall the form of the population empirical Bayes (POP-EB)
predictive density,

P (e | X) = / (e | Z) p(Z ] X) dZ.

Expanding the conditional density at the end gives,

p(X | Z) F(Z)
[pX|Z)F(Z)dzZ

(e | X) = / (e | Z)

The plug-in principle replaces F with the empirical dis-
tribution of data . We then approximate the empirical
distribution using the bootstrap by replacing F with G. This
leads to the approximation

p(X|Z)G(Z)
Yo p(X|Z)G(Z)

p(xnew | X) ~ Zp(xnew | Z)
VA

because G is a discrete distribution.

Specifically, G is uniform over a set of b = 1,..., B boot-
strapped datasets, which gives
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The pop-EB full Bayes (FB) is then

B
Pre(Xnew | X) = Z Wp P(Xnew | Z(i))v
b=1

with weights
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SIMULATION RESULTS WITH A SHARP PRIOR

Consider the model from the toy example in the paper. If
we truly believe network failures are rare, we could posit
an informative prior density. However, this has little effect
in addressing model mismatch. Figure 1 shows the results
of the same study under a very sharp prior centered at 5,
p(0) = Gam(a = 500, 8 = 100).

The Bayesian posterior is more accurate than before; it shifts
closer to the dominant rate of §# = 5. This also moves the
Bayesian predictive closer to the population. However, both
POP-EB maximum a posteriori (MAP) and POP-EB full Bayes
(FB) predictive densities still provide a better match to the
true population.
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Figure 1: Gamma-Poisson model with a sharp prior den-

sity centered at 5. The population in subpanel (a) has an
additional small bump at 50 (not shown).

SIMULATION RESULTS WITH AN EMPIRICAL
BAYES PRIOR

Empirical Bayes (EB) estimates the parameters of the prior
density from the data. For simplicity, assume the prior is a
Gamma distribution. One way to estimate the shape o and
rate B parameters is to match the mean and variance of the
Gamma distribution to that of the data.

The Gamma distribution has mean = «/f and variance =
o/ B2. This leads to the following pair of equations
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The solution is
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In our simulation study, these lead to estimates around o ~
0.5 and B ~ 0.07, which describes a nearly flat Gamma
distribution. This does not help mitigate model mismatch,
nor does it improve predictive accuracy.



EFFICIENT BUMP-VI IMPLEMENTATION

We first modify our Bayesian model notation to mimic
stochastic variational inference (sv1) (Hoffman et al., 2013).
Consider a Bayesian model p(X, 6). Separate the latent vari-
ables 0 into a set of local ¢ and global § variables. Local
latent variables { = {;n}f’ grow with the number of ob-
servations; global latent variables B do not. The likelihood
becomes p(X | &, B) and the prior p(¢, B).

Given the global variables §, the local latent variable &,,,
along with its observation x,, is conditionally independent
of all other latent variables and observations

P(xn.Sn | X—n.$—n.B) = p(xn.$un | B).

The negative indexing notation means x_, = {x; | i =
1,...,n—1,n+1,..., N}. Global latent variables lack
such conditional independence.

This divide is natural in many models. For example, consider
latent Dirichlet allocation (LDA). The global latent variables
are the topics. (The number of topics is fixed and does
not vary with the number of documents.) The local latent
variables are the per-document topic distributions and the
per-word assignments. (There are as many of these variables
as documents and words within each document.)

The local-global separation simplifies the computation of
the B gradients in bumping variational inference (BUMP-VI).
The variational family has two sets of variational parameters
q(&,B; ¢, L) where ¢ indexes the local variables and A the
global ones. This also splits the variational parameters in
the evidence lower bound (ELBO) as £(X, ¢, A).

Hoffman et al. (2013) show that the gradient calculation
decomposes into a maximization of the local variables and
a gradient with respect to the global variables. The recipe at
each iteration is

¢+ < argmax L(X, @, Aprev)
¢

gr < nL(X, ¢4, 4)
A‘next <~ A‘prev + o8-

where p is a scalar step-size.

In svi, we subsample the dataset X and accordingly re-
weight the optimized local variables to construct an unbiased
estimate of g, . Exponential family models parameterized
in their natural forms enjoy a connection to their coordinate
ascent updates, but the idea holds in general (Hoffman et al.,
2013).

In BuMP-vI, we need B gradients of the ELBO evaluated
on the bootstrapped datasets (z® )}f . Luckily, subsampling
is conceptually equivalent to bootstrap resampling: they
both induce a weighting scheme on the local latent vari-
ables.

We propose the following efficient implementation. At each
iteration:

1. Compute the optimized local variables ¢+ once for the
original dataset.

2. Compute the form of V, L.

3. Generate the B gradients { gib)}f by re-weighting the

local variables according to the bootstrapped datasets
{Z(b )}f. This means weighting each local variable pro-
portional to the number of times its paired observation
appears in the bootstrapped dataset.

We implement this stragey in the accompany code: https:
//github.com/Blei-Lab/lda-bump-cpp.

References

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J.
(2013). Stochastic variational inference. The Journal
of Machine Learning Research, 14(1):1303-1347.


https://github.com/Blei-Lab/lda-bump-cpp
https://github.com/Blei-Lab/lda-bump-cpp

