
A Finite Population Likelihood Ratio Test of the Sharp Null Hypothesis for
Compliers

Wen Wei Loh
Department of Statistics

University of Washington
wloh@u.washington.edu

Thomas S. Richardson
Department of Statistics

University of Washington
thomasr@u.washington.edu

Abstract

In a randomized experiment with noncompli-
ance, scientific interest is often in testing whether
the treatment exposure X has an effect on the fi-
nal outcome Y . We propose a finite-population
significance test of the sharp null hypothesis that
X has no effect on Y , within the principal stra-
tum of Compliers, using a generalized likelihood
ratio test. We present a new algorithm that solves
the corresponding integer programs.

1 INTRODUCTION

Randomized experiments are often employed in order to
determine whether a treatment X has a causal effect on an
outcome Y . For example, individuals may be randomly
assigned to either an active treatment group (X = 1) or to
the placebo or control group (X=0).

This problem may be formulated in terms of potential out-
comes. Denote Y (x = 1) as the outcome that the pa-
tient would have if assigned to the treatment arm, while
Y (x = 0) is the outcome that would arise under placebo.
The absence of an effect of X on Y when the sharp causal
null holds is formalized by Y (x = 1) = Y (x = 0), such
that every individual in the finite population has the same
outcome regardless of the treatment groupX to which they
were assigned [19].

Randomization of treatment implies that X ⊥⊥ {Y (x =
1), Y (x = 0)}. Under the sharp causal null, this then im-
plies X ⊥⊥ Y . Hence testing this latter independence may
thus be seen as a test of the sharp causal null. For the case
of binary outcomes Y , we may use Fisher’s exact test [5],
see for example [16, pg. 308].

A key feature of the potential outcome framework is that
the set of individuals in the population and the values of
their potential outcomes are regarded as fixed. Differences
between results over hypothetical replications arise only

due to different random assignments of this fixed set of in-
dividuals to treatment or control.

However, often we are interested in the effect of a treatment
X that was not randomized. In this paper we consider the
circumstance where, although X is not randomized, there
is another variableZ, called an ‘instrument’ that is random-
ized, and influences X , but does not influence Y directly;
see Figure 1.
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Figure 1: Graphical Representation of the Instrumental
Variable Model, where H are unobserved confounding
variables.

A common example of this circumstance is a randomized
study with ‘noncompliance’. In this context Z represents
the assigned treatment, while X is the treatment that the
patient actually receives. X and Z may differ owing to
noncompliance.

Randomized experiments with treatment ‘noncompliance’
arise in many situations. For example, in a randomized psy-
chology experiment, whether or not participants adhere to
their assigned treatment depends on their personalities and
the type of manipulation (treatment). Patients in a random-
ized clinical trial may choose not to take their prescribed
treatment, possibly due to side-effects. In studies where a
randomly selected subset of subjects are offered an incen-
tive to avail themselves of a treatment, or ‘encouragement’
studies, the inducement may be sufficient for some but not
for others.

For each of these randomized experiments, every unit now
has a treatment actually received (X) that was not random-
ized, following an assigned treatment (Z) that was random-
ized. We will make the assumption that Z has no (direct)
effect on Y except through X , sometimes termed an ‘ex-
clusion restriction’.
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In such studies with noncompliance with a binary treat-
ment, Angrist et al. [1] and Imbens and Rubin [8] among
others, propose to find the effect of treatment on the sub-
set of individuals who would conform with the assigned
treatment regardless of the arm to which they are assigned.
Sommer and Zeger [18] describe this subgroup of individ-
uals as ‘Compliers’: individuals who would take the treat-
ment only if assigned to do so and would not if assigned
not to do so. Balke and Pearl [2] used a symbolic linear
program to derive the bounds for counterfactual probabili-
ties, and the average causal effect of X on Y . Rubin [17]
uses randomization-based posterior-predictive p-values to
test a null treatment effect; Imbens and Rosenbaum [7] use
randomization-based inference to obtain valid confidence
intervals for the treatment effect under an additive struc-
tural model even when the instrument is ‘weak’.

In this paper we address the problem of testing the sharp
null hypothesis of no effect of X on Y for ‘Compliers’, the
subpopulation or principal stratum where X(z=0)=0 and
X(z = 1) = 1, where here X(z) indicates the treatment a
patient would receive if (counter to fact) assigned to Z=z.
Under the exclusion restriction, the null hypothesis within
this sub-population that X has no effect on Y is equivalent
to the null hypothesis that Z has no effect of Y . Under
random assignment for the whole population, each individ-
ual in the Complier subpopulation has the same probabil-
ity of being assigned to treatment. Thus we could use the
randomization distribution of the outcomes for Compliers
under the null hypothesis to carry out a significance test.

However, we face the obvious difficulty that membership
in the Complier subpopulation generally cannot be deter-
mined from the observed data alone. Although we know
that Compliers will have Z=X , this condition is necessary
but not sufficient. For example, in the Z = 1 arm individ-
uals with X = 1 may be either Compliers or ‘Always Tak-
ers’, where the latter subgroup are individuals who would
always take the active treatment even if (counter to fact)
they had been assigned to the placebo group (Z=0). Con-
versely, an individual withZ=X=0 may be either a Com-
plier or someone who refuses to take treatment regardless
of their assigned group, in other words a ‘Never Taker’.

If somehow we were told which individuals in the popula-
tion were Compliers, then we could simply test the sharp
null hypothesis by performing a significance test, such as
Fisher’s exact test, on the (X,Y ) sub-table, or equivalently
the (Z, Y ) subtable, for Compliers. One may circumvent
the problem of not knowing who the Compliers are by just
considering all logically possible values for the number of
Compliers in any given (Z,X, Y ) stratum that may contain
them (in which Z =X), and then carrying out the signif-
icance test for the corresponding (X,Y ) subtable for the
Compliers. Taking the maximum over all the resulting p-
values would then give a valid p-value for the null hypoth-
esis.

There are, however, two concerns with such an approach.
The first is that such a procedure will have no or very low
statistical power to reject the null hypothesis, since it is log-
ically possible (though extremely unlikely) that there are
no Compliers in a given stratum (in which Z = X). The
second is that such an approach ignores the information
provided by strata that do not contain Compliers, in which
Z 6=X .

We will assume that there are no patients who consistently
do the opposite of their assignment, sometimes called ‘De-
fiers’ [3], so for all individuals:

X(z=0) ≤ X(z=1). (1)

It follows from this assumption that all individuals in the
(Z = 1, X = 0) stratum are Never Takers. Under random
assignment of treatment (Z), the proportion of Never Tak-
ers in the Z = 1 arm should be approximately the same as
in the Z = 0 arm. This information then reduces the range
of probable values (under the randomization distribution)
for the number of Compliers in the (Z=X=0) stratum.

Loh and Richardson [10], following [11], use a pre-
specified significance level γ to construct a confidence set
of values for the number of Compliers in a given (Z,X)
stratum. Only values of the number of Compliers that do
not indicate large imbalance between the Z = 1 and Z = 0
arms, under the randomization distribution, are used to
carry out Fisher’s exact test in the implied (X,Y ) table for
Compliers. Taking the maximum over these p-values and
adding γ then provides a valid but conservative p-value.

However, the procedure in [10] requires a pre-determined
(non-zero) value of γ to eliminate ‘unlikely’ values for the
number of Compliers from consideration when controlling
the Type I error rate in a hypothesis test. The resulting p-
value will hence always be greater than or equal to γ. This
is problematic if, as in a significance test, we wish to in-
terpret the p-value as measuring the strength of evidence
against the null hypothesis.

In this paper we consider an alternative approach whereby
we compare the ratio of the largest probability for the ob-
served data assuming that the sharp null hypothesis holds
among Compliers, with the largest probability in the case
where we allow a causal effect among Compliers. Such a
generalized likelihood ratio (GLR) criterion (see for exam-
ple [15]) lets us evaluate whether the alternative hypothesis
is a significantly better explanation for the observed dataset
than the null hypothesis, even when the number of Compli-
ers is unknown.

For a given number of Compliers, the relative frequency
with which, over hypothetical replications under the null
hypothesis, we would obtain a value of the GLR that is as
small or smaller than that which we observed, would then
be a p-value. Since this relative frequency will depend on
the number of Compliers, we maximize the p-value over



the number of Compliers. This results in a valid p-value
that is suitable to be used in a significance test since it can
be arbitrarily close to zero (it does not require specifica-
tion of some γ). Furthermore, the resulting test has power
against some alternatives in which there is a non-zero aver-
age causal effect among Compliers.

The remainder of the paper is organized as follows. Section
2 formalizes the potential outcome framework and sets up
the motivating examples. The steps to find the maximum
likelihood when the null hypothesis holds, and in general,
are detailed in Section 3. Section 4 presents the generalized
likelihood ratio (GLR) and describes how to find a valid
frequentist p-value. The results from applying the proce-
dure to the motivating examples are shown in Section 5.
Finally, in Section 6 we briefly describe the extension to
include Always Takers.

2 POTENTIAL OUTCOME
FRAMEWORK

We now formalize the foregoing development. Recall the
following:

• Z is the randomized treatment assignment, where 1 in-
dicates assignment to drug;

• X is the treatment exposure subsequent to assignment,
where 1 indicates drug received;

• Y is the final response, where 1 indicates a desirable out-
come, such as survival.

The potential outcome Xzi is the treatment X a patient
would be exposed to if assigned z = i. Using these po-
tential outcomes we may define four generic compliance
‘types’ tX listed in Table 1. We denote the set of such
types by DX .

The potential outcomes are linked to the observed out-
comes by the consistency axiom [14], which requires that
Z = z implies X = Xz .

Table 1: Compliance Types (tX) based on Potential Out-
comes Xz , [8].

Xz0 Xz1 Compliance Type tX
0 0 NT Never Taker
1 0 DE Defier
0 1 CO Complier
1 1 AT Always Taker

As stated above in (1) we will assume that there are no
Defiers. We will also focus on the case where there are no
Always Takers, so:

Z = 0 ⇒ X = 0. (2)

This assumption will hold in studies where individuals not
assigned to treatment are unable to obtain the active treat-

ment outside of the trial.

2.1 EXCLUSION RESTRICTION

The potential outcome for a given individual Yxjzi is the
subject’s response Y under exposure to treatment x = j,
and treatment assignment z = i. Without further assump-
tions there are 16 = 22

2

possible sets of values for the
variables (Yx0z0 , Yx1z0 , Yx0z1 , Yx1z1). However, we will
assume that there is no (individual-level) direct effect of
Z on Y relative X , so that for j, i, i′ ∈ {0, 1}, we have:

Yxjzi = Yxjzi′ ≡ Yxj . (3)

Assumption (3) is guaranteed to hold under double-blind
placebo-controlled trials in which the active treatment is
without side-effects and unavailable to patients in the con-
trol arm. The response type tY then simplifies to just four
types, with DY as the set of such types, shown in Table 2.

The potential outcomes for Y are again linked to the ob-
served outcomes via the consistency axiom, so that if X =
x then Y = Yx.

Table 2: Response Types (tY ) under Exclusion Restriction
(3), [6].

Yx0· Yx1· Response Type tY
0 0 NR Never Recover
1 0 HU Hurt
0 1 HE Helped
1 1 AR Always Recover

2.2 RANDOMIZATION ASSUMPTION

We make the following assumption:

Z ⊥⊥ {Xz0 , Xz1 , Yx0
, Yx1
} (4)

The assumption states that the distribution of compliance
and response types (tX , tY ) is the same in both the z = 1
and z=0 arms; in other words, that Z is (jointly) indepen-
dent of the potential outcomes. This will hold whenever
treatment assignment Z is physically randomized.

2.3 THE INSTRUMENTAL VARIABLE (IV)
MODEL

The model defined by (3) and (4) is known as the In-
strumental Variable (IV) model (see for example [1]). A
graph corresponding to the IV model given by (3) and (4)
is shown in Figure 1. The exclusion restriction (3) corre-
sponds to the absence of a Z → Y edge while the random-
ization assumption (4) is indicated by the absence of edges
directed into Z.



2.4 AVERAGE CAUSAL EFFECT OF X ON Y

The average causal effect (ACE) of treatment exposure X
on outcome Y is defined as:

ACE(X→Y ) ≡ E[Yx1−Yx0 ]. (5)

The ACE for the sub-population of Compliers is:

ACECO(X→Y ) ≡ E[Yx1−Yx0 | tX = CO]. (6)

Since for CompliersXz=z, it follows that YX=z ≡ YXz =
Yz so that

ACECO(X→Y )= ITTCO ≡ E[Yz1−Yz0 | tX=CO], (7)

or in words, the Average Causal Effect ofX on Y for Com-
pliers is equal to the Intent-to-Treat effect of Z on Y for
Compliers (ITTCO).

Under the assumption (1) that there are no Defiers, the
global null hypothesis ACE(X → Y ) = 0 holds if and
only if all the principal stratum-specific null hypotheses
ACEtX (X → Y ) = 0 for tX ∈ {NT,CO,AT} jointly
hold. Evidence against the (narrower) null hypothesis that
ACECO(X → Y ) = 0 hence implies evidence against the
global null hypothesis ACE(X→Y )=0 as well.

By definition Never Takers and Always Takers always have
the same observed values of X=0 and X=1 respectively
(regardless of the Z arm they are assigned to). Conse-
quently without further experimentation (to change compli-
ance for these individuals), there is no test for the average
causal effect of X on Y in either of these principal strata.
Thus assuming (1) the only sub-population for which we
may observe evidence that ACEtX (X → Y ) 6= 0 are the
Compliers (CO).1

Furthermore, with the added assumption that there are no
Always Takers, the ‘treated’ sub-population are simply the
Compliers, such that the test of ACECO(X→Y )=0 is the
same test for the effect of treatment on the treated, E[Yx1

−
Yx0 |X=1]=0.

2.5 MOTIVATING EXAMPLES

We consider two examples of randomized experiments with
noncompliance. The first dataset is from a psychology ex-
periment where individuals were randomly assigned to one
of two groups (Table 3). The treatment group was offered
a small cup of pop soda (Z = 1), while the placebo group
was offered a small cup of water (Z=0). Compliance was
whether the individual consumed the offered soda (X=1)
or not (X = 0). Individuals who were not offered soda in
the control group (Z=0) had no access to soda, as this was
a closed study. There are thus two structural zeros, since

1This is why, even though our procedure is a test of the global
null, we describe it as a test of the sharp null for Compliers.

Z = 0 implies X = 0. The response was a binary variable
of whether the subject disposed of the cup after the session
(Y = 1) or left the cup on the table (Y = 0). If we were to
test the null hypothesis of Z ⊥⊥ Y with Fisher’s Exact Test
for the corresponding 2×2 table, we would get a p-value
of 0.0085. However, if we disregarded the 30 individuals
in the (Z = 1, X = 0) stratum and just tested Z ⊥⊥ Y
among the (Z = X) stratum, we would get a p-value of
0.0546. Finally, Fisher’s Exact Test for the null hypothesis
that X ⊥⊥ Y gives a p-value of 0.2157.

Table 3: Psychology Data

z x y count z x y count
0 0 0 53 1 0 0 13
0 0 1 23 1 0 1 17
0 1 0 0 1 1 0 24
0 1 1 0 1 1 1 23

The second dataset is from a double-blind placebo-
controlled randomized trial of Cholestyramine [4]. Sub-
jects were randomly assigned to one of two arms: sub-
jects in the treatment arm were prescribed Cholestyramine
(Z = 1), and those in the other arm were given a placebo
(Z = 0). Compliance was a continuous measure track-
ing the quantity of prescribed dosage consumed, over sev-
eral years of treatment during the trial. The response was
the average post-treatment cholesterol level, and also a
continuous variable. Both continuous measures were di-
chotomized in [13], and the resulting counts are shown in
Table 4. There are also two structural zeros in this dataset,
since subjects who are not assigned treatment in the con-
trol arm (Z = 0) could not obtain the experimental drug
Cholestyramine.

Table 4: Cholestyramine/Lipid Data

z x y count z x y count
0 0 0 158 1 0 0 52
0 0 1 14 1 0 1 12
0 1 0 0 1 1 0 23
0 1 1 0 1 1 1 78

For both studies in terms of the compliance types, there
are no Defiers and no Always Takers, and both (1) and (2)
hold. Furthermore, since both studies were double-blind
randomized control trials, it may be safely assumed that
Z has no effect on Y other than through X , so that the
exclusion restriction (3) holds. Thus in this case, there
are four response types tY , but only two compliance types
tX , which gives us eight combinations for (tX , tY ) ∈
{NT,CO}×{HE,HU,AR,NR}. We will consider this
simpler case during our main development, though the ap-
proach extends to the more general case in which there are
also Always Takers.



3 MAXIMIZING THE LIKELIHOOD
UNDER RANDOMIZATION

We first introduce the notation. Let nykxjzi be the observ-
able count of the number of individuals in the finite popu-
lation who are assigned to treatment z = i, with exposure
x = j and outcome y = k. We denote marginal tables
similarly, for example nyk and nzi .

Let ntXtY ,zi be the number of individuals in the finite pop-
ulation of compliance type tX and response type tY , who
are assigned to treatment z = i. Similarly, let ntXykzi be
the number of individuals of compliance type tX who are
observed to have outcome y = k in the z = i arm, and
ntXyk ≡n

tX
ykz0

+ ntXykz1 be the total number of individuals in
the finite population of compliance type tX with observed
outcome y = k. It should be noted that the counts ntXtY ,zi ,
ntXykzi and ntXyk are not all point-identified since they may
not be directly observable from the data.

Our interest lies in testing the individual level (or ‘sharp’)
causal null hypothesis that there is no effect of X on Y
amongst Compliers:

H0 : Yx0
= Yx1

. (8)

Under the sharp null hypothesis (8), within the Complier
sub-population, each individual would have the same ob-
served outcome Y regardless of whether they took the treat-
ment (X=Z=1) or did not do so (X=Z=0). Note that
if the individual level causal null hypothesis (8) holds, then
there is a zero average causal effect of X on Y for the sub-
population of Compliers (CO) and ACECO(X → Y ) = 0.

Thus under the null (8), the number of Compliers with ob-
served responses y = 0 and y = 1 are just the number of
Compliers of types Never Recover (NR) and Always Re-
cover (AR) respectively:

nCOy0 =
H0

nCONR≡nCONR,z0 + nCONR,z1 ,

nCOy1 =
H0

nCOAR≡nCOAR,z0 + nCOAR,z1 .

If the number of Compliers assigned to z=1 vs. z=0 were
pre-specified in advance by the experimental design then,
over hypothetical replications, the margins of the 2×2 sub-
table for Compliers containing the four counts nCOtY ,zi for
tY ∈ {NR,AR}, i ∈ {0, 1} would be fixed. The resulting
distribution for one of the cells, for example nCOAR,z1 , would
be a hypergeometric distribution under the null hypothesis.

However, since we have no way to ensure a specific number
of Compliers are assigned to treatment (or control) this may
vary over hypothetical replications, hence none of the four
counts nCOtY ,zi in the subtable for Compliers will follow a
hypergeometric distribution. Further these counts are not
directly observable from the data.

3.1 NUISANCE PARAMETERS

Denote ψNTk as the total number of Never Takers with ob-
served outcome y= k, such that the bivariate parameter ψ
is:

ψ≡
(
ψNT0 ≡nNTy0 , ψNT1 ≡nNTy1

)
.

Figure 2 describes the sum relationships between the ob-
served dataset {nykxjzi} and counts ntXtY ,zi , n

tX
ykzi

and ntXyk
under the null (8).

The counts nCONR,z1 and nCOAR,z1 in the treatment arm (z =
1) are directly observable from the data as ny0x1z1 and
ny1x1z1 respectively. However, the presence of Never
Takers in the finite population prevents us from point-
identifying nCONR,z0 and nCOAR,z0 in the placebo arm (z=0).

The unknown number of Never Takers ψ ≡ (ψNT0 , ψNT1 )
may thus be regarded as ‘nuisance parameters’, since if we
knew these quantities, we could simply determine the un-
observable counts for the Never Takers in the z0 arm:

nNTy0,z0≡ψ
NT
0 − nNTy0,z1 = ψNT0 − ny0x0z1 ,

nNTy1,z0≡ψ
NT
1 − nNTy1,z1 = ψNT1 − ny1x0z1 .

This in turn tells us what the exact values of nCONR,z0 and
nCOAR,z0 are, since nCONR,z0 and nNTy0,z0 add up to the observ-
able quantity ny0x0z0 , and similarly, nCOAR,z0 and nNTy1,z0 add
up to ny1x0z0 .

Since ψNT0 and ψNT1 are bounded by the observable quan-
tities in the data {nykxjzi}, the space of possible values for
the nuisance parameter ψ is the Cartesian product of the
respective one-dimensional ranges for ψ0 and ψ1:

ψNT0 ∈ [ny0x0z1 , ny0x0z1 + ny0x0z0 ] = Ψ0,

ψNT1 ∈ [ny1x0z1 , ny1x0z1 + ny1x0z0 ] = Ψ1,

Ψ = Ψ0 ×Ψ1. (9)

3.2 MAXIMIZING THE HYPERGEOMETRIC
PROBABILITY IN A 2×2 TABLE

Before analyzing the likelihood in our specific problem, we
review the following related result: Suppose an urn con-
tains N balls that are either red or green. N − k balls are
drawn from the urn, of which b balls are red. What is the
most likely number of red balls x remaining in the urn, or
equivalently, the most likely total number of red balls b+x
in the urn initially?

Table 5: 2×2 Table With Unknown Column Totals

Red Green Row
Not drawn x k − x k

Drawn b (N − k)− b N − k
Column b+ x N − (b+ x) N



ny0x0z0 ny0z0 nz0 ny1z0 ny1x0z0

nNTy0z0 nCONR,z0 nCOAR,z0 nNTy1z0

nNTy0 =ψNT0 nCONR nCOAR nNTy1 =ψNT1

nNTy0z1 nCONR,z1 nCOAR,z1 nNTy1z1

ny0x0z1 ny0x1z1 ny0z1 nz1 ny1z1 ny1x1z1 ny1x0z1

Figure 2: Sum Relationships between the Observed
Dataset {nykxjzi} and Possibly Unobserved Counts
ntXtY ,zi , n

tX
ykzi

, ntXyk , Assuming H0 (8); See Table 6.

ny0x0z0 ny0z0 nz0 ny1z0 ny1x0z0

nNTy0z0 nCONR,z0 nCOHE,z0 nCOHU,z0 nCOAR,z0 nNTy1z0

nNTy0 =ψNT0 nCONR nCOHE=τHE nCOHU =τHU nCOAR nNTy1 =ψNT1

nNTy0z1 nCONR,z1 nCOHU,z1 nCOHE,z1 nCOAR,z1 nNTy1z1

ny0x0z1 ny0x1z1 ny0z1 nz1 ny1z1 ny1x1z1 ny1x0z1

Figure 3: Sum Relationships between the Observed
Dataset {nykxjzi} and Possibly Unobserved Counts
ntXtY ,zi , n

tX
ykzi

, ntXyk , Without Assuming H0 (8); See Ta-
ble 7.

We would thus like to maximize the hypergeometric prob-
ability corresponding to Table 5 with respect to x:

Pr(x |(k, b,N)) =

(
b+ x

x

)(
N − (b+ x)

k − x

)
/

(
N

k

)
.

When b = 0, the most likely value of x would just be 0 as
well. So if all N −k balls drawn were green, then the most
likely number of red balls in the urn is 0.

Theorem 1. In a 2×2 table where the row totals (k,N−k)
and the counts in one row (b, (N − k) − b) are fixed, the
most likely value of x ∈ [0, k] under the randomization
assumption is:

x̂=arg max
x∈[0,k]

{
x<(k+1)

b

N−k

}
=

⌊⌊
(k+1)

b

N−k

⌋⌋
,

where the ‘basement’ function bbacc is defined as:

bbacc = max{0, dae − 1}.

Equivalently,

b+ x̂ =


⌊
b N
N−k

⌋
if bN+1

N−k ≤
⌈
b N
N−k

⌉
,⌈

b N
N−k

⌉
otherwise.

The proof for Theorem 1 is given in the supplementary ma-
terial.

3.3 MAXIMUM LIKELIHOOD UNDER THE
NULL

For some given value of the nuisance parameters ψ = u,
the counts ntXtY ,zi , n

tX
ykzi

and ntXyk are all point-identified
from the observed dataset {nykxjzi}. We may hence de-
scribe the exact counts in a 2 × 4 full contingency table
such as Table 6.

When we fix the value ofψ at the value u, the total number
of Never Takers with observed outcomes y = 0 and y = 1
(uNT0 and uNT1 respectively), as well as the total number

of Compliers with observed responses y = 0 and y = 1
(ny0 −uNT0 and ny1 −uNT1 respectively) are fixed in the
population, and would not change under H0 as we vary
over all possible assignments of individuals to z = 0 and
z=1.

Given the fixed column and row totals in Table 6 over re-
peated samplings, the randomization distribution under the
null hypothesis (8) for the subjects assigned to the z = 1
arm is thus the multiple hypergeometric distribution [9,
Chapter 39]:

Pr({nykxjzi} | ψ = u, H0)

=

(
uNT0

ny0x0z1

)(
uNT1

ny1x0z1

)(
ny0−u

NT
0

ny0x1z1

)(
ny1−u

NT
1

ny1x1z1

)(
N
nz0

) (10)

Note that the sharp null hypothesis for Compliers (8) hold-
ing places no restriction on the range of values for the nui-
sance parameter ψ. We shall thus consider the value of the
nuisance parameter that lends the strongest support under
H0 to the observed dataset {nykxjzi}, by finding the maxi-
mum likelihood with respect to ψ:

qH0({nykxjzi}) = max
ψ ∈ Ψ

Pr({nykxjzi} | ψ, H0). (11)

An exhaustive search over the two-dimensional discrete
grid of the parameter space Ψ would require calculating
|Ψ| = (ny0x0z0 + 1) × (ny1x0z0 + 1) different hypergeo-
metric probabilities. 2

Instead, we partition Table 6 into two variation-
independent 2×2 subtables: one for the Never Takers and
Compliers with observed y = 0 outcomes (types (NT, y0)
and (CO,NR) respectively), and another for the Compli-
ers and Never Takers with observed y = 1 outcomes (types
(CO,AR) and (NT, y1) respectively). The joint probabil-
ity (10) then factorizes into the corresponding functions of
ψNT0 and ψNT1 below:

2For example in the Lipid data, the search space would be of
size (158 + 1)× (14 + 1) = 2, 385.



Pr({nykxjzi} | ψ, H0) =

(
ny0

ny0x0z0

)(
ny1

ny1x0z0

)(
N
nz0

)
×g0(ψNT0 |{nykxjzi})×g1(ψNT1 |{nykxjzi}); (12)

g0(ψNT0 |{nykxjzi}) =

(
ψNT0

ny0x0z1

)(
ny0−ψ

NT
0

ny0x1z1

)(
ny0

ny0x0z0

) (13)

g1(ψNT1 |{nykxjzi}) =

(
ψNT1

ny1x0z1

)(
ny1−ψ

NT
1

ny1x1z1

)(
ny1

ny1x0z0

) . (14)

In both subtables, the cell counts in the z = 1 arm are
fixed, while the row totals for the z = 0 arm are ny0x0z0

and ny1x0z0 respectively. We may then apply Theorem 1
directly to each subtable to find the following values of
ψNT0 and ψNT1 that maximise the respective hypergeomet-
ric probabilities (13) and (14).

ψ̂NT0 =


⌊
ny0ny0x0z1
ny0−ny0x0z0

⌋
if (ny0+1)ny0x0z1

ny0−ny0x0z0
≤
⌈
ny0ny0x0z1
ny0−ny0x0z0

⌉
,⌈

ny0ny0x0z1
ny0−ny0x0z0

⌉
otherwise;

ψ̂NT1 =


⌊
ny1ny1x0z1
ny1−ny1x0z0

⌋
if (ny1+1)ny1x0z1

ny1−ny1x0z0
≤
⌈
ny1ny1x0z1
ny1−ny1x0z0

⌉
,⌈

ny1ny1x0z1
ny1−ny1x0z0

⌉
otherwise.

The largest value of the probability of the observed dataset
under the null (11) is then:

qH0({nykxjzi}) = Pr({nykxjzi} | (ψ̂NT0 , ψ̂NT1 ), H0).

3.4 MAXIMUM LIKELIHOOD UNDER THE
ALTERNATIVE

When the null hypothesis does not hold, there may be in-
dividuals in the Complier sub-population whose treatment
exposure X = j has an effect on their observed outcome
Y = k. Compliers with observed responses y = 0 are no
longer limited to being only of response type Never Re-
cover (NR): they may also be of types Helped (in the z=0
arm) or Hurt (in the z= 1 arm). Similarly, Compliers with
observed responses y = 1 may also be one of three re-
sponse types: Always Recover (AR), Helped (in the z= 1
arm) or Hurt (in the z=0 arm).

Denote by τ tYi (ψ) the number of Compliers in the finite
population with response type tY assigned to treatment z=
i, for some fixed value of ψ. For example, τHE0 (ψ) is the
number of Compliers of type Helped in the z=0 arm. The
parameter vector τ (ψ) is then:

τ (ψ)≡
(
τHE0 (ψ)≡nCOHE,z0(ψ), τHU0 (ψ)≡nCOHU,z0(ψ),

τHE1 ≡nCOHE,z1 , τHU1 ≡nCOHU,z1
)
.

The sum relationships between the observed dataset
{nykxjzi} and counts ntXtY ,zi , n

tX
ykzi

and ntXyk may then be
described in Figure 3.

The space of possible values for the parameter τ (ψ) de-
pends on the fixed value of ψ and corresponds to a four-
dimensional discrete grid:

τHE0 (ψ) ∈ [0, ny0x0z0 − (ψNT0 −ny0x0z1)] ≡ THE0 (ψ),

τHU0 (ψ) ∈ [0, ny1x0z0 − (ψNT1 −ny1x0z1)] ≡ THU0 (ψ),

τHE1 ∈ [0, ny1x1z1 ] ≡ THE1 ,

τHU1 ∈ [0, ny0x1z1 ] ≡ THU1 ,

T(ψ) = THE0 (ψ)× THU0 (ψ)× THE1 × THU1 . (15)

For some given value of the nuisance parameters ψ =
u ≡

(
uNT0 , uNT1

)
, and the primary parameters τ (u) =

t(u) ≡
(
tHE0 (u), tHU0 (u), tHE1 , tHU1

)
, the counts ntXtY ,zi ,

ntXykzi and ntXyk are all point-identified from the observed
dataset {nykxjzi}. The exact counts may be summarized in
a 2× 6 full contingency table such as Table 7.

Given the fixed column and row totals in Table 7 over re-
peated samplings, the multiple hypergeometric probability
of the subjects assigned to the z = 1 arm, when we no
longer assume H0 to hold, is:

Pr({nykxjzi} | (ψ, τ (ψ)) = (u, t(u))

=
( uNT0
ny0x0z1

)(
tHE0 (u)+tHE1

tHE1
)(
tHU0 (u)+tHU1

tHU1
)( uNT1
ny1x0z1

)

( N
nz0

)

×
(ny0−tHE0 (u)−tHU1 −u

NT
0

ny0x1z1−t
HU
1

)(ny1−tHU0 (u)−tHE1 −u
NT
1

ny1x1z1−t
HE
1

)
. (16)

The maximum likelihood for the observed data {nykxjzi},
allowing for Compliers who are Helped and Hurt, is then:

qML({nykxjzi})
= max
ψ ∈ Ψ

max
τ (ψ) ∈ T(ψ)

Pr
(
{nykxjzi} | (ψ, τ (ψ))

)
.

Similar to the maximization procedure under the null,
we would like to circumvent an exhaustive search of the
parameter space {Ψ× T(Ψ)} by decomposing the joint
probability (16) into separate objective functions. How-
ever, unlike the full contingency table under H0 in Ta-
ble 6, we cannot simply partition Table 7 into variation-
independent subtables based only on the observed y = 0
and y = 1 outcomes. This is because if there was an effect
of the treatment X on Y , then there is a Complier individ-
ual of type Helped or Hurt who would have had a different
outcome Y had they been assigned to a different level of Z,
and hence received a different exposure level X .

However, when we fix the number of Compliers of types
Helped and Hurt in the z = 1 arm at some value
(τHE1 , τHU1 ) = (tHE1 , tHU1 ), all six counts in the z =
1 arm are now point-identified and fixed. Then Ta-
ble 7 may be partitioned into two variation-independent



Table 6: Full Contingency Table Under H0 with Cell Counts that are Point-Identified Given a Value of ψ = u.

NT, y0 ≡
NT, (NR/HE)

CO,NR CO,AR
NT, y1 ≡

NT, (AR/HU)
Row

z0 uNT0 −ny0x0z1 ny0x0z0−[uNT0 − ny0x0z1 ] ny1x0z0−[uNT1 − ny1x0z1 ] uNT1 − ny1x0z1 nz0

z1 ny0x0z1 ny0x1z1 ny1x1z1 ny1x0z1 nz1

Column uNT0 ny0−uNT0 ny1−uNT1 uNT1 N

Table 7: Full Contingency Table Allowing for Helped and Hurt with Cell Counts that are Point-Identified Given Values of
ψ = u and τ (u) = t(u) ≡

(
tHE0 (u), tHU0 (u), tHE1 , tHU1

)
.

NT, y0 ≡
NT, (NR/HE)

CO,NR CO,HE CO,HU CO,AR
NT, y1 ≡

NT, (AR/HU)
Row

z0 uNT0 −ny0x0z1
ny0x0z0−tHE0 (u)−

[uNT0 −ny0x0z1 ]
tHE0 (u) tHU0 (u)

ny1x0z0−tHU0 (u)−
[uNT1 −ny1x0z1 ]

uNT1 −ny1x0z1 nz0

z1 ny0x0z1 ny0x1z1−tHU1 tHE1 tHU1 ny1x1z1−tHE1 ny1x0z1 nz1

uNT0
ny0−tHE0 (u)−
tHU1 −uNT0

tHE0 (u) +
tHE1

tHU0 (u) +
tHU1

ny1−tHU0 (u)−
tHE1 −uNT1

uNT1 N

2× 3 subtables: one for individuals of types (NT, y0),
(CO,NR) and (CO,HE), and another for individuals of
types (CO,HU), (CO,AR) and (NT, y1).

Given a fixed value of (tHE1 , tHU1 ), the joint probabil-
ity (16) then decomposes into a product of functions of
(ψNT0 , τHE0 ) and (ψNT1 , τHU0 ); see (18) and (19) below.
For the given value of (tHE1 , tHU1 ), the cell counts in the
z=1 arm are fixed in each 2×3 variation-independent sub-
table, while the row totals for the z = 0 arms are ny0x0z0

and ny1x0z0 respectively.

Pr
(
{nykxjzi}

∣∣ψ, τHE0 (ψ), τHU0 (ψ), tHE1 , tHU1

)
=

(ny0+tHE1 −tHU1
ny0x0z0

)(ny1+tHU1 −tHE1
ny1x0z0

)

( N
nz0

)

×h0
(
ψNT0 , τHE0 (ψNT0 )

∣∣ tHE1 , tHU1 , {nykxjzi}
)

×h1
(
ψNT1 , τHU0 (ψNT1 )

∣∣ tHE1 , tHU1 , {nykxjzi}
)

;
(17)

h0
(
ψNT0 , τHE0 (ψNT0 )

∣∣ tHE1 , tHU1 , {nykxjzi}
)

≡

(
ψNT0

ny0x0z1

)(τHE0 (ψNT0 )+tHE1
tHE1

)(ny0−τHE0 (ψNT0 )−tHU1 −ψNT0
ny0x1z1

−tHU1

)
(
ny0

+tHE1 −tHU1
ny0x0z0

) , (18)

h1
(
ψNT1 , τHU0 (ψNT1 )

∣∣ tHE1 , tHU1 , {nykxjzi}
)

≡
( ψNT1
ny1x0z1

)(
τHU0 (ψNT1 )+tHU1

tHU1
)(
ny1−τ

HU
0 (ψNT1 )−tHE1 −ψNT1

ny1x1z1
−tHE1

)

(ny1+tHU1 −tHE1
ny1x0z0

)
.

(19)

Since the 2×3 subtables are now variation-independent, we

may find the values of:(
ψ̂NT0 (tHE1 , tHU1 ), τ̂HE0 (ψ̂NT0 ; tHE1 , tHU1 )

)
,(

ψ̂NT1 (tHE1 , tHU1 ), τ̂HU0 (ψ̂NT1 ; tHE1 , tHU1 )
)

that maximise the respective conditional hypergeometric
probabilities (18) and (19).

For each fixed value of (tHE1 , tHU1 ), a naïve search over
the discrete parameter space in each induced 2× 3 sub-
table would involve maximizing over

(
ny0x0z0+2

2

)
and(

ny1x0z0+2
2

)
hypergeometric probabilities respectively. 3

Instead, we apply the result from [12], which provides an
algorithm to find the most likely values of the cells in the z0
arms of both subtables, without calculating any hypergeo-
metric probabilities. Finally, we need only maximize over
the parameter spaces for τHE1 and τHU1 , where there are
|THE1 | × |THU1 | = (ny1x1z1 + 1)× (ny0x1z1 + 1) possible
combinations for the point-identified counts in the Z = 1
arm. 4

Allowing Compliers who are Helped and Hurt, the maxi-
mum likelihood for the observed dataset {nykxjzi} is then:

qML({nykxjzi}) =

max
(τHE1 , τHU1 )

∈ THE1 × THU1

Pr
(
{nykxjzi}

∣∣∣ ψ̂, τHE0 (ψ̂),

τHU0 (ψ̂), τHE1 , τHU1

)
.

(20)

3For example in the Lipid data, the search spaces would be of
sizes

(
158+2

2

)
= 12,720 and

(
14+2
2

)
= 120 respectively.

4In the Lipid data example, we would need to calculate only
(78 + 1)×(23 + 1)=1896 hypergeometric probabilities.



4 GLR AND P-VALUE

A generalized likelihood ratio (GLR) lets us assess the ev-
idence in the observed data both for and against the null
hypothesis (8) respectively, by comparing the best possible
fit of the observed data when H0 holds, against the best fit
without the constraint of H0. The generalized likelihood
ratio for the observed dataset {nykxjzi} is defined as:

G({nykxjzi}) =
qH0({nykxjzi})
qML({nykxjzi})

. (21)

However, the distribution of the test statistic (21) under H0

depends on the chosen values of the column totals in the
full contingency table (Table 6), which in turn correspond
to some value of the nuisance parameter ψ. Under H0 the
value of ψ = u is sufficient to determine the distribution
of (21) since the margin totals in the full contingency table
(Table 6) are now fixed.

We may then enumerate all possible assignments, and con-
solidate each assignment to obtain the associated possibly
observable dataset {ñykxjzi} based on the sum relation-
ships depicted in Figure 2:

ñy0x0z0 = ñNTy0,z0 +ñCONR,z0 ; ñy1x0z0 = ñNTy1,z0 +ñCOAR,z0 ;

ñy0x0z1 = uNT0 −ñNTy0,z0 ; ñy0x1z1 =
(
ny0−uNT0

)
−ñCONR,z0 ;

ñy1x0z1 = uNT1 −ñNTy1,z0 ; ñy1x1z1 =
(
ny1−uNT1

)
−ñCOAR,z0 .

For each of these possibly observable datasets {ñykxjzi},
we then find the corresponding generalized likelihood ratio
G({ñykxjzi}) = qH0({ñykxjzi})/qML({ñykxjzi}). Note
that the parameter space, which we denote as (Ψ̃, T̃(Ψ̃)),
is specific to each dataset {ñykxjzi}, and differs from the
parameter space for the actually observed data (Ψ,T(Ψ)).

Given a fixed value of the nuisance parameter ψ, the cor-
responding ψ-specific p-value is then the total probability
under H0 of all datasets {ñykxjzi} with generalized like-
lihood ratios G({ñykxjzi}) that are at least as extreme as
that for the observed data {nykxjzi}:

pH0({nykxjzi};ψ) =
∑

{ñykxjzi}:
G({ñykxjzi})≤G({nykxjzi})

Pr({ñykxjzi} | ψ, H0).

Since each fixed value ofψ corresponds to a different num-
ber of Compliers and hence a different instance of the null
hypothesis, we may report the maximum among all the ψ-
specific p-values as the p-value from our significance test:

pH0({nykxjzi}) ≡ max
ψ∈Ψ

pH0({nykxjzi};ψ). (22)

The probability of obtaining a value of the test statistic as
extreme as the one observed (21) will never be larger than
pH0({nykxjzi}), irrespective of the number of Compliers
in the population, and is thus a valid frequentist p-value.

5 APPLICATIONS

5.1 PSYCHOLOGY DATA EXAMPLE

For the observed dataset {nykxjzi} in the motivating ex-
ample from Table 3, the largest probability under H0 is
qH0({nykxjzi}) = 1×10−4; the maximum likelihood with-
out the constraint of no Compliers who were Helped or
Hurt in the population is qML({nykxjzi}) = 2.3×10−3.
The generalized likelihood ratio (21) for this dataset is:

G({nykxjzi}) =
qH0 ({nykxjzi})
qML({nykxjzi})

= 0.052.

There were 1296 = (23 + 1)× (53 + 1) possible values of
the nuisance parameter ψ, and the maximum among all the
ψ-specific p-values is:

pH0({nykxjzi})≡ max
ψ∈Ψ

{
pH0({nykxjzi};ψ)

}
=0.0137.

5.2 LIPID DATA EXAMPLE

For the observed dataset {nykxjzi} in the motivating ex-
ample from Table 4, the largest probability under H0 is
qH0({nykxjzi}) = 6× 10−23; the maximum likelihood
without the constraint of no Compliers who were Helped
or Hurt in the population is qML({nykxjzi}) = 0.0019.
The generalized likelihood ratio (21) for this dataset is then:

G({nykxjzi}) =
qH0 ({nykxjzi})
qML({nykxjzi})

= 3×10−20.

There were 2385 = (14 + 1) × (158 + 1) possible values
of the nuisance parameter ψ, and the maximum among all
the ψ-specific p-values is:

pH0({nykxjzi})≡ max
ψ∈Ψ

{
pH0({nykxjzi};ψ)

}
=2×10−21.

In comparison, using a pre-specified value of γ=0.01 gives
a p-value of 0.01+(1×10−21)≈0.01 [10].

6 CONCLUSIONS

We have proposed a finite population significance test of
the sharp null hypothesis for Compliers using the general-
ized likelihood ratio. The resulting p-value may be arbitrar-
ily close to zero and summarizes the strength of evidence
against the sharp null hypothesis for Compliers (8).

While our development has assumed that there are no Al-
ways Takers, the approach extends to the more general
case in which there are also Always Takers. However,
this would increase the dimension of the nuisance param-
eter and hence the size of the nuisance parameter space,
such that finding the generalized likelihood ratio test statis-
tic would be computationally more intensive. For exam-
ple, even when the sharp null hypothesis for Compliers (8)
holds, the number of Compliers in the z= 1 arm

(
nCONR,z1

and nCOAR,z1
)

would no longer be point-identified from the
observed counts ny0x1z1 and ny1x1z1 respectively.
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