Optimal Algorithms for Learning Bayesian Network Structures: Introduction and Heuristic Search

Changhe Yuan

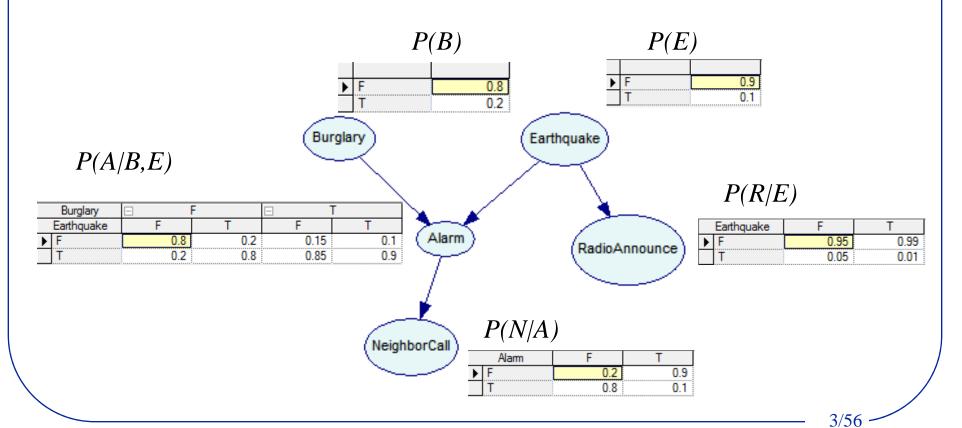
UAI 2015 Tutorial
Sunday, July 12th, 8:30-10:20am
http://auai.org/uai2015/tutorialsDetails.shtml#tutorial_1

About tutorial presenters

- Dr. Changhe Yuan (Part I)
 - Associate Professor of Computer Science at Queens College/City University of New York
 - Director of the Uncertainty Reasoning Laboratory (URL Lab).
- Dr. James Cussens (Part II)
 - Senior Lecturer in the Dept of Computer Science at the University of York, UK
- Dr. Brandon Malone (Part I and II)
 - Postdoctoral researcher at the Max Planck Institute for Biology of Ageing

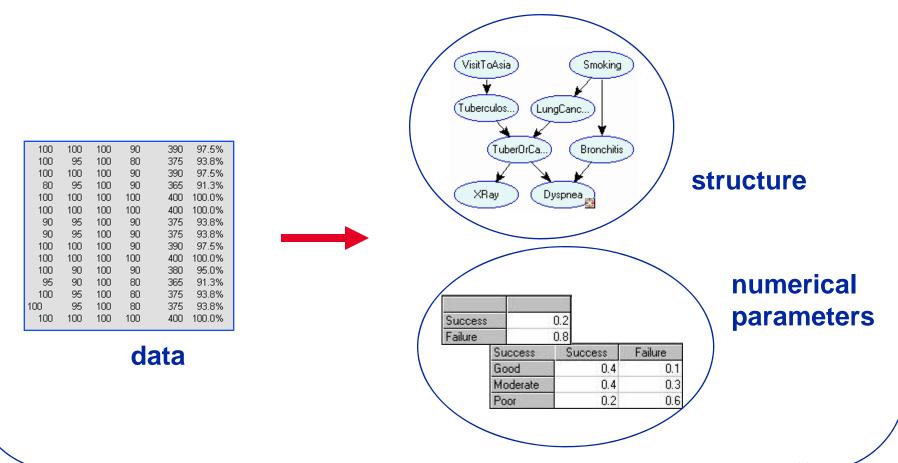
Bayesian networks

- A Bayesian Network is a directed acyclic graph (DAG) in which:
 - A set of random variables makes up the nodes in the network.
 - A set of directed links or arrows connects pairs of nodes.
 - Each node has a conditional probability table that quantifies the effects the parents have on the node.



Learning Bayesian networks

- Very often we have data sets
- We can learn Bayesian networks from these data



Major learning approaches

- Score-based structure learning
 - Find the highest-scoring network structure
 - » Optimal algorithms (FOCUS of TUTORIAL)
 - » Approximation algorithms
- Constraint-based structure learning
 - Find a network that best explains the dependencies and independencies in the data
- Hybrid approaches
 - Integrate constraint- and/or score-based structure learning
- Bayesian model averaging
 - Average the prediction of all possible structures

Score-based learning

Find a Bayesian network that optimizes a given scoring function

- Two major issues
 - How to define a scoring function?
 - How to formulate and solve the optimization problem?

Scoring functions

- Bayesian Dirichlet Family (BD)
 - K2
- Minimum Description Length (MDL)
- Factorized Normalized Maximum Likelihood (fNML)
- Akaike's Information Criterion (AIC)
- Mutual information tests (MIT)
- Etc.

Decomposability

 All of these are expressed as a sum over the individual variables, e.g.

$$\begin{split} & \text{BDeu} \quad \sum_{i}^{n} \sum_{j}^{q_{i}} \log \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} + N_{ij})} + \sum_{k}^{r_{i}} \log \frac{\Gamma(\alpha_{ijk} + N_{ijk})}{\Gamma(\alpha_{ijk})} \\ & \text{MDL} \quad \sum_{i}^{n} -LL(X_{i}|PA_{i}) + \frac{\log N}{2}(r_{i} - 1)q_{i} \\ & \text{fNML} \quad \sum_{i}^{n} \sum_{j}^{q_{i}} \sum_{k}^{r_{i}} -N_{ijk} \log \frac{N_{ijk}}{N_{ij}} - C(r_{i}, N_{ij}) \end{split}$$

 This property is called decomposability and will be quite important for structure learning.

$$Score(G) = \sum_{i}^{n} Score(X_{i}|PA_{i})$$

Querying best parents

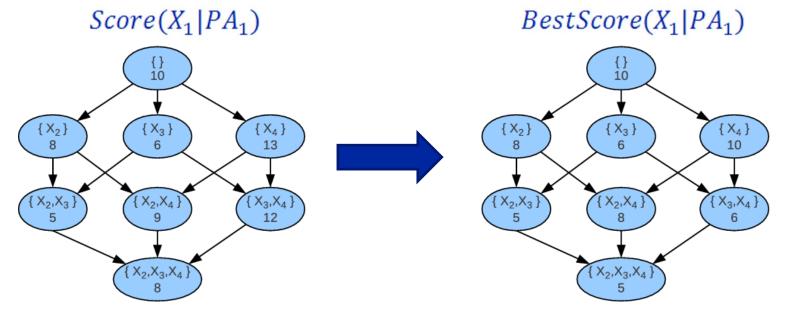
$$BestScore(X, \mathbf{U}) = \min_{PA_X \subseteq \mathbf{U} \setminus \{X\}} Score(X|PA_X)$$

e.g.,
$$BestScore(X_1, \{X_2, X_4\}) = \min_{PA_{X_1} \subseteq \{X_2, X_4\}} Score(X_1 | PA_{X_1})$$

Naive solution: Search through all Solution: Propagate optimal of the subsets and find the best

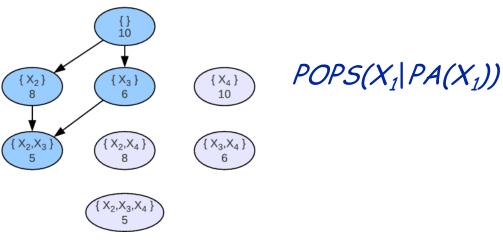
scores and store as hash table.

9/56



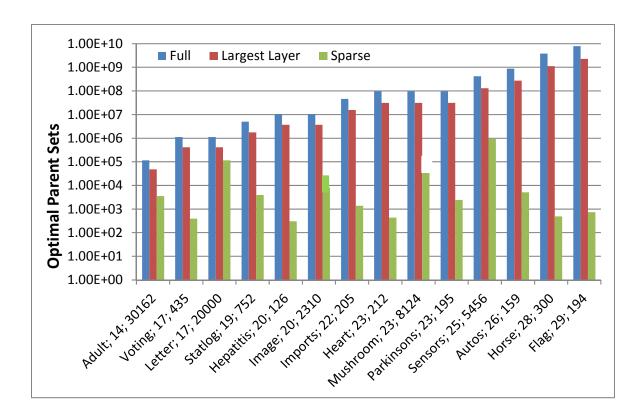
Score pruning

- Theorem: Say PA_i ⊂ PA'_i and Score(X_i|PA_i) < Score(X|PA'_i). Then PA'_i is not optimal for X_i.
- Ways of pruning:
 - Compare Score(X_i|PA_i) and Score(X|PA'_i)
 - Using properties of scoring functions without computing scores (e.g., exponential pruning)
- After pruning, each variable has a list of possibly optimal parent sets (POPS)
 - The scores of all POPS are called local scores



[Teyssier and Koller 2005, de Campos and Ji 2011, Tian 2000]

Number of POPS



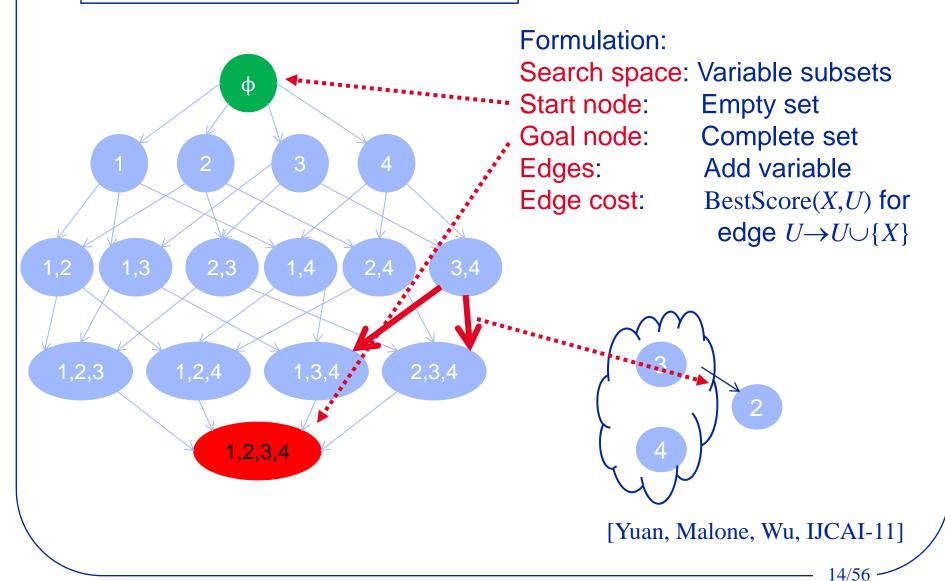
The number of parent sets and their scores stored in the full parent graphs ("Full"), the largest layer of the parent graphs in memory-efficient dynamic programming ("Largest Layer"), and the possibly optimal parent sets ("Sparse").

Practicalities

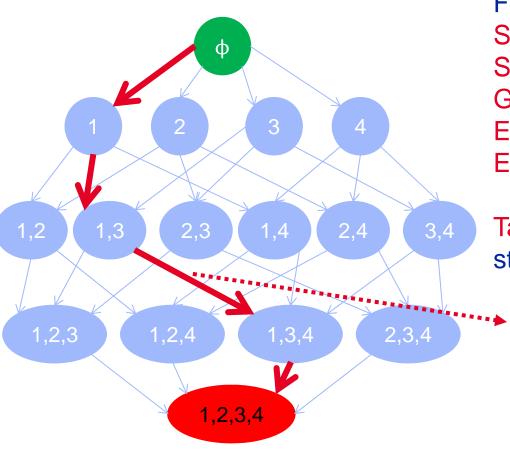
- Empirically, the sparse AD-tree data structure is the best approach for collecting sufficient statistics.
- A breadth-first score calculation strategy maximizes the efficiency of exponential pruning.
- Caching significantly reduces runtime.
- Local score calculations are easily parallelizable.

Graph search formulation

- Formulate the learning task as a shortest path problem
 - The shortest path solution to a graph search problem corresponds to an optimal Bayesian network



Search graph (Order graph)



Formulation:

Search space: Variable subsets

Start node: Empty set

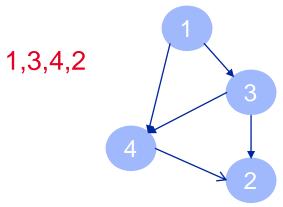
Goal node: Complete set

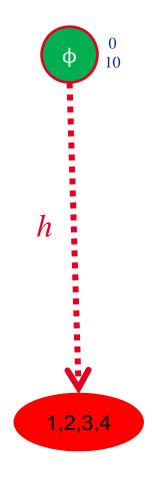
Edges: Add variable

Edge cost: BestScore(X,U) for

edge $U \rightarrow U \cup \{X\}$

Task: find the shortest path between start and goal nodes





A* search: Expands the nodes in the order of quality: f=g+h

$$g(U) = Score(U)$$

h(U) = estimated distance to goal

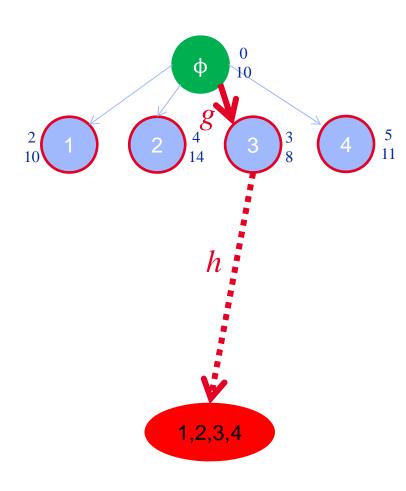
Notation:

g: g-cost

h: h-cost

Red shape-outlined: open nodes

No outline: closed nodes



A* search: Expands the nodes in the order of quality: f=g+h

$$g(U) = Score(U)$$

h(U) = estimated distance to goal

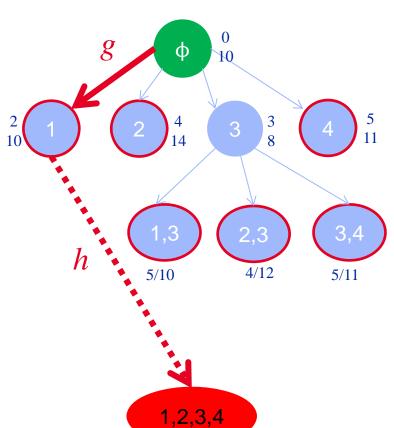
Notation:

g: g-cost

h: h-cost

Red shape-outlined: open nodes

No outline: closed nodes



A* search: Expands the nodes in the order of quality: f=g+h

$$g(U) = Score(U)$$

h(U) = estimated distance to goal

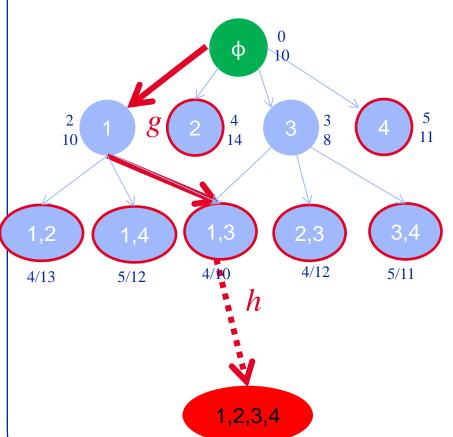
Notation:

g: g-cost

h: h-cost

Red shape-outlined: open nodes

No outline: closed nodes



A* search: Expands the nodes in the order of quality: f=g+h

$$g(U) = Score(U)$$

h(U) = estimated distance to goal

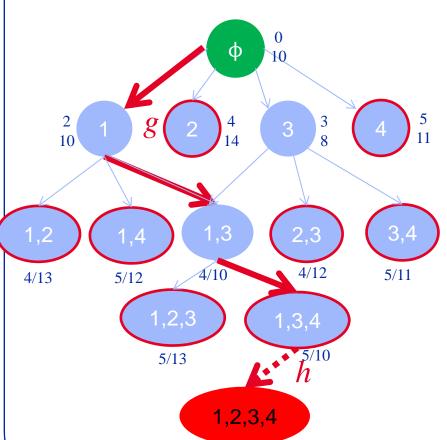
Notation:

g: g-cost

h: h-cost

Red shape-outlined: open nodes

No outline: closed nodes



A* search: Expands the nodes in the order of quality: f=g+h

$$g(U) = Score(U)$$

h(U) = estimated distance to goal

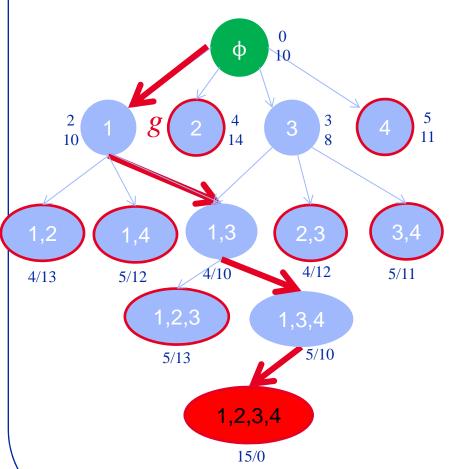
Notation:

g: g-cost

h: h-cost

Red shape-outlined: open nodes

No outline: closed nodes



A* search: Expands the nodes in the order of quality: f=g+h

$$g(U) = Score(U)$$

h(U) = estimated distance to goal

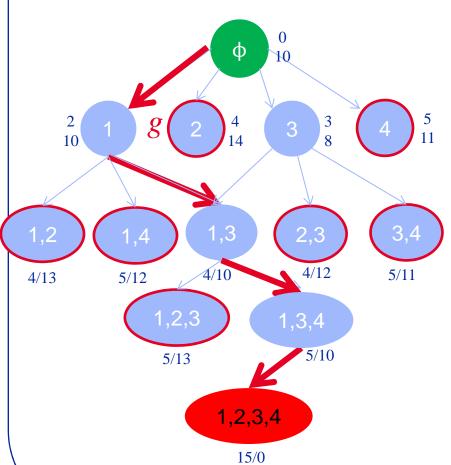
Notation:

g: g-cost

h: h-cost

Red shape-outlined: open nodes

No outline: closed nodes



A* search: Expands the nodes in the order of quality: f=g+h

$$g(U) = Score(U)$$

h(U) = estimated distance to goal

Notation:

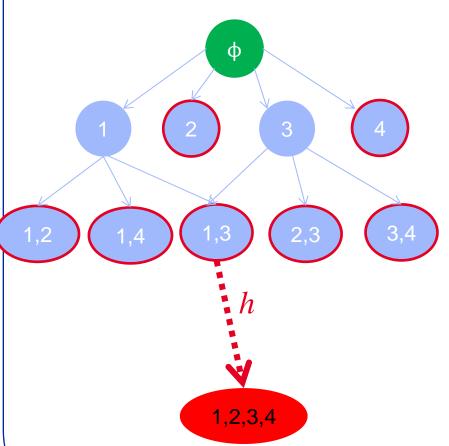
g: g-cost

h: h-cost

Red shape-outlined: open nodes

No outline: closed nodes

Simple heuristic

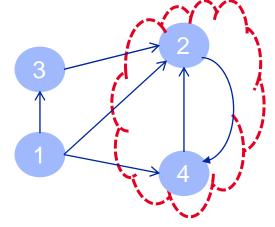


A* search: Expands nodes in order of quality: f=g+h

$$g(U) = Score(U)$$

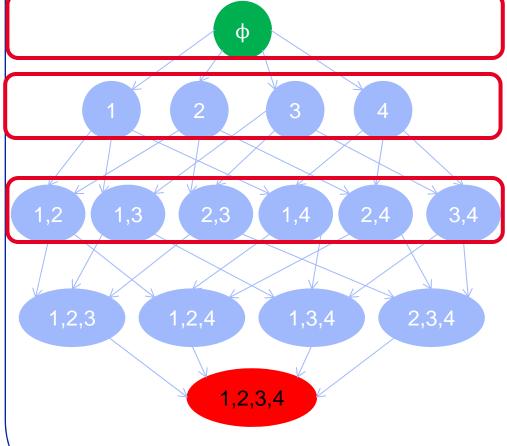
$$h(U) = \sum_{X \in V \setminus U} BestScore(X, V \setminus \{X\})$$

 $h({1,3}):$



Properties of the simple heuristic

- Theorem: The simple heuristic function h is admissible
 - Optimistic estimation: never overestimate the true distance
 - Guarantees the optimality of A*
- Theorem: h is also consistent
 - Satisfies triangular inequality, yielding a monotonic heuristic
 - Consistency => admissibility
 - Guarantees the optimality of g cost of any node to be expanded



Breadth-first branch and bound search (BFBnB):

• Motivation:

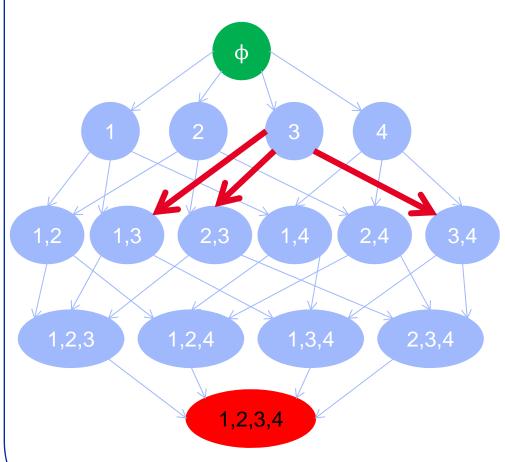
Exponential-size order&parent graphs

Observation:

Natural layered structure

• Solution:

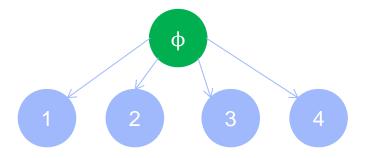
Search one layer at a time

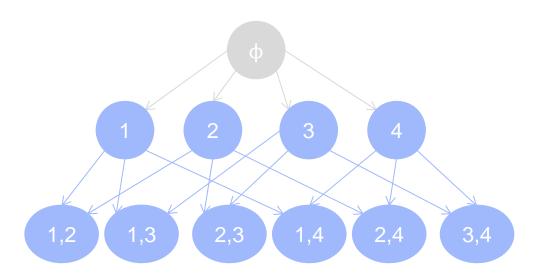


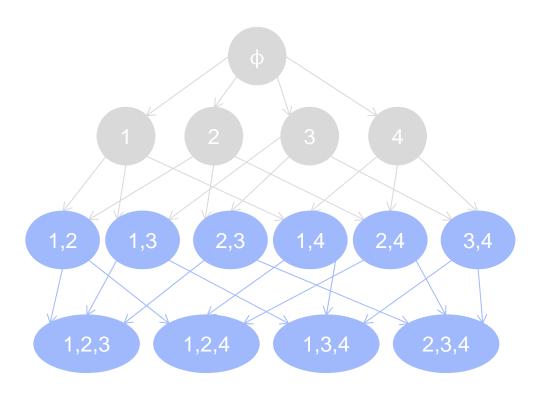
Breadth-first branch and bound search (BFBnB):

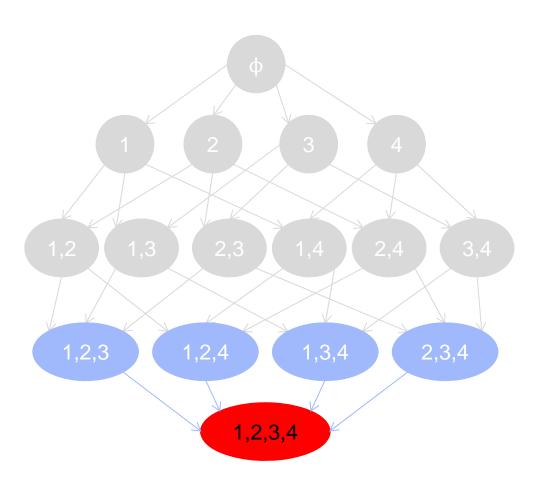
- Motivation:
 Exponential-size order&parent graphs
- Observation:Natural layered structure
- Solution:

 Search one layer at a time



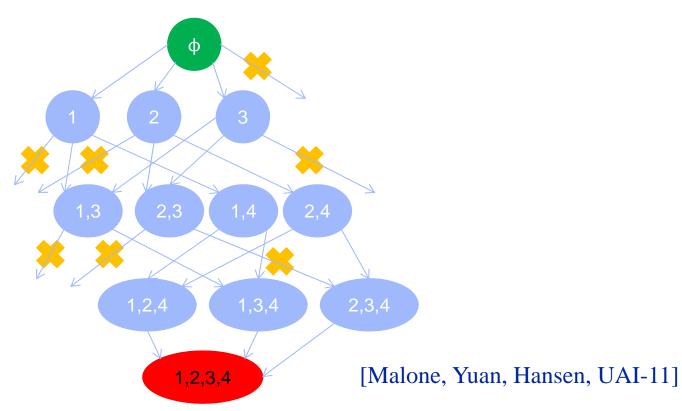




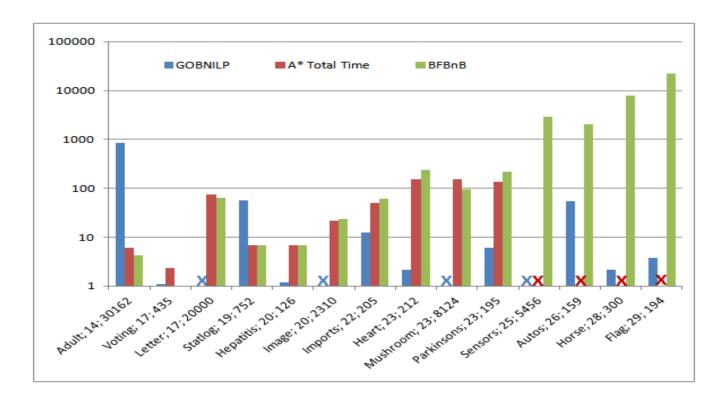


Pruning in BFBnB

- For pruning, estimate an upper bound solution before search
 - Can be done using anytime window A*
- Prune a node when f-cost > upper bound



Performance of A* and BFBnB

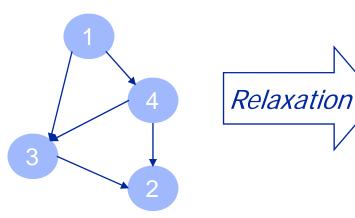


A comparison of the total time (in seconds) for GOBNILP, A*, and BFBnB. An "X" means that the corresponding algorithm did not finish within the time limit (7,200 seconds) or ran out of memory in the case of A*.

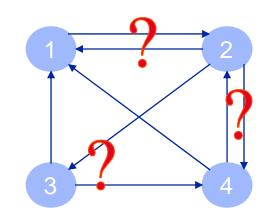
Drawback of simple heuristic

- Let each variable to choose optimal parents from all the other variables
- Completely relaxes the acyclic constraint

Bayesian network

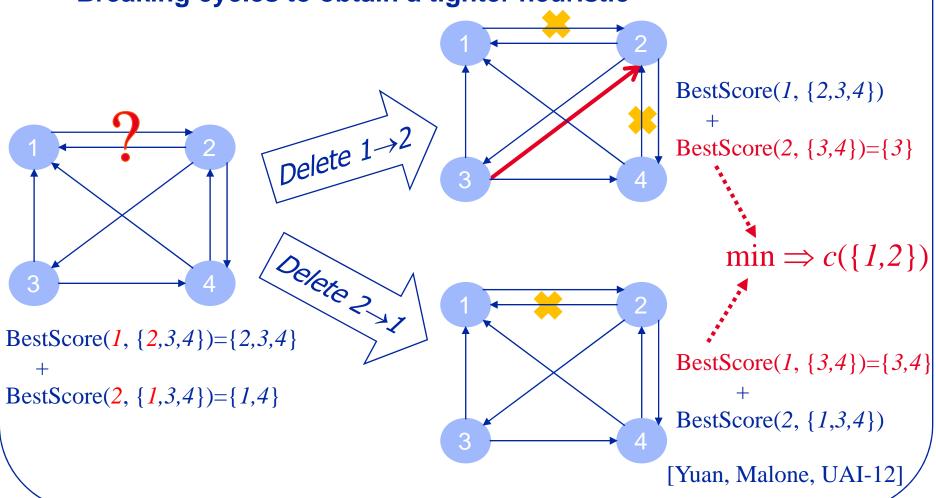


Heuristic estimation



Potential solution

Breaking cycles to obtain a tighter heuristic

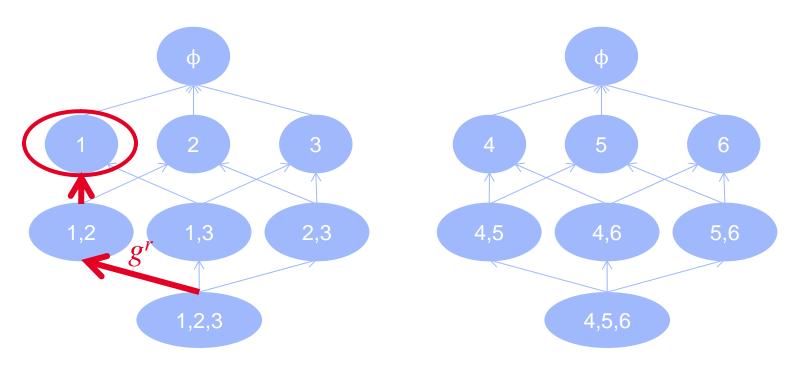


34/56

Static k-cycle conflict heuristic

- Also called static pattern database
- Calculate joint costs for all subsets of non-overlapping static groups by enforcing acyclicity within a group:

$$\{1,2,3,4,5,6\} \Rightarrow \{1,2,3\}, \{4,5,6\}$$

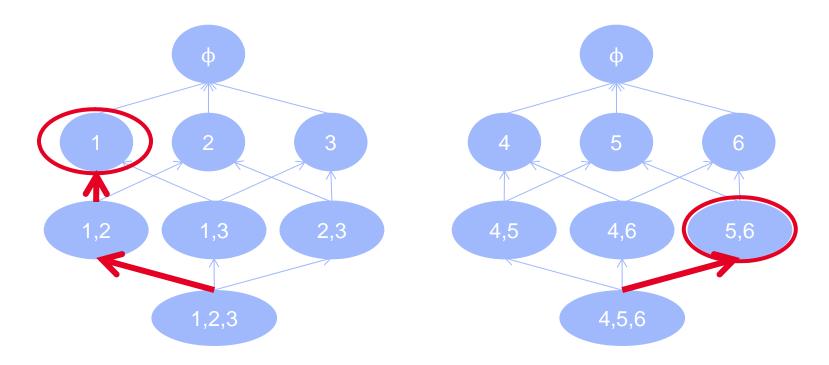


$$h(\{1\}) = g^r(\{1\})$$

[Yuan, Malone, UAI-12]

Computing heuristic value using static PD

Sum costs of pattern databases according to static grouping



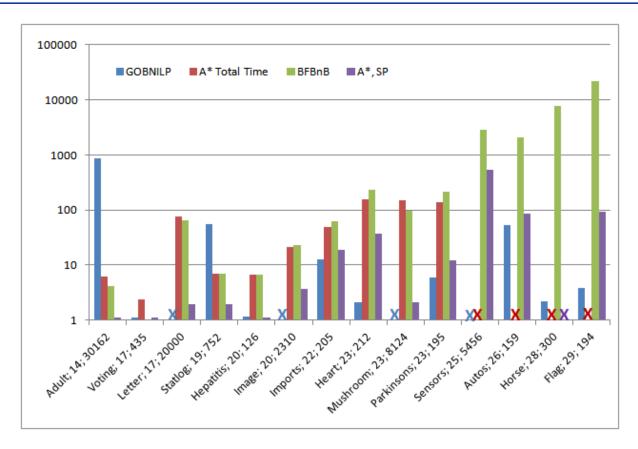
$$h({1,5,6}) = h({1})+h({5,6})$$

[Yuan, Malone, UAI-12]

Properties of static *k*-cycle conflict heuristic

- Theorem: The static k-cycle conflict heuristic is admissible
- Theorem: The static *k*-cycle conflict heuristic is consistent

Enhancing A* with static k-cycle conflict heuristic



A comparison of the search time (in seconds) for GOBNILP, A*, BFBnB, and A* with pattern database heuristic. An "X" means that the corresponding algorithm did not finish within the time limit (7,200 seconds) or ran out of memory in the case of A*.

Learning decomposition

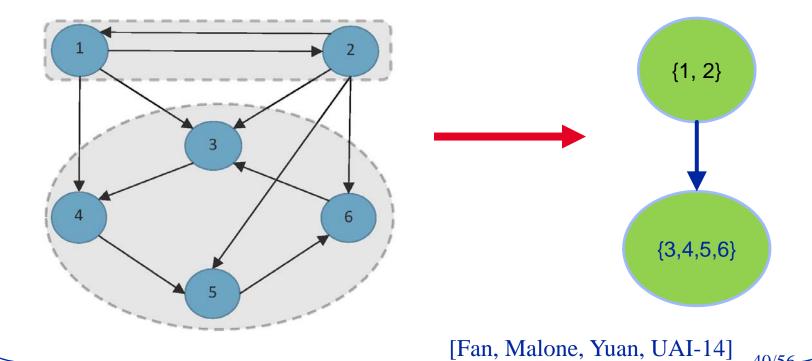
- Potentially Optimal Parent Sets (POPS)
 - Contain all parent-child relations

variable			POPS			
X_1	$\{X_2\}$	{}				
X_2	$\{X_1\}$	{}				
X_3	$\{X_1,X_2\}$	$\{X_2, X_6\}$	$\{X_1, X_6\}$	$\{X_2\}$	$\{X_6\}$	{}
X_4	$\{X_1, X_3\}$	$\{X_1\}$	$\{X_3\}$	{}		
X_5	$\{X_4\}$	$\{X_2\}$	{}			
X_6	$\{X_2,X_5\}$	$\{X_2\}$	{}			

- Observation: Not all variables can possibly be ancestors of the others.
 - E.g., any variables in $\{X_3, X_4, X_5, X_6\}$ can not be ancestor of X_1 or X_2

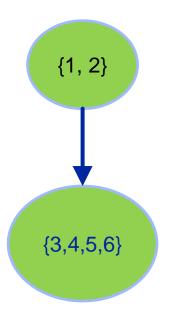
POPS Constraints

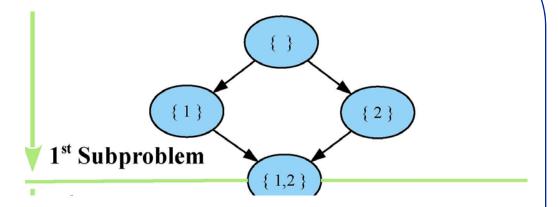
- Parent Relation Graph
 - Aggregate all the *parent-child* relations in POPS Table
- Component Graph
 - Strongly Connected Components (SCCs)
 - Provide ancestral constraints



POPS Constraints

- Decompose the problem
 - Each SCC corresponds to a smaller subproblem
 - Each subproblem can be solved independently.

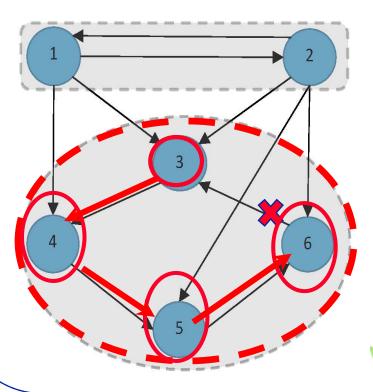


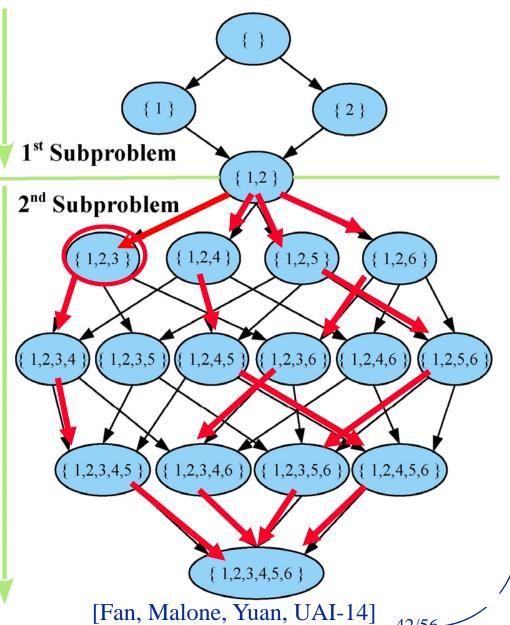


POPS Constraints

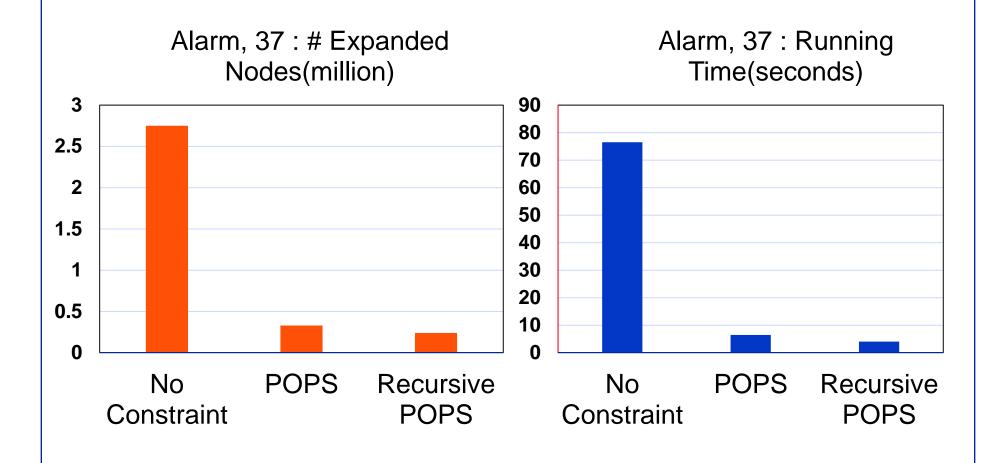
Recursive POPS Constraints

 Selecting the parents for one of the variables has the effect of removing that variable from the parent relation graph.

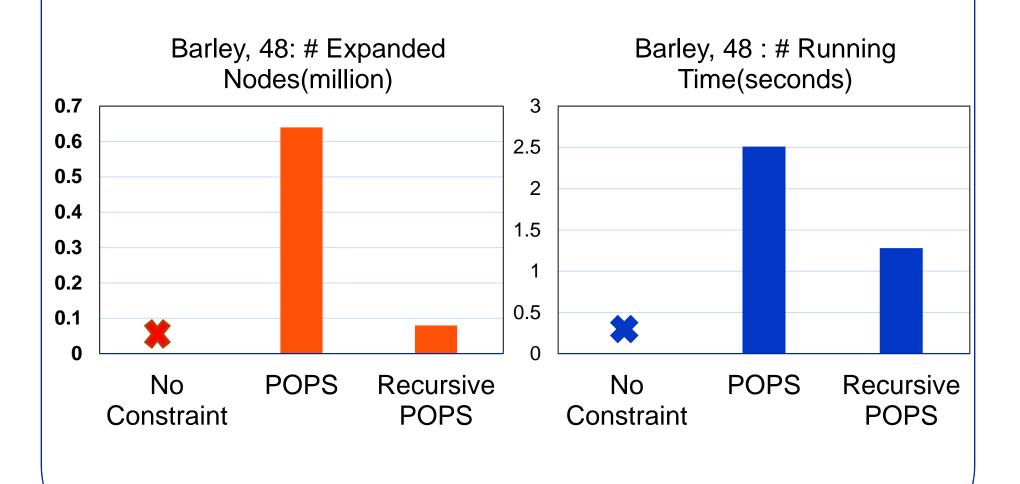




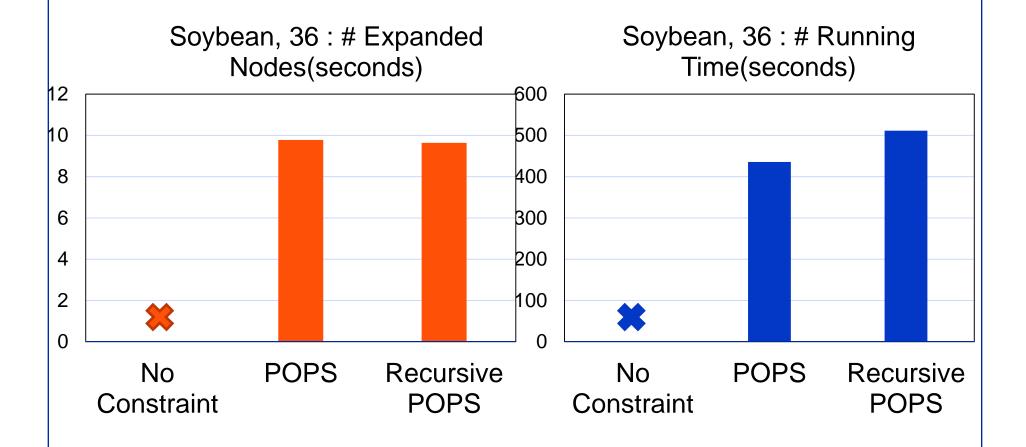
Evaluating POPS and recursive POPS constraints



Evaluating POPS and recursive POPS constraints



Evaluating POPS and recursive POPS constraints



Grouping in static k-cycle conflict heuristic

- Tightness of the heuristic highly depends on the grouping
- Characteristics of a good grouping
 - Reduce directed cycles between groups
 - Enforce as much acyclicity as possible

Existing grouping methods

- Create an undirected graph as skeleton
 - Parent grouping: connecting each variable to potentials parents in the best POPS
 - Family grouping: use Min-Max Parent Child (MMPC) [Tsarmardinos et al. 06]
- Use independence tests in MMPC to estimate edge weights
- Partition the skeleton into balanced subgraphs
 - by minimizing the total weights of the edges between the subgraphs

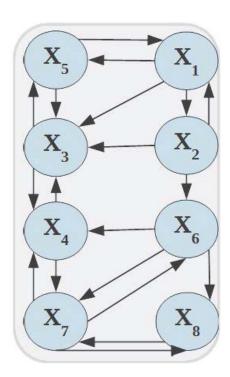
Advanced grouping

• The potentially optimal parent sets (POPS) capture all possible relations between variables

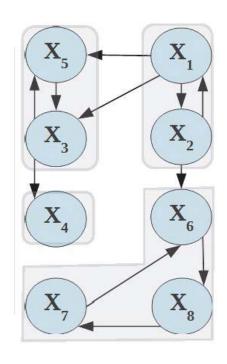
var.	POPS						
X_1	$\{X_2\}$	$\{X_5\}$					
X_2	$\{X_1\}$	THE ANGLOWS MADERIA TO	7509 4000000A ABOONEA bee	SACRAGOODEA Sec			
X_3	$\{X_1, X_5\}$	$\{X_1, X_2\}$	$\{X_2, X_4\}$	$\{X_1\}$			
X_4	$\{X_3\}$	$\{X_6\}$	$\{X_7\}$				
X_5	$\{X_1, X_3\}$	$\{X_3\}$					
X_6	$\{X_2, X_7\}$	$\{X_7\}$					
X_7	$\{X_8\}$	$\{X_6, X_4\}$					
X_8	$\{X_6\}$	$\{X_7\}$					

 Observation: Directed cycles in the heuristic originate from the POPS

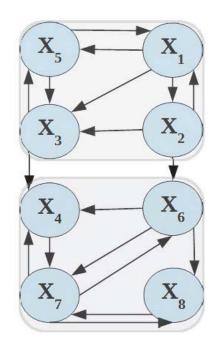
Parent relation graphs from all POPS



Parent relation graph from top-K POPS



$$K = 1$$

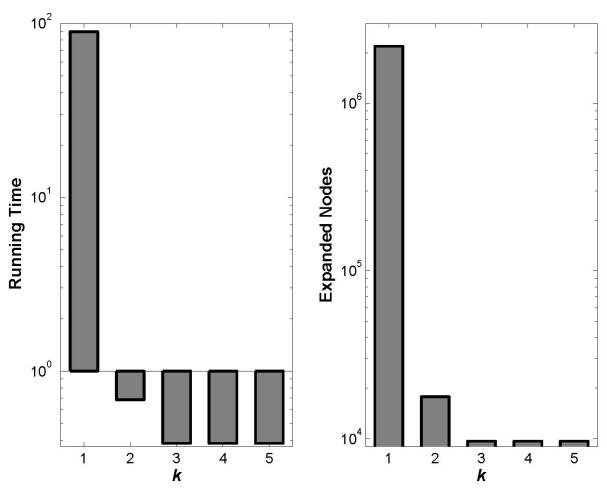


$$K = 2$$

Component grouping

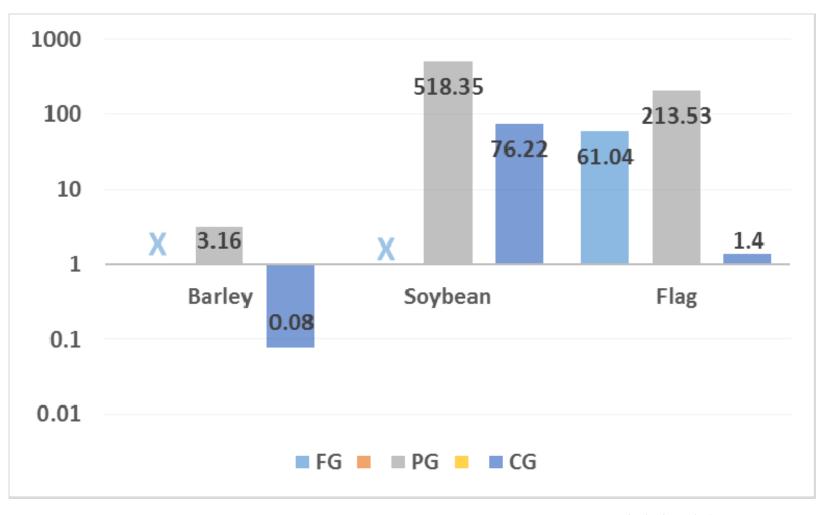
- γ: the size of the largest pattern database that can be created
- Use parent grouping if the largest SCC in top-1 graph is already larger than $\boldsymbol{\gamma}$
- Otherwise, use component grouping
 - For K = 1 to $max_i |POPS|_i$
 - » Use top-K POPS of each variable to create a parent relation graph
 - » If the graph has only one SCC or a too large SCC, return
 - » Divide the SCCs into two or more groups by using a Prim-like algorithm
 - Return feasible grouping of largest K

Parameter K



The running time and number of expanded nodes needed by A* to solve *Soybeans* with different K.

Comparing grouping methods



Summary

- Formulation:
 - learning optimal Bayesian networks as a shortest path problem
 - Standard heuristic search algorithms applicable, e.g., A*, BFBnB
 - Design of upper/lower bounds critical for performance
- Extra information extracted from data enables
 - Creating ancestral graphs for decomposing the learning problem
 - Creating better grouping for the static k-cycle conflict heuristic
- Take home message: Methodology and data work better as a team!
- Open source software available from
 - http://urlearning.org

Acknowledgements

- NSF CAREER grant, IIS-0953723
- NSF IIS grant, IIS-1219114
- PSC-CUNY Enhancement Award
- The Academy of Finland (COIN, 251170)

References

- Xiannian Fan, Changhe Yuan. An Improved Lower Bound for Bayesian Network Structure Learning. In Proceedings of the 29th AAAI Conference (AAAI-15). Austin, Texas. 2015.
- Xiannian Fan, Brandon Malone, Changhe Yuan. Finding Optimal Bayesian Networks Using Constraints Learned from Data. In Proceedings of the 30th Annual Conference on Uncertainty in Artificial Intelligence (UAI-14). Quebec City, Quebec. 2014.
- Xiannian Fan, Changhe Yuan, Brandon Malone. Tightening Bounds for Bayesian Network Structure Learning. In Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI-14). Quebec City, Quebec. 2014.
- Changhe Yuan, Brandon Malone. Learning Optimal Bayesian Networks: A Shortest Path Perspective. Journal of Artificial Intelligence Research (JAIR). 2013.
- Brandon Malone, Changhe Yuan. Evaluating Anytime Algorithms for Learning Optimal Bayesian Networks. In Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence (UAI-13). Seattle, Washington. 2013.
- Brandon Malone, Changhe Yuan. A Depth-first Branch and Bound Algorithm for Learning Optimal Bayesian Networks. IJCAI-13 Workshop on Graph Structures for Knowledge Representation and Reasoning (GKR'13). Beijing, China. 2013.
- Changhe Yuan, Brandon Maone. An Improved Admissible Heuristic for Learning Optimal Bayesian Networks. In Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence (UAI-12). Catalina Island, CA. 2012.
- Brandon Malone. Learning optimal Bayesian networks with heuristic search. PhD Dissertation. Department of Computer Science and Engineering, Mississippi State University. July, 2012.
- Brandon Malone, Changhe Yuan. A Parallel, Anytime, Bounded Error Algorithm for Exact Bayesian Network Structure Learning. In Proceedings of the Sixth European Workshop on Probabilistic Graphical Models (PGM-12). Granada, Spain. 2012.
- Changhe Yuan, Brandon Malone and Xiaojian Wu. Learning Optimal Bayesian Networks Using A* Search. 22nd International Joint Conference on Artificial Intelligence (IJCAI-11). Barcelona, Catalonia, Spain, July 2011.
- Brandon Malone, Changhe Yuan, Eric Hansen and Susan Bridges. Memory-Efficient Dynamic Programming for Learning Optimal Bayesian Networks, 25th AAAI Conference on Artificial Intelligence (AAAI-11). San Francisco, CA. August 2011.
- Brandon Malone, Changhe Yuan, Eric Hansen and Susan Bridges. Improving the Scalability of Optimal Bayesian Network Learning with Frontier Breadth-First Branch and Bound Search, 27th Conference on Uncertainty in Artificial Intelligence (UAI-11). Barcelona, Catalonia, Spain, July 2011.