Figure 9: Factor graph corresponding to Figure

A APPENDIX

A.1 MESSAGE PASSING EQUATIONS FOR
BIPARTITE GRAPH

We use message passing for inference in the factor graph
shown in Figurelmwhere at time step t 11,15, ..., T, are
observed. In the following description of message passing
at time step ¢ we sometimes omit the ¢ subscript for nota-
tional conveniences.

For each S;, the message v, ., g, to the factor f(S;, R;)
is

Vs~ r; = Mo x,T—s || #sors—s. 2D
1<J<r
T#]

the message (s, r; s, from the factor f(S;, R;) is

/“LS“RJ—MS'L = f(Sl7 Rj) VRJ'—>S¢,RJ' (22)

R;

the message vg, s, x,. 1. to the factor f(S;, Xy, T)) is

VS —5:,Xe, T = H HS;,R;—S; (23)
1<J<r

the message s, x,.7.—s, from the factor f(S;, X, T)) is
S, X, Ty —S; = (24)

/f(SiaXthr) VX, -8, X, Ty VT, —5;, X, T, 4X¢ (25)

For each Rj;, the message vg,—.s, r, to the factor

Figure 10: A factor graph representing the distribution of r
earliest arriving signals in the bipartite model

f(Si, R;) is

VR;—Si,R; = (26)

MRy Ry,.... Ry N—R; HT; R; X,—R; || ws;.R;—R; (27)
1<I<s
143

the message iis, r,—r, from the factor f(S;, R;) is

WS R, —R; = Zf(5i7 Rj) vs, s, R; (28)
S

the message vr, .71, R, x, to the factor f(T}, R;, X;) is

VR;—T;,R;,X; — MR1,Ra,...,R,,N—R; H HSr,R;—R;
1<I<s
(29)
the message y1; R, x,—g, from the factor f(T}, R;, X;)
is

HT;,R;, X;—R; — /f(Tj,Rj,Xt) VX, —T;,R;,X, dX;
(30)

the message factor

f(R1,Ro,..

VR;—Ri,Rs,...R.,N 0 the
LR, N)is

VR;—R1,Rz2,....R,N = HT},R;, X;—R; H HSr,R;—R;
1<I<s
(31



the message ug, R,,.. R, N—R; from the factor
f(Rl,Rg, e ,RT,N) iS
MRy Rs,....Rr N—R; = (32)

> > f(Ri,....R.,N) (33)

{Ri, . ReI\{R;} N

the message jix, . x, x,,, from the factor f(X;, X;y1) is

HX =X, X4 = /f(Xtht+1) VXi11—Xe, Xeq1 dXt+1

(48)
the message vx, s, x,,T. to the factor f(S;, X;, T)) is

VUN—Ri,...,R-,N H VRj—Ri,...R,,N VXe—=Si,Xe T = (49)
1§i§r EXy 1, X=X HXy X1 — X (50
(34) H HSr, X, Tr— Xt H KTy Ry Xe—X,

1<I<s 1<J<r

For N, the message v _, v to the factor N is
VNN = [lRy,Rs,....Re, N NUN,T, =N (35)

the message pny— n from the factor N is

pn—n =Y f(N) (36)
N
the message VN_R, R,,..R.N to the factor
f(Rl,RQ, . .,RT,N) is
VN—Ri,Ra,....,Re,N = UN—NIN,T, >N (37)
the message (R, R,,.,R..N—nN from the factor
f(Rl,RQ, .. .,RT,N) 1S
MRy, Ro,....Rp, NN = (38)
Z f(R1,...,R-,N) H VR, —Ry,...R.,N (39)
R, 1<J<r

the message vn_, n, 1. to the factor f(N,T;) is

UN—N,T, = UN—NHR,,Ra,....R,N—N (40)

the message un, 7. n from the factor f(N,T;) is

png N = f(N,T,) 41)
N

For X,;, the message vx,_x, ,x, to the factor

f(Xt—laXt) is
VXt_’Xt—hXt = (42)

MXt7Xt+1—>Xt H :LLSI;Xt;Tr_)Xt H /J’TLRLXt—‘Xt
1<I<s 1<J<r

43)
the message px, ,,x,—x, from the factor f(X;_1,X;) is
HXy 1, Xe—Xy = /f(Xt—laXt) VX, 1 —Xi_1,X: dXt—l

(44)
the message vx, . x,, x,,, to the factor f( Xy, Xiqq) is

VX, Xy, X1 = (45)
KXoy, X=X, (46)
H HSy, X T X, H HTy Ry, X — X,
1<I<s 1<J<r
47)

14
(51

the message g, x, 7.—x, from the factor f(5;, Xy, T ) is

Zf Sl7Xt)

the message vx, .7, R, x, to the factor f(

HS; X, Tr— Xy = VS i — S, X, Ty (52)

Tj, Rj, Xt) is
VX, T R;, X: = (53)
BXy 1, X=X WXy, X1 — X (54)
H HS, X Tr— X, H KTy, Ry, X — X,
1<I<s 1<J<r

J#]
(55)

the message ur; r; x,—x, from the factor f(

is
Zf

Tj7 ij Xt)
i Rj, X¢) vr,~1;.R; x, (56)

HT; R X — Xy =

A.2 MESSAGE PASSING FOR HIGH ORDER min

FACTORS
Recall that the factor f;(1},t1,1t9,...,ts) is given by
(Tt ta, .. ts) = 0(T, — tg) (57
where tj, is the 7" minimum element of {t,ts,...,ts}.

We denote this factor by f;.

Direct computation of messages in this high order factor
graph would require computing an s — 1-dimensional inte-
gral. However, our f;, which correspond to the j-th mini-
mum function, can be rewritten as a sum of products as,

5= 8t - 1)
k=1
Z Hlt <T;) Hltb>T (58)

(A,B)ES) a€A beB

where S, = {(A,B) C [s] x [s]: AUB =[s]\ {k}, AN
B=g,|Al=j—-1,|Bl=s—j}and [s] ={1,2,...,s}
The outer sum represents the s different cases where each



element of {t1,s,...,t} can be the ;™ smallest. Suppose
tx, is the 5™ smallest and is equal to 7. Then, the remaining
{t:|l # k} are partitioned into 2 sets, where every ¢; in one
set is smaller than ¢; and while each ¢; in the other is larger.
There are (;:}) such partitions. Thus the f; corresponds

to a sum of products of O(s (jj)) terms.

The message jif, ¢, (t;) from the factor f;(1 < j <) to
the variable ¢;(1 < i < s) is given by:

- / IT v, @)

1<i<s
l#1
F(Tj t g, ts) d. .t (59)
except dt;

:/ H th—»fj(tl) 5(Tj7tk) d...t

1<i<s except dt;
Ti
(60)
where t}, is the 5™ smallest element of {t;, %5, ...,t,}, and

Vg, (t1) is the message from ¢; to f;.

For computing pif, ., (t;), f; can be written as the sum of
the following terms:

fi=0t =1 Y ] 1ta <1y [] 206 > 1))

A,BacA beB
(61)
+> 0t —1) > [[1ta <) [] 16 > T))
ki A,BacA beB
(62)

Then, the multidimensional integral can be written as sum

of products of unidimensional integrals. The final compu-
. . —1

tation of the message requires a sum of O(S(j,l)) terms

as,

pig;—t; (t:) = 6(t; — T5)ha (T5)
+ 1(ti < T])hQ(TJ) + 1(752‘ > T])h3(lrj) (63)

where
T;
() = ( e dm)
A,B a€A o0
(64)
+oo
/ Vi, — f; (tb) dty
beB \’Ti
(65)
TJ
hg(TJ) = (/ Vta*‘fj (ta) dta>
A,BicA a€A,a#i >
(66)
+oo
/ th_>'fj (tb) dtb
beB T;
(67)
T;
hB(Tj) = Z </ Vta—>j7 (ta) dta)
A,B,ieB a€A -
(68)
—+o00
H (/ Viy—f; (ty) dtb)
beB,b#i \Y 1
(69)

For r such factors f;, if messages are computed di-
rectly, each iteration of message passing will require
O(Z§=1 (;)) computation. Note that only 2s unidimen-
sional integrals need to be computed, and the remainder
of the computation corresponds to computing the value
of elementary symmetric polynomials, which corresponds
to sums of all combinations. To compute a symmetric
polynomial »4cq1.2....n} [[4ca ca Which sums over all
Al=k

k-combinations of| {Icl, C2,...,Cn}, we can use dynamic
programming to find the coefficient of z* in [}, (z + ¢;),
and this can be done in O(n?) time.

A.2.1 FULL MODEL WITH CLUTTER

We handle two kinds of systematic noise in this model:
losses from the sender and clutter. Losses are handled by

mi, My, ..., ms in Figure[9]

Clutter can be incorporated in this model through the factor

fl/q(TkHtlatQa"'7tSaJ1aJ27'~-aJk)as
S(T, — ) ifJy=0
()= 70
fi() {1 £, =1 (70)

where t; is the (k — >, J;)™ minimum element of
{t1,ta,...,ts}. This is identical to f from the previous
section if the J; are all zero. If J, = 1, i.e. the current
message is clutter, then we assume a uniform distribution
over T},. If some previous received message was clutter, 7T},
will take a lower minimum value.



Then, the factor can be written down in terms
of the factors f, from the previous section, as
fé(]%,tl,fg,...,ts,Ji,Jb,...,Jk)Z

Fi() = foess, 0 (Ths ta o, s ts) (71)
Then, the messages from fj, to ¢; can be written as:

/
Vii—t = 2 Vhes, =t T I — 1 (72)
Ji

where the summation is over the values O or 1 for each J;.

Messages from f}, to .J; can be written as:

V};;—%,: = Z /vfk*zi Jidtl .. dts (73)

J; il

Thus, we can precompute the messages for fi in polyno-
mial time, and we can compute these messages in O(2")
additional time.

A.3 ADDITIONAL EXPERIMENTAL RESULTS
FOR RAFOS FLOAT DATA

Here we present more additional experimental results for
tracking RAFOS floats using our proposed method. When
there are at least three actual signal arrival times at each
time step, such as float #767 and float #811 (Figure EI) it is
possible to estimate a unique track for the float over the en-
tire period of the float’s mission (Figure[7]and[8). However,
if at some point during a float’s mission that there are only
two actual signal arrival times for a certain period, then nei-
ther using hand labeled data nor our proposed method can
uniquely determine the float’s location.

An example for float #759 is given here. The signal arrival
times for float #759 are shown in Figure[TT] where there ex-
ists periods of time during float #759’s mission when only
at most two signal arrivals are available. As shown in Fig-
ure[T2] we get different results in different runs of the sim-
ple particle filter algorithm using hand labeled data (blue),
and our proposed algorithm agrees with hand labeled data
when there are at least three signal arrival times available.

7500

)
[o2]
[8)]
o
o

T

|

o0/ T T
5500
5000 .-

Signal arrival time (s

A
a
=}
=}

4000+

35006 50 100 150 200 250 300
Day

Figure 11: Observed signal arrival times for float #759 over

the entire tracking period
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Figure 12: Results of different runs of the simple particle
filter algorithm using hand labeled data (blue) versus our
proposed algorithm (red) for float #759



