
On the Computability of AIXI

Jan Leike
Australian National University

jan.leike@anu.edu.au

Marcus Hutter
Australian National University

marcus.hutter@anu.edu.au

Abstract

How could we solve the machine learning and
the artificial intelligence problem if we had in-
finite computation? Solomonoff induction and
the reinforcement learning agent AIXI are pro-
posed answers to this question. Both are known
to be incomputable. In this paper, we quantify
this using the arithmetical hierarchy, and prove
upper and corresponding lower bounds for in-
computability. We show that AIXI is not limit
computable, thus it cannot be approximated us-
ing finite computation. Our main result is a limit-
computable ε-optimal version of AIXI with infi-
nite horizon that maximizes expected rewards.

Keywords. AIXI, Solomonoff induction, general rein-
forcement learning, computability, complexity, arithmeti-
cal hierarchy, universal Turing machine.

1 INTRODUCTION

Given infinite computation power, many traditional AI
problems become trivial: playing chess, go, or backgam-
mon can be solved by exhaustive expansion of the game
tree. Yet other problems seem difficult still; for exam-
ple, predicting the stock market, driving a car, or babysit-
ting your nephew. How can we solve these problems in
theory? A proposed answer to this question is the agent
AIXI [Hut00, Hut05]. As a reinforcement learning agent,
its goal is to maximize cumulative (discounted) rewards ob-
tained from the environment [SB98].

The basis of AIXI is Solomonoff’s theory of learn-
ing [Sol64, Sol78, LV08], also called Solomonoff induc-
tion. It arguably solves the induction problem [RH11]: for
data drawn from a computable measure µ, Solomonoff in-
duction will converge to the correct belief about any hy-
pothesis [BD62, RH11]. Moreover, convergence is ex-
tremely fast in the sense that Solomonoff induction will
make a total of at most E+O(

√
E) errors when predicting

the next data points, where E is the number of errors of the
informed predictor that knows µ [Hut01]. While learning
the environment according to Solomonoff’s theory, AIXI
selects actions by running an expectimax-search for maxi-
mum cumulative discounted rewards. It is clear that AIXI
can only serve as an ideal, yet recently it has inspired some
impressive applications [VNH+11].

Both Solomonoff induction and AIXI are known to be in-
computable. But not all incomputabilities are equal. The
arithmetical hierarchy specifies different levels of com-
putability based on oracle machines: each level in the arith-
metical hierarchy is computed by a Turing machine which
may query a halting oracle for the respective lower level.

We posit that any ideal for a ‘perfect agent’ needs to be limit
computable (∆0

2). The class of limit computable functions
is the class of functions that admit an anytime algorithm. It
is the highest level of the arithmetical hierarchy which can
be approximated using a regular Turing machine. If this
criterion is not met, our model would be useless to guide
practical research.

For MDPs, planning is already P-complete for finite and in-
finite horizons [PT87]. In POMDPs, planning is undecid-
able [MHC99, MHC03]. The existence of a policy whose
expected value exceeds a given threshold is PSPACE-
complete [MGLA00], even for purely epistemic POMDPs
in which actions do not change the hidden state [SLR07].
In this paper we derive hardness results for planning in gen-
eral semicomputable environments; this environment class
is even more general than POMDPs. We show that find-
ing an optimal policy is Π0

2-hard and finding an ε-optimal
policy is undecidable.

Moreover, we show that by default, AIXI is not limit com-
putable. The reason is twofold: First, when picking the
next action, two or more actions might have the same value
(expected future rewards). The choice between them is
easy, but determining whether such a tie exists is difficult.
Second, in case of an infinite horizon (using discounting),
the iterative definition of the value function [Hut05, Def.
5.30] conditions on surviving forever. The first problem

mailto:jan.leike@anu.edu.au
mailto:marcus.hutter@anu.edu.au

Model γ Optimal ε-Optimal

Iterative AINU
DC ∆0

4, Σ0
3-hard ∆0

3, Π0
2-hard

LT ∆0
3, Π0

2-hard ∆0
2, Σ0

1-hard

Iterative AIXI
DC ∆0

4, Π0
2-hard ∆0

3, Π0
2-hard

LT ∆0
3, Σ0

1-hard ∆0
2, Σ0

1-hard

Iterative AIMU
DC ∆0

2 ∆0
1

LT ∆0
2 ∆0

1

Recursive AINU
DC ∆0

3, Π0
2-hard ∆0

2, Σ0
1-hard

LT ∆0
3, Π0

2-hard ∆0
2, Σ0

1-hard

Recursive AIXI
DC ∆0

3, Σ0
1-hard ∆0

2, Σ0
1-hard

LT ∆0
3, Σ0

1-hard ∆0
2, Σ0

1-hard

Recursive AIMU
DC ∆0

2 ∆0
1

LT ∆0
2 ∆0

1

Table 1: Computability results for different agent mod-
els derived in Section 3. DC means general discounting,
a lower semicomputable discount function γ; LT means fi-
nite lifetime, undiscounted rewards up to a fixed lifetime
m. Hardness results for AIXI are with respect to a specific
universal Turing machine; hardness results for AINU are
with respect to a specific environment ν ∈M.

can be circumvented by settling for an ε-optimal agent.
We show that the second problem can be solved by using
the recursive instead of the iterative definition of the value
function. With this we get a limit-computable agent with
infinite horizon. Table 1 and Table 3 summarize our com-
putability results.

2 PRELIMINARIES

2.1 THE ARITHMETICAL HIERARCHY

A setA ⊆ N is Σ0
n iff there is a computable relation S such

that

k ∈ A ⇐⇒ ∃k1∀k2 . . . Qnkn S(k, k1, . . . , kn) (1)

where Qn = ∀ if n is even, Qn = ∃ if n is odd [Nie09,
Def. 1.4.10]. A set A ⊆ N is Π0

n iff its complement N \ A
is Σ0

n. We call the formula on the right hand side of (1) a
Σ0
n-formula, its negation is called Π0

n-formula. It can be
shown that we can add any bounded quantifiers and du-
plicate quantifiers of the same type without changing the
classification of A. The set A is ∆0

n iff A is Σ0
n and A is

Π0
n. We get that Σ0

1 as the class of recursively enumerable
sets, Π0

1 as the class of co-recursively enumerable sets and
∆0

1 as the class of recursive sets.

We say the set A ⊆ N is Σ0
n-hard (Π0

n-hard, ∆0
n-hard) iff

for any set B ∈ Σ0
n (B ∈ Π0

n, B ∈ ∆0
n), B is many-one

reducible to A, i.e., there is a computable function f such
that k ∈ B ↔ f(k) ∈ A [Nie09, Def. 1.2.1]. We get Σ0

n ⊂

∆0
n+1 ⊂ Σ0

n+1 ⊂ . . . and Π0
n ⊂ ∆0

n+1 ⊂ Π0
n+1 ⊂

This hierarchy of subsets of natural numbers is known as
the arithmetical hierarchy.

By Post’s Theorem [Nie09, Thm. 1.4.13], a set is Σ0
n if and

only if it is recursively enumerable on an oracle machine
with an oracle for a Σ0

n−1-complete set.

2.2 STRINGS

Let X be some finite set called alphabet. The set X ∗ :=⋃∞
n=0 Xn is the set of all finite strings over the alphabet X ,

the set X∞ is the set of all infinite strings over the alphabet
X , and the set X] := X ∗ ∪ X∞ is their union. The empty
string is denoted by ε, not to be confused with the small
positive real number ε. Given a string x ∈ X ∗, we denote
its length by |x|. For a (finite or infinite) string x of length
≥ k, we denote with x1:k the first k characters of x, and
with x<k the first k− 1 characters of x. The notation x1:∞
stresses that x is an infinite string. We write x v y iff x is
a prefix of y, i.e., x = y1:|x|.

2.3 COMPUTABILITY OF REAL-VALUED
FUNCTIONS

We fix some encoding of rational numbers into binary
strings and an encoding of binary strings into natural num-
bers. From now on, this encoding will be done implicitly
wherever necessary.

Definition 1 (Σ0
n-, Π0

n-, ∆0
n-computable). A function f :

X ∗ → R is called Σ0
n-computable (Π0

n-computable, ∆0
n-

computable) iff the set {(x, q) ∈ X ∗ × Q | f(x) > q} is
Σ0
n (Π0

n, ∆0
n).

A ∆0
1-computable function is called computable, a Σ0

1-
computable function is called lower semicomputable, and
a Π0

1-computable function is called upper semicomputable.
A ∆0

2-computable function f is called limit computable,
because there is a computable function φ such that

lim
k→∞

φ(x, k) = f(x).

The program φ that limit computes f can be thought of as
an anytime algorithm for f : we can stop φ at any time k
and get a preliminary answer. If the program φ ran long
enough (which we do not know), this preliminary answer
will be close to the correct one.

Limit-computable sets are the highest level in the arithmeti-
cal hierarchy that can be approached by a regular Turing
machine. Above limit-computable sets we necessarily need
some form of halting oracle. See Table 2 for the defini-
tion of lower/upper semicomputable and limit-computable
functions in terms of the arithmetical hierarchy.

Lemma 2 (Computability of Arithmetical Operations). Let
n > 0 and let f, g : X ∗ → R be two ∆0

n-computable
functions. Then

f> f<
f is computable ∆0

1 ∆0
1

f is lower semicomputable Σ0
1 Π0

1

f is upper semicomputable Π0
1 Σ0

1

f is limit computable ∆0
2 ∆0

2

f is ∆0
n-computable ∆0

n ∆0
n

f is Σ0
n-computable Σ0

n Π0
n

f is Π0
n-computable Π0

n Σ0
n

Table 2: Connection between the computability of real-
valued functions and the arithmetical hierarchy. We use the
shorthand f> := {(x, q) | f(x) > q} and f< := {(x, q) |
f(x) < q}.

(i) {(x, y) | f(x) > g(y)} is Σ0
n,

(ii) {(x, y) | f(x) ≤ g(y)} is Π0
n,

(iii) f + g, f − g, and f · g are ∆0
n-computable, and

(iv) f/g is ∆0
n-computable if g(x) 6= 0 for all x.

2.4 ALGORITHMIC INFORMATION THEORY

A semimeasure over the alphabet X is a function ν : X ∗ →
[0, 1] such that (i) ν(ε) ≤ 1, and (ii) ν(x) ≥

∑
a∈X ν(xa)

for all x ∈ X ∗. A semimeasure is called (probabil-
ity) measure iff for all x equalities hold in (i) and (ii).
Solomonoff’s prior M [Sol64] assigns to a string x the
probability that the reference universal monotone Turing
machine U [LV08, Ch. 4.5.2] computes a string starting
with x when fed with uniformly random bits as input. The
measure mixture M [Gá83, p. 74] removes the contribu-
tion of programs that do not compute infinite strings; it is a
measure except for a constant factor. Formally,

M(x) :=
∑

p: xvU(p)

2−|p|, M(x) := lim
n→∞

∑
y∈Xn

M(xy)

Equivalently, the Solomonoff prior M can be defined
as a mixture over all lower semicomputable semimea-
sures [WSH11]. The function M is a lower semicom-
putable semimeasure, but not computable and not a mea-
sure [LV08, Lem. 4.5.3]. A semimeasure ν can be turned
into a measure νnorm using Solomonoff normalization:
νnorm(ε) := 1 and for all x ∈ X ∗ and a ∈ X ,

νnorm(xa) := νnorm(x)
ν(xa)∑
b∈X ν(xb)

. (2)

2.5 GENERAL REINFORCEMENT LEARNING

In general reinforcement learning the agent interacts with
an environment in cycles: at time step t the agent chooses
an action at ∈ A and receives a percept et = (ot, rt) ∈
E consisting of an observation ot ∈ O and a real-valued

reward rt ∈ R; the cycle then repeats for t + 1. A history
is an element of (A × E)∗. We use æ ∈ A × E to denote
one interaction cycle, and æ1:t to denote a history of length
t. The goal in reinforcement learning is to maximize total
discounted rewards. A policy is a function π : (A×E)∗ →
Amapping each history to the action taken after seeing this
history.

The environment can be stochastic, but is assumed to
be semicomputable. In accordance with the AIXI litera-
ture [Hut05], we model environments as lower semicom-
putable chronological conditional semimeasures (LSC-
CCSs). A conditional semimeasure ν takes a sequence of
actions a1:t as input and returns a semimeasure ν(· ‖ a1:t)
over E]. A conditional semimeasure ν is chronological iff
percepts at time t do not depend on future actions, i.e.,
ν(e1:t ‖ a1:k) = ν(e1:t ‖ a1:t) for all k > t. Despite
their name, conditional semimeasures do not specify con-
ditional probabilities; the environment ν is not a joint prob-
ability distribution on actions and percepts. Here we only
care about the computability of the environment ν; for our
purposes, chronological conditional semimeasures behave
just like semimeasures.

2.6 THE UNIVERSAL AGENT AIXI

Our environment class M is the class of all LSCCCSs.
Typically, Bayesian agents such as AIXI only function well
if the true environment is in their hypothesis class. Since
the hypothesis classM is extremely large, the assumption
that it contains the true environment is rather weak. We fix
the universal prior (wν)ν∈M with wν > 0 for all ν ∈ M
and

∑
ν∈M wν ≤ 1, given by the reference machine U .

The universal prior w gives rise to the universal mixture ξ,
which is a convex combination of all LSCCCSsM:

ξ(e<t ‖ a<t) :=
∑
ν∈M

wνν(e<t ‖ a<t)

It is analogous to the Solomonoff prior M but defined for
reactive environments. Like M , the universal mixture ξ is
lower semicomputable [Hut05, Sec. 5.10].

We fix a discount function γ : N→ R with γt := γ(t) ≥ 0
and

∑∞
t=1 γt <∞ and make the following assumptions.

Assumption 3. (a) The discount function γ is lower semi-
computable.

(b) Rewards are bounded between 0 and 1.

(c) The set of actions A and the set of percepts E are both
finite.

Assumption 3 (b) could be relaxed to bounded rewards be-
cause we can rescale rewards r 7→ cr + d for any c, d ∈ R
without changing optimal policies if the environment ν is a
measure. However, for our value-related results, we require
that rewards are nonnegative.

We define the discount normalization factor Γt :=∑∞
i=t γi. There is no requirement that Γt > 0. In fact,

we use γ for both, AIXI with discounted infinite horizon
(Γt > 0 for all t), and AIXI with finite lifetime m. In the
latter case we set

γLTm(t) :=

{
1 if t ≤ m
0 if t > m.

If we knew the true environment ν ∈M, we would choose
the ν-optimal agent known as AINU that maximizes ν-
expected value (if ν is a measure). Since we do not know
the true environment, we use the universal mixture ξ over
all environments in M instead. This yields the Bayesian
agent AIXI: it weighs every environment ν ∈ M accord-
ing to its prior probability wν .

Definition 4 (Iterative Value Function [Hut05, Def. 5.30]).
The value of a policy π in an environment ν given history
æ<t is

V πν (æ<t) :=
1

Γt
lim
m→∞

∑
et:m

R(et:m)ν(e1:m | e<t ‖ a1:m)

if Γt > 0 and V πν (æ<t) := 0 if Γt = 0 where ai := π(e<i)
for all i ≥ t and R(et:m) :=

∑m
k=t γkrk. The optimal

value is defined as V ∗ν (h) := supπ V
π
ν (h).

Let æ<t ∈ (A × E)∗ be some history. We extend the
value functions V πν to include initial interactions (in rein-
forcement learning literature on MDPs these are called Q-
values), V πν (æ<tat) := V π

′

ν (æ<t) where π′ is the policy π
except that it takes action at next, i.e., π′(æ<t) := at and
π′(h) := π(h) for all h 6= æ<t. We define V ∗ν (æ<tat) :=
supπ V

π
ν (æ<tat) analogously.

Definition 5 (Optimal Policy [Hut05, Def. 5.19 & 5.30]).
A policy π is optimal in environment ν (ν-optimal) iff
for all histories the policy π attains the optimal value:
V πν (h) = V ∗ν (h) for all h ∈ (A× E)∗.

Since the discount function is summable, rewards are
bounded (Assumption 3b), and actions and percepts spaces
are both finite (Assumption 3c), an optimal policy exists for
every environment ν ∈ M [LH14, Thm. 10]. For a fixed
environment ν, an explicit expression for the optimal value
function is

V ∗ν (æ<t) =
1

Γt
lim
m→∞

max
∑
æt:m

R(et:m)ν(e1:m | e<t ‖ a1:m),

(3)
where

∑
max denotes the expectimax operator:

max
∑
æt:m

:= max
at∈A

∑
et∈E

. . . max
am∈A

∑
em∈E

For an environment ν ∈ M (an LSCCCS), AINU is de-
fined as a ν-optimal policy π∗ν = arg maxπ V

π
ν (ε). To

Plain Conditional
M Σ0

1 \∆0
1 ∆0

2 \ (Σ0
1 ∪Π0

1)

Mnorm ∆0
2 \ (Σ0

1 ∪Π0
1) ∆0

2 \ (Σ0
1 ∪Π0

1)

M Π0
2 \∆0

2 ∆0
3 \ (Σ0

2 ∪Π0
2)

Mnorm ∆0
3 \ (Σ0

2 ∪Π0
2) ∆0

3 \ (Σ0
2 ∪Π0

2)

Table 3: The complexity of the set {(x, q) ∈ X ∗ × Q |
f(x) > q} where f ∈ {M,Mnorm,M,Mnorm} is one of
the various versions of Solomonoff’s prior. Lower bounds
on the complexity of M and Mnorm hold only for specific
universal Turing machines.

stress that the environment is given by a measure µ ∈ M
(as opposed to a semimeasure), we use AIMU. AIXI is de-
fined as a ξ-optimal policy π∗ξ for the universal mixture
ξ [Hut05, Ch. 5]. Since ξ ∈M and every measure µ ∈M
is also a semimeasure, both AIMU and AIXI are a spe-
cial case of AINU. However, AIXI is not a special case of
AIMU since the mixture ξ is not a measure.

Because there can be more than one optimal policy, the def-
initions of AINU, AIMU and AIXI are not unique. More
specifically, a ν-optimal policy maps a history h to

π∗ν(h) :∈ arg max
a∈A

V ∗ν (ha). (4)

If there are multiple actions α, β ∈ A that attain the opti-
mal value, V ∗ν (hα) = V ∗ν (hβ), we say there is an argmax
tie. Which action we settle on in case of a tie (how we
break the tie) is irrelevant and can be arbitrary.

3 THE COMPLEXITY OF AINU, AIMU,
AND AIXI

3.1 THE COMPLEXITY OF SOLOMONOFF
INDUCTION

AIXI uses an analogue to Solomonoff’s prior on all possi-
ble environmentsM. Therefore we first state computabil-
ity results for Solomonoff’s prior M and the measure mix-
tureM in Table 3 [LH15b]. Notably,M is lower semicom-
putable and its conditional is limit computable. However,
neither the measure mixture M nor any of its variants are
limit computable.

3.2 UPPER BOUNDS

In this section, we derive upper bounds on the computabil-
ity of AINU, AIMU, and AIXI. Except for Corollary 13,
all results in this section apply generally to any LSCCCS
ν ∈ M, hence they apply to AIXI even though they are
stated for AINU.

For a fixed lifetime m, only the first m interactions matter.
There is a finite number of policies that are different for

the first m interactions, and the optimal policy π∗ξ can be
encoded in a finite number of bits and is thus computable.
To make a meaningful statement about the computability of
AINULT, we have to consider it as the function that takes
the lifetime m and outputs a policy π∗ξ that is optimal in
the environment ξ using the discount function γLTm. In
contrast, for infinite lifetime discounting we just consider
the function π∗ξ : (A× E)∗ → A.

In order to position AINU in the arithmetical hierarchy, we
need to identify these functions with sets of natural num-
bers. In both cases, finite and infinite lifetime, we represent
these functions as relations over N × (A × E)∗ × A and
(A×E)∗×A respectively. These relations are easily iden-
tified with sets of natural numbers by encoding the tuple
with their arguments into one natural number. From now
on this translation of policies (and m) into sets of natural
numbers will be done implicitly wherever necessary.

Lemma 6 (Policies are in ∆0
n). If a policy π is Σ0

n or Π0
n,

then π is ∆0
n.

Proof. Let ϕ be a Σ0
n-formula (Π0

n-formula) defining π,
i.e., ϕ(h, a) holds iff π(h) = a. We define the formula ϕ′,

ϕ′(h, a) :=
∧

a′∈A\{a}

¬ϕ(h, a′).

The set of actions A is finite, hence ϕ′ is a Π0
n-formula

(Σ0
n-formula). Moreover, ϕ′ is equivalent to ϕ.

To compute the optimal policy, we need to compute the
value function. The following lemma gives an upper bound
on the computability of the value function for environments
inM.

Lemma 7 (Complexity of V ∗ν). For every LSCCCS ν ∈
M, the function V ∗ν is Π0

2-computable. For γ = γLTm the
function V ∗ν is ∆0

2-computable.

Proof. Multiplying (3) with Γtν(e<t ‖ a<t) yields
V ∗ν (æ<t) > q if and only if

lim
m→∞

max
∑
æt:m

ν(e1:m ‖ a1:m)R(et:m) > q Γt ν(e<t ‖ a<t).

(5)
The inequality’s right side is lower semicomputable, hence
there is a computable function ψ such that ψ(`) ↗
q Γt ν(e<t ‖ a<t) =: q′ for `→∞. For a fixed m, the left
side is also lower semicomputable, therefore there is a com-
putable function φ such that φ(m, k)↗

∑
maxæt:mν(e1:m ‖

a1:m)R(et:m) =: f(m) for k →∞. We already know that
the limit of f(m) for m → ∞ exists (uniquely), hence we

can write (5) as

lim
m→∞

f(m) > q′

⇐⇒ ∀m0 ∃m ≥ m0. f(m) > q′

⇐⇒ ∀m0 ∃m ≥ m0 ∃k. φ(m, k) > q′

⇐⇒ ∀`∀m0 ∃m ≥ m0 ∃k. φ(m, k) > ψ(`),

which is a Π0
2-formula. In the finite lifetime case where m

is fixed, the value function V ∗ν (æ<t) is ∆0
2-computable by

Lemma 2 (iv), since V ∗ν (æ<t) = f(m)q/q′.

From the optimal value function V ∗ν we get the optimal pol-
icy π∗ν according to (4). However, in cases where there is
more than one optimal action, we have to break an argmax
tie. This happens iff V ∗ν (hα) = V ∗ν (hβ) for two potential
actions α 6= β ∈ A. This equality test is more difficult
than determining which is larger in cases where they are
unequal. Thus we get the following upper bound.

Theorem 8 (Complexity of Optimal Policies). For any en-
vironment ν ∈ M, if V ∗ν is ∆0

n-computable, then there is
an optimal policy π∗ν for the environment ν that is ∆0

n+1.

Proof. To break potential ties, we pick an (arbitrary) total
order � on A that specifies which actions should be pre-
ferred in case of a tie. We define

πν(h) = a :⇐⇒
∧

a′:a′�a
V ∗ν (ha) > V ∗ν (ha′)

∧
∧

a′:a�a′
V ∗ν (ha) ≥ V ∗ν (ha′).

(6)

Then πν is a ν-optimal policy according to (4). By as-
sumption, V ∗ν is ∆0

n-computable. By Lemma 2 (i) and (ii)
V ∗ν (ha) > V ∗ν (ha′) is in Σ0

n and V ∗ν (ha) ≥ V ∗ν (ha′) is
Π0
n. Therefore the policy πν defined in (6) is a conjunction

of a Σ0
n-formula and a Π0

n-formula and thus in ∆0
n+1.

Corollary 9 (Complexity of AINU). AINULT is ∆0
3 and

AINUDC is ∆0
4 for every environment ν ∈M.

Proof. From Lemma 7 and Theorem 8.

Usually we do not mind taking slightly suboptimal actions.
Therefore actually trying to determine if two actions have
the exact same value seems like a waste of resources. In
the following, we consider policies that attain a value that
is always within some ε > 0 of the optimal value.

Definition 10 (ε-Optimal Policy). A policy π is ε-optimal
in environment ν iff V ∗ν (h) − V πν (h) < ε for all histories
h ∈ (A× E)∗.

Theorem 11 (Complexity of ε-Optimal Policies). For any
environment ν ∈M, if V ∗ν is ∆0

n-computable, then there is
an ε-optimal policy πεν for the environment ν that is ∆0

n.

Proof. Let ε > 0 be given. Since the value function V ∗ν (h)
is ∆0

n-computable, the set Vε := {(ha, q) | |q−V ∗ν (ha)| <
ε/2} is in ∆0

n according to Definition 1. Hence we com-
pute the values V ∗ν (ha′) until we get within ε/2 for ev-
ery a′ ∈ A and then choose the action with the high-
est value so far. Formally, let � be an arbitrary total or-
der on A that specifies which actions should be preferred
in case of a tie. Without loss of generality, we assume
ε = 1/k, and define Q to be an ε/2-grid on [0, 1], i.e.,
Q := {0, 1/2k, 2/2k, . . . , 1}. We define

πεν(h) = a :⇐⇒

∃(qa′)a′∈A ∈ QA.
∧
a′∈A

(ha′, qa′) ∈ Vε

∧
∧

a′:a′�a
qa > qa′ ∧

∧
a′:a�a′

qa ≥ qa′

∧ the tuple (qa′)a′∈A is minimal with

respect to the lex. ordering on QA.
(7)

This makes the choice of a unique. Moreover, QA is finite
since A is finite, and hence (7) is a ∆0

n-formula.

Corollary 12 (Complexity of ε-Optimal AINU). For any
environment ν ∈ M, there is an ε-optimal policy for
AINULT that is ∆0

2 and there is an ε-optimal policy for
AINUDC that is ∆0

3.

Proof. From Lemma 7 and Theorem 11.

If the environment ν ∈ M is a measure, i.e., ν assigns
zero probability to finite strings, then we get computable
ε-optimal policies.

Corollary 13 (Complexity of AIMU). If the environment
µ ∈ M is a measure and the discount function γ is com-
putable, then and AIMULT and AIMUDC are limit com-
putable (∆0

2), and ε-optimal AIMULT and AIMUDC are
computable (∆0

1).

Proof. In the discounted case, we can truncate the limit
m → ∞ in (3) at the ε/2-effective horizon meff :=
min{k | Γk/Γt < ε/2}, since everything after meff
can contribute at most ε/2 to the value function. Any
lower semicomputable measure is computable [LV08,
Lem. 4.5.1]. Therefore V ∗µ as given in (3) is composed only
of computable functions, hence it is computable according
to Lemma 2. The claim now follows from Theorem 8 and
Theorem 11.

3.3 LOWER BOUNDS

We proceed to show that the bounds from the previous sec-
tion are the best we can hope for. In environment classes
where ties have to be broken, AIMUDC has to solve Σ0

3-
hard problems (Theorem 15), and AIMULT has to solve

Π0
2-hard problems (Theorem 16). These lower bounds are

stated for particular environments ν ∈M.

We also construct universal mixtures that yield bounds
on ε-optimal policies. In the finite lifetime case, there
is an ε-optimal AIXILT that solves Σ0

1-hard problems
(Theorem 17), and for general discounting, there is an
ε-optimal AIXIDC that solves Π0

2-hard problems (Theo-
rem 18). For arbitrary universal mixtures, we prove the
following weaker statement that only guarantees incom-
putability.
Theorem 14 (No AIXI is computable). AIXILT and
AIXIDC are not computable for any universal Turing ma-
chine U .

This theorem follows from the incomputability of
Solomonoff induction. Since AIXI uses an analogue of
Solomonoff’s prior for learning, it succeeds to predict the
environment’s behavior for its own policy [Hut05, Thm.
5.31]. If AIXI were computable, then there would be com-
putable environments more powerful than AIXI: they can
simulate AIXI and anticipate its prediction, which leads to
a contradiction.

Proof. Assume there is a computable policy π∗ξ that is op-
timal in ξ. We define a deterministic environment µ, the
adversarial environment to π∗ξ . The environment µ gives
rewards 0 as long as the agent follows the policy π∗ξ , and
rewards 1 once the agent deviates. Formally, we ignore ob-
servations by setting O := {0}, and define

µ(r1:t ‖ a1:t) :=
1 if ∀k ≤ t. ak = π∗ξ ((ar)<k) and rk = 0

1 if ∀k ≤ t. rk = 1k≥i
where i := min{j | aj 6= π∗ξ ((ar)<j)}

0 otherwise.

The environment µ is computable because the policy π∗ξ
was assumed to be computable. Suppose π∗ξ acts in µ, then
by [Hut05, Thm. 5.36], AIXI learns to predict perfectly on
policy:

V ∗ξ (æ<t) = V
π∗ξ
ξ (æ<t)→ V

π∗ξ
µ (æ<t) = 0 as t→∞,

since both π∗ξ and µ are deterministic. Therefore we find a
t large enough such that V ∗ξ (æ<t) < wµ (in the finite life-
time case we choose m > t) where æ<t is the interaction
history of π∗ξ in µ. A policy π with π(æ<t) 6= π∗ξ (æ<t),
gets a reward of 1 in environment µ for all time steps af-
ter t, hence V πµ (æ<t) = 1. With linearity of V πξ (æ<t) in
ξ [Hut05, Thm. 5.31],

V πξ (æ<t) ≥ wµ µ(e1:t‖a1:t)ξ(e1:t‖a1:t)V
π
µ (æ<t) ≥ wµ,

since µ(e1:t ‖ a1:t) = 1 (µ is deterministic), V πµ (æ<t) =
1, and ξ(e1:t ‖ a1:t) ≤ 1. Now we get a contradiction:

wµ > V ∗ξ (æ<t) = max
π′

V π
′

ξ (æ<t) ≥ V πξ (æ<t) ≥ wµ

For the remainder of this section, we fix the action space to
be A := {α, β} with action α favored in ties. The percept
space is fixed to a tuple of binary observations and rewards,
E := O × {0, 1} with O := {0, 1}.
Theorem 15 (AINUDC is Σ0

3-hard). If Γt > 0 for all t,
there is an environment ν ∈ M such that AINUDC is Σ0

3-
hard.

Proof. Let A be any Σ0
3 set, then there is a computable

relation S such that

n ∈ A ⇐⇒ ∃i ∀t ∃k S(n, i, t, k). (8)

We define a class of environments M′ = {ρ0, ρ1, . . .} ⊂
M where each environment ρi is defined by

ρi((or)1:t ‖ a1:t) :=

2−t, if o1:t = 1t and ∀t′ ≤ t. rt′ = 0

2−n−1, if ∃n. 1n0 v o1:t v 1n0∞ and an+2 = α

and ∀t′ ≤ t. rt′ = 0

2−n−1, if ∃n. 1n0 v o1:t v 1n0∞ and an+2 = β

and ∀t′ ≤ t. rt′ = 1t′>n+1

and ∀t′ ≤ t∃k S(n, i, t′, k)

0, otherwise.

Every ρi is a chronological conditional semimeasure by
definition, so M′ ⊆ M. Furthermore, every ρi is lower
semicomputable since S is computable.

We define our environment ν as a mixture overM′,

ν :=
∑
i∈N

2−i−1ρi;

the choice of the weights on the environments ρi is arbitrary
but positive. Let π∗ν be an optimal policy for the environ-
ment ν and recall that the action α is preferred in ties. We
claim that for the ν-optimal policy π∗ν ,

n ∈ A ⇐⇒ π∗ν(1n0) = β. (9)

This enables us to decide whether n ∈ A given the policy
π∗ν , hence proving (9) concludes this proof.

Let n, i ∈ N be given, and suppose we are in environment
i and observe 1n0. Taking action α next yields rewards 0
forever; taking action β next yields a reward of 1 for those
time steps t ≥ n + 2 for which ∀t′ ≤ t∃k S(n, i, t′, k),
after that the semimeasure assigns probability 0 to all next
observations. Therefore, if for some t0 there is no k such
that S(n, i, t0, k), then ρi(e1:t0 ‖ . . . β . . .) = 0, and hence

V ∗ρi(1
n0β) = 0 = V ∗ρi(1

n0α),

and otherwise ρi yields reward 1 for every time step after
n+ 1, therefore

V ∗ρi(1
n0β) = Γn+2 > 0 = V ∗ρi(1

n0α)

(omitting the first n+1 actions and rewards in the argument
of the value function). We can now show (9): By (8), n ∈ A
if and only if there is an i such that for all t there is a k
such that S(n, i, t, k), which happens if and only if there is
an i ∈ N such that V ∗ρi(1

n0β) > 0, which is equivalent to
V ∗ν (1n0β) > 0, which in turn is equivalent to π∗µ(1n0) = β
since V ∗ν (1n0α) = 0 and action α is favored in ties.

Theorem 16 (AINULT is Π0
2-hard). There is an environ-

ment ν ∈M such that AINULT is Π0
2-hard.

The proof of Theorem 16 is analogous to the proof of
Theorem 15. The notable difference is that we replace
∀t′ ≤ t ∃k S(n, i, t′, k) with ∃k S(n, i, k). Moreover,
we swap actions α and β: action α ‘checks’ the relation S
and action β gives a sure reward of 1.

Theorem 17 (Some ε-optimal AIXILT are Σ0
1-hard). There

is a universal Turing machine U ′ and an ε > 0 such that
any ε-optimal policy for AIXILT is Σ0

1-hard.

Proof. Let ξ denote the universal mixture derived from the
reference universal monotone Turing machine U . Let A be
a Σ0

1-set and S computable relation such that n+ 1 ∈ A iff
∃k S(n, k). We define the environment

ν((or)1:t ‖ a1:t) :=

ξ((or)1:n ‖ a1:n), if ∃n. o1:n = 1n−10

and an = α

and ∀t′ > n. et′ = (0, 12)

ξ((or)1:n ‖ a1:n), if ∃n. o1:n = 1n−10

and an = β

and ∀t′ > n. et = (0, 1)

and ∃k S(n− 1, k).

ξ((or)1:t ‖ a1:t), if @n. o1:n = 1n−10

0, otherwise.

The environment ν mimics the universal environment ξ un-
til the observation history is 1n−10. Taking the action α
next gives rewards 1/2 forever. Taking the action β next
gives rewards 1 forever if n ∈ A, otherwise the environ-
ment ν ends at some future time step. Therefore we want
to take action β if and only if n ∈ A. We have that ν is an
LSCCCS since ξ is an LSCCCS and S is computable.

We define the universal lower semicomputable semimea-
sure ξ′ := 1

2ν + 1
8ξ. Choose ε := 1/9. Let n ∈ A be given

and define the lifetime m := n + 1. Let h ∈ (A × E)n

be any history with observations o1:n = 1n−10. Since
ν(1n−10 | a1:n) = ξ(1n−10 | a1:n) by definition, the pos-
terior weights of ν and ξ in ξ′ are equal to the prior weights,
analogously to [LH15a, Thm. 7]. In the following, we use

the linearity of V
π∗
ξ′

ρ in ρ [Hut05, Thm. 5.21], and the fact
that values are bounded between 0 and 1. If there is a k

such that S(n− 1, k),

V ∗ξ′(hβ)− V ∗ξ′(hα)

= 1
2V

π∗
ξ′

ν (hβ)− 1
2V

π∗
ξ′

ν (hα) + 1
8V

π∗
ξ′

ξ (hβ)− 1
8V

π∗
ξ′

ξ (hα)

≥ 1
2 −

1
4 + 0− 1

8 = 1
8 ,

and similarly if there is no k such that S(n− 1, k), then

V ∗ξ′(hα)− V ∗ξ′(hβ)

= 1
2V

π∗
ξ′

ν (hα)− 1
2V

π∗
ξ′

ν (hβ) + 1
8V

π∗
ξ′

ξ (hα)− 1
8V

π∗
ξ′

ξ (hβ)

≥ 1
4 − 0 + 0− 1

8 = 1
8 .

In both cases |V ∗ξ′(hβ) − V ∗ξ′(hα)| > 1/9. Hence we
pick ε := 1/9 and get for every ε-optimal policy πεξ′ that
πεξ′(h) = β if and only if n ∈ A.

Theorem 18 (Some ε-optimal AIXIDC are Π0
2-hard).

There is a universal Turing machine U ′ and an ε > 0 such
that any ε-optimal policy for AIXIDC is Π0

2-hard.

The proof of Theorem 18 is analogous to the proof of The-
orem 17 except that we choose ∀m′ ≤ m ∃k S(x,m, k) as
a condition for reward 1 after playing action β.

4 ITERATIVE VS. RECURSIVE AINU

Generally, our environment ν ∈ M is only a semimeasure
and not a measure. I.e., there is a history æ<tat such that

1 >
∑
et∈E

ν(et | e<t ‖ a1:t).

In such cases, with positive probability the environment
ν does not produce a new percept et. If this occurs, we
shall use the informal interpretation that the environment ν
ended, but our formal argument does not rely on this inter-
pretation.

The following proposition shows that for a semimeasure
ν ∈ M that is not a measure, the iterative definition of
AINU does not maximize ν-expected rewards. Recall that
γ1 states the discount of the first reward. In the following,
we assume without loss of generality that γ1 > 0, i.e., we
are not indifferent about the reward received in time step 1.

Proposition 19 (Iterative AINU is not a ν-Expected Re-
wards Maximizer). For any ε > 0 there is an environment
ν ∈ M that is not a measure and a policy π that receives
a total of γ1 rewards in ν, but AINU receives only εγ1 re-
wards in ν.

Informally, the environment ν is defined as follows. In the
first time step, the agent chooses between the two actions
α and β. Taking action α gives a reward of 1, and sub-
sequently the environment ends. Action β gives a reward
of ε, but the environment continues forever. There are no

other rewards in this environment. From the perspective of
ν-expected reward maximization, it is better to take action
α, however AINU takes action β.

Proof. Let ε > 0. We ignore observations and set E :=
{0, ε, 1}, A := {α, β}. The environment ν is formally
defined by

ν(r1:t ‖ a1:t) :=
1 if a1 = α and r1 = 1 and t = 1

1 if a1 = β and r1 = ε and rk = 0 ∀1 < k ≤ t
0 otherwise.

Taking action α first, we have ν(r1:t ‖ αa2:t) = 0 for
t > 1 (the environment ν ends in time step 2 given history
α). Hence we use (3) to conclude

V ∗ν (α) =
1

Γt
lim
m→∞

∑
r1:m

ν(r1:m ‖ αa2:m)

m∑
i=1

ri = 0.

Taking action β first we get

V ∗ν (β) =
1

Γt
lim
m→∞

∑
r1:m

ν(r1:m ‖ βa2:m)

m∑
i=1

ri =
γ1
Γ1
ε.

Since γ1 > 0 and ε > 0, we have V ∗ν (β) > V ∗ν (α), and
thus AIMU will use a policy that plays action β first, re-
ceiving a total discounted reward of εγ1. In contrast, any
policy π that takes action α first receives a larger total dis-
counted reward of γ1.

Whether it is reasonable to assume that our environment
has a nonzero probability of ending is a philosophical de-
bate we do not want to engage in here. Instead, we have
a different motivation to use the recursive value function:
we get an improved computability result. Concretely, we
show that for all environments ν ∈ M, there is a limit-
computable ε-optimal policy maximizing ν-expected re-
wards using an infinite horizon. According to Theorem 18,
this does not hold for all V ∗ν -maximizing agents AINU.

In order to maximize ν-expected rewards in case ν is not
a measure, we need the recursive definition of the value
function (analogously to [Hut05, Eq. 4.12]). To avoid con-
fusion, we denote it Wπ

ν :

Wπ
ν (æ<t) =

1

Γt

∑
et

(
γtrt

+ Γt+1W
π
ν (æ1:t)

)
ν(et | e<t ‖ a1:t)

where at := π(æ<t). In the following we write it in non-
recursive form.

Definition 20 (ν-Expected Value Function). The ν-
expected value of a policy π in an environment ν given

history æ<t is

Wπ
ν (æ<t) :=

1

Γt

∞∑
m=t

∑
et:m

γmrmν(e1:m | e<t ‖ a1:m)

if Γt > 0 and Wπ
ν (æ<t) := 0 if Γt = 0 where ai :=

π(e<i) for all i ≥ t. The optimal ν-expected value is de-
fined as W ∗ν (h) := supπW

π
ν (h).

The difference between V πν and Wπ
ν is that for Wπ

ν all ob-
tained rewards matter, but for V πν only the rewards in time-
lines that continue indefinitely. In this sense the value func-
tion V πν conditions on surviving forever. If the environment
µ is a measure, then the history is infinite with probability
one, and so V πν and Wπ

ν coincide. Hence this distinction is
not relevant for AIMU, only for AINU and AIXI.

So why use V πν in the first place? Historically, this is how
infinite-horizon AIXI has been defined [Hut05, Def. 5.30].
This definition is the natural adaptation of (optimal) min-
imax search in zero-sum games to the (optimal) expecti-
max algorithm for stochastic environments. It turns out to
be problematic only because semimeasures have positive
probability of ending prematurely.

Lemma 21 (Complexity of W ∗ν). For every LSCCCS ν ∈
M, and every lower semicomputable discount function γ,
the function W ∗ν is ∆0

2-computable.

Proof. The proof is analogous to the proof of Lemma 7.
We expand Definition 20 using the expectimax operator
analogously to (3). This gives a quotient with numerator

lim
m→∞

max
∑
æt:m

m∑
i=t

γiriν(e1:i ‖ a1:i),

and denominator ν(e<t ‖ a<t) · Γt. In contrast to the it-
erative value function, the numerator is now nondecreasing
in m because we assumed rewards to be nonnegative (As-
sumption 3b). Hence both numerator and denominator are
lower semicomputable functions, so Lemma 2 (iv) implies
that W ∗ν is ∆0

2-computable.

Now we can apply our results from Section 3.2 to show that
using the recursive value function Wπ

ν , we get a universal
AI model with an infinite horizon whose ε-approximation
is limit computable. Moreover, in contrast to iterative
AINU, recursive AINU actually maximizes ν-expected re-
wards.

Corollary 22 (Complexity of Recursive AINU/AIXI). For
any environment ν ∈ M, recursive AINU is ∆0

3 and there
is an ε-optimal recursive AINU that is ∆0

2. In particular,
for any universal Turing machine, recursive AIXI is ∆0

3

and there is an ε-optimal recursive AIXI that is limit com-
putable.

Proof. From Theorem 8, Theorem 11, and Lemma 21.

Analogously to Theorem 14, Theorem 16, and Theorem 17
we can show that recursive AIXI is not computable, recur-
sive AINU is Π0

2-hard, and for some universal Turing ma-
chines, ε-optimal recursive AIXI is Σ0

1-hard.

5 DISCUSSION

We set out with the goal of finding a limit-computable
perfect agent. Table 3 on page 4 summarizes our com-
putability results regarding Solomonoff’s prior M : con-
ditional M and Mnorm are limit computable, while M
and Mnorm are not. Table 1 on page 2 summarizes our
computability results for AINU, AIXI, and AINU: itera-
tive AINU with finite lifetime is ∆0

3. Having an infinite
horizon increases the level by one, while restricting to ε-
optimal policies decreases the level by one. All versions
of AINU are situated between ∆0

2 and ∆0
4 (Corollary 9 and

Corollary 12). For environments that almost surely con-
tinue forever (semimeasure that are measures), AIMU is
limit-computable and ε-optimal AIMU is computable. We
proved that these computability bounds on iterative AINU
are generally unimprovable (Theorem 15 and Theorem 16).
Additionally, we proved weaker lower bounds for AIXI in-
dependent of the universal Turing machine (Theorem 14)
and for ε-optimal AIXI for specific choices of the universal
Turing machine (Theorem 17 and Theorem 18).

We considered ε-optimality in order to avoid having to
break argmax ties. This ε does not have to be constant
over time, instead we may let ε → 0 as t → ∞ at any
computable rate. With this we retain the computability re-
sults of ε-optimal policies and get that the value of the ε(t)-
optimal policy π

ε(t)
ν converges rapidly to the ν-optimal

value: V ∗ν (æ<t)− V
πε(t)ν
ν (æ<t)→ 0 as t→∞. Therefore

the limitation to ε-optimal policies is not very restrictive.

When the environment ν has nonzero probability of not
producing a new percept, the iterative definition (Defini-
tion 4) of AINU fails to maximize ν-expected rewards
(Proposition 19). We introduced a recursive definition of
the value function for infinite horizons (Definition 20),
which correctly returns ν-expected value. The difference
between the iterative value function V and recursive value
functionW is readily exposed in the difference betweenM
andM . Just like V conditions on surviving forever, so does
M eliminate the weight of programs that do not produce in-
finite strings. Both M and V are not limit computable for
this reason.

Our main motivation for the introduction of the recursive
value function W is the improvement of the computability
of optimal policies. Recursive AINU is ∆0

3 and admits a
limit-computable ε-optimal policy (Corollary 22). In this
sense our goal to find a limit-computable perfect agent has
been accomplished.

REFERENCES

[BD62] David Blackwell and Lester Dubins. Merging
of opinions with increasing information. The
Annals of Mathematical Statistics, pages 882–
886, 1962.

[Gá83] Péter Gács. On the relation between descrip-
tional complexity and algorithmic probability.
Theoretical Computer Science, 22(1–2):71 –
93, 1983.

[Hut00] Marcus Hutter. A theory of universal arti-
ficial intelligence based on algorithmic com-
plexity. Technical Report cs.AI/0004001,
2000. http://arxiv.org/abs/cs.
AI/0004001.

[Hut01] Marcus Hutter. New error bounds for
Solomonoff prediction. Journal of Computer
and System Sciences, 62(4):653–667, 2001.

[Hut05] Marcus Hutter. Universal Artificial Intelli-
gence: Sequential Decisions Based on Algo-
rithmic Probability. Springer, 2005.

[LH14] Tor Lattimore and Marcus Hutter. General
time consistent discounting. Theoretical Com-
puter Science, 519:140–154, 2014.

[LH15a] Jan Leike and Marcus Hutter. Bad universal
priors and notions of optimality. In Confer-
ence on Learning Theory, 2015.

[LH15b] Jan Leike and Marcus Hutter. On the
computability of Solomonoff induction and
knowledge-seeking. 2015. Forthcoming.

[LV08] Ming Li and Paul M. B. Vitányi. An Introduc-
tion to Kolmogorov Complexity and Its Appli-
cations. Texts in Computer Science. Springer,
3rd edition, 2008.

[MGLA00] Martin Mundhenk, Judy Goldsmith, Christo-
pher Lusena, and Eric Allender. Complex-
ity of finite-horizon Markov decision process
problems. Journal of the ACM, 47(4):681–
720, 2000.

[MHC99] Omid Madani, Steve Hanks, and Anne Con-
don. On the undecidability of probabilis-
tic planning and infinite-horizon partially ob-
servable Markov decision problems. In
AAAI/IAAI, pages 541–548, 1999.

[MHC03] Omid Madani, Steve Hanks, and Anne Con-
don. On the undecidability of probabilistic
planning and related stochastic optimization
problems. Artificial Intelligence, 147(1):5–34,
2003.

[Nie09] André Nies. Computability and Randomness.
Oxford University Press, 2009.

[PT87] Christos H Papadimitriou and John N Tsitsik-
lis. The complexity of Markov decision pro-
cesses. Mathematics of Operations Research,
12(3):441–450, 1987.

[RH11] Samuel Rathmanner and Marcus Hutter. A
philosophical treatise of universal induction.
Entropy, 13(6):1076–1136, 2011.

[SB98] Richard S. Sutton and Andrew G. Barto. Re-
inforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998.

[SLR07] Régis Sabbadin, Jérôme Lang, and Nasolo
Ravoanjanahry. Purely epistemic Markov de-
cision processes. In AAAI, volume 22, pages
1057–1062, 2007.

[Sol64] Ray Solomonoff. A formal theory of induc-
tive inference. Parts 1 and 2. Information and
Control, 7(1):1–22 and 224–254, 1964.

[Sol78] Ray Solomonoff. Complexity-based induction
systems: Comparisons and convergence theo-
rems. IEEE Transactions on Information The-
ory, 24(4):422–432, 1978.

[VNH+11] Joel Veness, Kee Siong Ng, Marcus Hutter,
William Uther, and David Silver. A Monte-
Carlo AIXI approximation. Journal of Ar-
tificial Intelligence Research, 40(1):95–142,
2011.

[WSH11] Ian Wood, Peter Sunehag, and Marcus Hut-
ter. (Non-)equivalence of universal priors. In
Solomonoff 85th Memorial Conference, pages
417–425. Springer, 2011.

http://arxiv.org/abs/cs.AI/0004001
http://arxiv.org/abs/cs.AI/0004001

	Introduction
	Preliminaries
	The Arithmetical Hierarchy
	Strings
	Computability of Real-valued Functions
	Algorithmic Information Theory
	General Reinforcement Learning
	The Universal Agent AIXI

	The Complexity of AINU, AIMU, and AIXI
	The Complexity of Solomonoff Induction
	Upper Bounds
	Lower Bounds

	Iterative vs. Recursive AINU
	Discussion

