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Abstract

We present a Discriminative Switching Linear
Dynamical System (DSLDS) applied to patient
monitoring in Intensive Care Units (ICUs). Our
approach is based on identifying the state-of-
health of a patient given their observed vital signs
using a discriminative classifier, and then infer-
ring their underlying physiological values con-
ditioned on this status. The work builds on the
Factorial Switching Linear Dynamical System
(FSLDS) (Quinn et al., 2009) which has been
previously used in a similar setting. The FSLDS
is a generative model, whereas the DSLDS is a
discriminative model. We demonstrate on two
real-world datasets that the DSLDS is able to
outperform the FSLDS in most cases of interest,
and that an α-mixture of the two models achieves
higher performance than either of the two models
separately.

Condition monitoring of patients in intensive care units
(ICUs) based on vital signs (e.g. heart rate, blood pressure)
is of critical importance, as they can be subject to a num-
ber of serious physiological events such as bradycardia and
hypotension. However, a variety of artifactual processes
can “contaminate” the data, e.g. the taking of blood sam-
ples, performing suctions, recalibrating sensors, etc. These
artifactual processes complicate the task of identifying the
important physiological events and are the main source of
false alarms in ICUs. Moreover, it is of interest to maintain
beliefs about the true physiological values of a patient when
these cannot be directly observed due to artifact. For exam-
ple, it would be desirable to display the patient’s estimated
blood pressure, when the corresponding measuring device
has been disconnected or is otherwise displaying artifac-
tual values (as is the case during a blood sample event). Of
course, this estimate should be clearly distinguishable from
the raw data (e.g. by using a different display colour).

One approach to this problem is to build a latent variable

model, using a number of discrete latent variables to model
the physiological and artifactual events through time, and
a linear dynamical system (LDS) conditional on these dis-
crete variables to model the associated dynamics in the vi-
tal signs observations. This is the factorial switching LDS
(or FSLDS) of Quinn et al. (2009). However, we have no-
ticed that in building such systems it is necessary to con-
struct quite detailed models of the artifactual events in or-
der to capture them properly. This can be non-trivial since
some of these events can be highly variable, which is hard
to capture with a generative model. Despite this high vari-
ability, the vital signs can still contain informative features
which could act as input to a discriminative model. Thus,
if it is possible to build such a model that can fairly eas-
ily distinguish between the various events, then it would
seem simpler and easier to make the discrete-state infer-
ence be discriminative, and use FSLDS-style inference for
the continuous latent variables conditional on the inferred
discrete state. We call this a discriminative switching linear
dynamical system (DSLDS). In this paper we compare the
FSLDS and DSLDS models on two ICU condition mon-
itoring datasets. The results show that using the DSLDS
gives increased performance in most cases of interest, and
that an α-mixture of the two methods was able to achieve
a higher performance than either of the two models sepa-
rately.

To summarise, our goal is to build a model with increased
performance for the following tasks:

• Identifying artifactual processes (e.g blood samples),
which will reduce the high false alarm rate in ICUs
and facilitate the task of identifying physiological pro-
cesses.

• Identifying physiological processes which can be of
critical importance (e.g bradycardias).

• Providing an estimate of a patient’s true physiological
values when these are obscured by artifact.

The structure of the remainder of the paper is as follows: in
Section 1 we give a description of our proposed model and
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compare its graphical structure and inference methods to
those of the FSLDS, and briefly describe related work. In
Section 2 we describe our experiments and provide results
for the comparison between the DSLDS and the FSLDS.
Finally, in Section 3 we conclude with general remarks
about our proposed model and suggestions for future work.

1 MODEL DESCRIPTION

The graphical model of the FSLDS is depicted in Figure 1
(top). It operates on three different sets of variables: The
observed variables, yt ∈ Rdy represent the patient’s vital
signs obtained from the monitoring devices at time t, which
act as the input to our model. The continuous latent vari-
ables, xt ∈ Rdx , track the evolution of the dynamics of a
patient’s underlying physiology. The discrete variable, st,
represents the switch setting or regime which the patient is
currently in (e.g. stable, a blood sample is being taken etc.
). The switch variable can be factorised according to the
cross-product ofM factors, so that st = f1

t ⊗f2
t ⊗...⊗fMt .

Each factor variable, fmt , is usually a binary vector indicat-
ing the presence or absence of a factor, but in general it
can take on L(m) different values and K =

∏M
m=1 L

(m)

is the total number of possible configurations of the switch
variable, st. Also, st depends explicitly on the previous
time step, so that p(st|st−1) =

∏M
m=1 p(f

m
t |fmt−1). Condi-

tioned on a particular regime, the FSLDS is equivalent to an
LDS. The FSLDS can be seen then as a collection of LDS’s,
where each LDS models the dynamics of a patient’s under-
lying physiology under a particular regime, and can also be
used to generate a patient’s observed vital signs. An LDS
provides a generative framework for modelling our belief
over the state space, given observations.

We can alternatively adopt a discriminative view. We start
by modelling p(st|yt−l:t+r) with a discriminative classi-
fier, where (features of) observations from the previous l
and future r time steps affect the belief of the model about
st. The inclusion of r frames of future context is analogous
to fixed-lag smoothing in an FSLDS (see e.g. Särkkä, 2013,
sec. 10.5). We note that inclusion of future observations in
the conditioning set means that the DSLDS will operate
with a delay of r seconds, since an output of the model
at time t can be produced only after time t + r. Provided
that r is small enough (r ≤10 in experiments), this delay
is negligible compared to the increase in performance. The
LDS can also be regarded from a similarly discriminative
viewpoint which allows us to model p(xt|xt−1,yt). This is
similar to the Maximum Entropy Markov Model (MEMM)
(McCallum et al., 2000) with the difference that the latent
variable is continuous rather than discrete. The main ad-
vantage of this discriminative view is that it allows for a
rich number of (potentially highly correlated) features to
be used without having to explicitly model their distribu-
tion or the interactions between them, as is the case in a
generative model. A combination of these two discrimina-

tive viewpoints gives rise to the DSLDS graphical model in
Figure 1 (bottom). The DSLDS, conditioned on st, can be
seen then as a collection of MEMM’s, where each MEMM
in the DSLDS plays a role equivalent to that of each LDS
in the FSLDS.

The DSLDS can be defined as

p(s,x|y) = p(s1|y1)p(x1|s1,y1)×
T∏
t=2

p(st|yt−l:t+r)p(xt|xt−1, st,yt) . (1)

st−1 st st+1

xt−1 xt xt+1

yt−1 yt yt+1

st−1 st st+1

xt−1 xt xt+1

yt−1 yt yt+1

Figure 1: Graphical model of the FSLDS (top) and the
DSLDS (bottom). The state-of-health and underlying phys-
iological values of a patient are represented by st and xt
respectively. The shaded nodes correspond to the observed
physiological values, yt. Note that in the case of the
DSLDS the conditional probability p(st|yt−l:t+r) is mod-
elled directly.

The simplest assumption we can make for the DSLDS is
that p(st|yt−l:t+r) factorises, so that

p(st|yt−l:t+r) =
M∏
m=1

p(f (m)
t |yt−l:t+r) . (2)

However, one could use a structured output model to pre-
dict the joint distribution of different factors.



1.1 Predicting st

Our belief about the state of health of a patient at time
t is modelled by p(st|yt−l:t+r), the conditional probabil-
ity of the switch variable given the observed vital signs.
Following the factorisation of the switch variable in eq. 2,
we model the conditional probability of each factor be-
ing active at time t given the observations with a prob-
abilistic discriminative binary classifier, so that p(f (i)

t =
1|yt−l:t+r) = G(φ(yt−l:t+r)), where G(·) is a classifier-
specific function, and φ(yt−l:t+r) is the feature vector that
acts as input to our model at each time step as described
in Section 2.1. As is evident from Figure 1 (bottom) there
is no explicit temporal dependence on the switch variable
sequence. However, temporal continuity is implicitly in-
corporated in our model through the construction of the
features.

1.1.1 An α-mixture of st

The DSLDS model can be seen as complementary to the
FSLDS, and they can be run in parallel. One way of
combining the two outputs is to maintain an α-mixture
over st. If pg(st) and pd(st) are the outputs for the
switch variable at time t from FSLDS and the DSLDS
respectively, then their α-mixture is given by: pα(st) =

c
(
pg(st)

(1−α)/2 + pd(st)
(1−α)/2

)2/(1−α)

, where c is a
normalisation constant which ensures that pα(st) is a prob-
ability distribution. The family of α-mixtures then sub-
sumes various known mixtures of distributions and defines
a continuum across them via the α parameter. For exam-
ple, for α = −1 we retrieve the mixture of experts (with
equally weighted experts) framework, while for α → 1,
the formula yields p1(st) = c

√
pg(st)pd(st), rendering

it equivalent to a product of experts viewpoint. In gen-
eral, as α increases, the α-mixture assigns more weight
to the smaller elements of the mixture (with α → ∞
giving p∞(st) = min{pg(st), pd(st)}), while as α de-
creases, more weight is assigned to the larger elements
(with α → −∞ giving p−∞(st) = max{pg(st), pd(st)})
A thorough treatment is given in Amari (2007).

1.2 Predicting xt

The model of the patient’s physiology should capture the
underlying temporal dynamics of their observed vital signs
under their current health state. The idea is that the current
latent continuous state of a patient should be dependent on
(a) the latent continuous state at the previous time step, (b)
the current state of health and (c) the current observed val-

ues. We model these assumptions as follows

p(xt|xt−1, st,yt) ∝

exp{−1
2
(xt−A(st)xt−1)>(Q(st))−1(xt−A(st)xt−1)}×

exp{−1
2
(C(st)xt−yt)>(R(st))−1(C(st)xt−yt)} . (3)

The first term on the RHS of eq. 3 is the system model
for an LDS and captures the dynamics of a patient’s latent
physiology under state st. The second term can be seen as
the discriminative counterpart of the observation model of
an LDS. In our condition monitoring setting, the observed
vital signs are considered to be noisy realisations of the
true, latent physiology of a patient and thus, the observa-
tion model encodes our belief that xt is a noisy version
of yt. Under this assumption, Cst consists of 0/1 entries,
which are set based on our knowledge of whether the ob-
servations yt are artifactual or not under state st. In the
FSLDS, the corresponding observation model encodes the
belief that the generated yt should be normally distributed
around xt with covariance Rst , whereas in our discrimina-
tive version, the observation model encodes our belief that
xt should be normally distributed around yt with covari-
ance Rst . The idea behind this model is that at each time
step we update our belief about xt conditioned on its previ-
ous value, xt−1, and the current observation, yt, under the
current regime st. For example, under an artifactual pro-
cess, the observed signals do not convey useful information
about the underlying physiology of a patient. In that case,
we drop the connection between yt and xt (for the artifact-
affected channels) which translates into setting the respec-
tive entries of Cst to zero. Then, the latent state xt evolves
only under the influence of the appropriate system dynam-
ics parameters (A(st),Q(st)). Conversely, operation un-
der a non-artifactual regime incorporates the information
from the observed signals, effectively transforming the in-
ferential process for xt into a product of two “experts”, one
propagating probabilities from xt−1 and one from the cur-
rent observations.

We note that the step of conditioning on the current regime
st in order to predict xt is required for our task, as we do
not have training data for the x-state. Otherwise, one could
imagine building a simpler model such as a conditional ran-
dom field (Lafferty et al., 2001), to predict the x-state di-
rectly from the observations. However, in our case, where
only labels about the patient’s regime are available, this is
not possible.

1.3 Learning

We first describe learning in the general SLDS setting. The
parameters that need to be learned are: {As, Qs, Cs, Rs}.
Given training data for each switch setting, these can be
learned independently as LDS parameters for each con-
figuration of s. Following Quinn et al. (2009) we use an



independent ARIMA model with added observation noise
for each channel. Casting such a model into state space
form is a standard procedure as described in Brockwell and
Davis (2009, sec. 12.1), and amounts into reformulating
the parameters of the ARIMA model into the parameters
of a state-space model. Once the model is in state space
form, As, Qs, Cs, Rs can be fit according to the maximum
likelihood criterion by using numerical optimisation meth-
ods (like Newton-Raphson, Gauss-Newton), as presented
in Shumway and Stoffer (2000, sec. 2.6) or expectation
maximisation (EM) as presented in Ghahramani and Hin-
ton (1996). We note that the vector ARMA (VARMA) rep-
resentation is used, where for example a one-dimensional
AR(p) process can be encoded as a p + 1-dimensional
VAR(1) process by maintaining a latent state representa-
tion of the form xt = [xt xt−1 ... xt−p].

In the DSLDS, the same set of parameters needs to be
learned. As mentioned in Section 1.2, the assumptions for
the DSLDS observation model constrain Cs to be a binary
matrix, whose values are set so as to pick the most recent
value xt under the VARMA representation. For example,
assuming that we are modelling one channel, under a phys-
iological regime, as an AR(2) process, then Cs = [1 0 0].
Under this constrained form of Cs we obtain the remaining
parameters, As, Qs and Rs, using the same learning pro-
cess as the one already described for the case of a general
SLDS.

The task of determining the order of the respective ARIMA
models is less straightforward. We have followed a practi-
cal approach as suggested in Diggle (1990, sec. 6.2). The
autocorrelation and partial autocorrelation function (ACF
and PACF respectively) of the stationary data (if a time se-
ries is not stationary, we make it stationary by successive
differencing) were examined to provide an initial estimate
of the appropriate model order. A clear cut-off at lag q in
the ACF plot is suggestive of an MA(q) process, while a
clear cut-off at lag p in the PACF plot is suggestive of an
AR(p) process. Clear cut-offs are rare in a real world ap-
plication, in which case we looked for less clear tail-offs in
the PACF and ACF plots. After establishing a small num-
ber of potential model orders suggested by these tail-offs,
further exploration of the model order around these initial
estimates was carried out by calculating the Akaike Infor-
mation Criterion (AIC) score (Akaike, 1972) for each of
these potential model orders, and finally the one with the
smallest AIC value was chosen.

1.4 Inference

In this paper we are concerned with the task of comput-
ing the distribution p(st,xt|y1:t+r). According to our pro-
posed model, p(st|yt−l:t+r) can be inferred at each time
step via a classifier as described in Section 1.1. However,
exact inference for xt is still intractable. The same lim-

itation as in the case of a standard SLDS applies (Lerner
and Parr, 2001): In order to maintain an exact belief over
the posterior distribution of xt we need to keep track of all
the potential combinations of switch variable settings that
could have lead us from xt−1 to xt, making inference scale
exponentially with time. An approximation of this distri-
bution can be maintained via the Gaussian Sum algorithm1

(Alspach and Sorenson, 1972). The idea is that at each time
step t we maintain an approximation of p(xt|st,y1:t+r) as
a mixture of J Gaussians. Moving one time step forward
will result in the posterior p(xt+1|st+1,y1:t+r+1) having
KJ components, which are again collapsed to J compo-
nents. In our experiments we use J = 1, which translates
into matching moments (up to second order) of the distri-
bution for each setting of st, as shown in Murphy (1998).
Therefore inference in the DSLDS can be seen as a two-
step process, where p(st|yt−l:t+r) is inferred by our dis-
criminative classifier, and p(xt|st,y1:t+r) is inferred ac-
cording to the Gaussian Sum algorithm.

1.5 Related work

In terms of methodology, our proposed model bears some
similarities to the one used by Lu et al. (2009). How-
ever, their model was used to model spatial relationships
and they were only concerned with a binary discrete la-
tent space. In our case, we are concerned with modelling
temporal structure and we have a richer and more complex
discrete latent space. More importantly, in their work the
distribution maintained over the continuous latent space is
a single multivariate Gaussian, whereas in our model, as
described in the previous section, the belief over the con-
tinuous latent space is modelled as a mixture of KJ Gaus-
sians. This allows us to keep track of multiple modes about
the belief over a patient’s underlying physiology, since this
is potentially affected by multiple factors.

In terms of application, our work is mostly similar to the
one presented in Quinn et al. (2009). The same task of
inferring artifactual and physiological processes was con-
sidered there. However a generative approach was taken
there via the use of an FSLDS. In Lehman et al. (2014), a
switching vector autoregressive model was used on minute-
by-minute heart rate and blood pressure vital signs to pro-
vide inputs for a logistic regression classifier with the goal
of patient outcome prediction. Also, Nemati et al. (2013)
propose training a SLDS in a discriminative manner so as
to optimize prediction of the s sequence given the observa-
tions, and apply this to identifying four postural categories
under a controlled protocol. Stanculescu et al. (2014) use
a hierarchical structure in the discrete space of an SLDS
motivated by expert knowledge on modelling sepsis. In
our work, we use a discriminative SLDS, capable of mod-

1The Gaussian Sum algorithm is also known as the Gener-
alised Pseudo Bayesian (GPB) algorithm as mentioned in Murphy
(1998).



elling both discrete and continuous latent states in a unified
framework, applied to two challenging real-world datasets.
It yields superior results for state-of-health identification,
and maintains at the same time beliefs about a patient’s un-
derlying physiology.

2 EXPERIMENTS

In this section we describe experiments on two challenging
datasets comprising of patients admitted to ICUs in two dif-
ferent hospitals, namely a neonatal ICU and an adult ICU.
We emphasise that it is highly non-trivial to obtain annota-
tions for medical datasets as it requires the very scarce re-
source of experienced clinicians. Indeed, for the adult ICU,
the annotated data are the product of a one-year collabora-
tion with that ICU. Physionet (Goldberger et al., 2000), a
freely available medical dataset, is not suitable for our task
since the only available time-series annotations are a lim-
ited set of life threatening/terminal events, for which iden-
tification would not be of practical use in the ICU.

For both datasets, we evaluate the performance of the
DSLDS compared to the FSLDS. We also report the per-
formance of an α-mixture of the two models. Note that the
FSLDS has been shown in Quinn et al. (2009) to achieve
superior results compared to more basic models such as
a factorial hidden Markov model (FHMM) for the task of
condition monitoring in ICUs. We first provide a short de-
scription of the various features that were used as input to
the state-of-health model as described in Section 1.1, fol-
lowed by an outline of the main characteristics of the two
datasets. We conclude this section by providing results on
two tasks: a) inferring a patient’s state of health and b) in-
ferring a patient’s underlying physiology in the presence of
artifact corruption.

2.1 Features & Classifiers

As described in Section 1.1, the estimate of st is the output
of a discriminative classifier. For both datasets, we found
that using a random forest (Breiman, 2001) as our classifi-
cation method yields the best performance. Suggestions for
judicious selection of various tree-construction parameters
can be found in Hastie et al. (2009, Ch. 15). The Gini index
was used as the criterion for splitting nodes for each tree in
the random forest. The output of the random forest for a
new test point is an average of the predictions produced by
each tree, where the prediction of each tree is the propor-
tion of the observations that belong to the positive class in
the leaf node in which the test point belongs to. Apart from
their high performance, another appealing property of ran-
dom forests is that they can handle missing observations
via the construction of surrogate variables and splits within
each decision tree as explained in Hastie et al. (2009, sec.
9.2.4).

We use a variety of features to capture interesting temporal
structure between successive observations. At each time
step, a sliding window of length l+ r+1 is computed. For
some features we also divide the window into further sub-
windows and extract additional features from them. More
precisely, the full set of features that are being used are: (i)
the observed, raw values of the previous l and future r time
steps (yt−l:t+r); (ii) the slopes (calculated by least squares
fitting) of segments of that sliding window that are obtained
by dividing it in segments of length (l + r + 1)/k; (iii) an
exponentially weighted moving average of this window of
raw values (with a kernel of width smaller than l + r + 1);
(iv) the minimum, median and maximum of the same seg-
ments; (v) the first order differences of the original win-
dow; and (vi) differences of the raw values between differ-
ent channels.

2.2 Neonatal ICU

The first dataset is the one used in Quinn et al. (2009)2. It
comprises 24-hour periods from fifteen neonates admitted
to the ICU of the Edinburgh Royal Infirmary, with events
of interest annotated by two clinical experts. These annota-
tions include: i) blood sample events (BS), ii) periods dur-
ing which an incubator is open (IO), iii) core temperature
probe disconnections (TD), iv) bradycardias (BR), and v)
periods that are clearly not stable but no further identifica-
tion was made by the clinicians (X). These last cases can
be collectively considered as a “none-of-the-above” factor,
which is referred to as the X-factor by Quinn et al. (2009).
More details about the events of interest can be found in the
aforementioned work. We used the same parameters for the
underlying physiology model as the ones used there.

2.3 Adult ICU

The second dataset comprises data collected from nine
adults admitted to the neuro ICU of the Southern General
Hospital in Glasgow. An average of 33-hour periods were
collected from each of these patients, consisting of mea-
surements recorded on a second-by-second basis for four
different channels: heart rate (HR), systolic and diastolic
blood pressure (BPsys, BPdia), and systolic intracranial
pressure (ICPsys). These data were then annotated by a
clinical expert. We give a brief description of the learning
process for stability periods and modelled factors, which
include blood samples, damped traces (DT), suction events
(SC), and the X-factor.

Stable periods correspond to time periods when no anno-
tation occurred from the experts, suggesting that the patient
is in a stable condition. In Williams and Stanculescu (2011)
it was found that in a similar setting a 15 minute period of
stability provides an adequate amount of training data. We

2The dataset has been anonymised and is available at:
www.cit.mak.ac.ug/staff/jquinn/software.html



use the same time interval for our experiments. We found
that ARIMA(2,1,0) models were adequate for all channels.

An example of a blood sample is shown in Figure 4 (bot-
tom). Changes in BPsys and BPdia can be modelled as
a four-stage process: i) the blood is diverted to a syringe
for blood sampling, which causes an artifactual ramp in the
observed measurements. This is similar to the blood sam-
ple model described in Quinn et al. (2009) and we follow
the same approach here. ii) A recalibration stage follows,
causing measurements to drop to zero which can be mod-
elled similarly to a dropout event as in Quinn et al. (2009).
iii) BP measurements continue as a stable period for a brief
period. iv) The blood sample is concluded with a flushing
event for hygiene purposes which causes a sharp increase in
measurements. This stage is modelled as an AR(3) process
for both the BPsys and BPdia channels. A total number of
64 blood sample events have been annotated, with an aver-
age duration of 1.6 minutes.

During a suction event, a flexible catheter is inserted into
the airway of the patient to remove secretions that have ac-
cumulated over time in their pulmonary system. This event
is observed as a significant increase in the values of all ob-
served channels. An AR(2) process models the HR chan-
nel, while AR(3) processes were used to model the remain-
ing channels. A total number of 53 suction events have
been annotated, with an average duration of 4.3 minutes.

A damped trace, an example of which is shown in Figure
4 (top), is usually observed due to blood residues being ac-
cumulated in the line used for measuring the blood pressure
channel, which leads both BPsys and BPdia to converge to
a similar mean value while at the same time the measure-
ments exhibit high variability. Both channels were mod-
elled with AR(3) processes. A total number of 32 damped
trace events have been annotated, with an average duration
of 14 minutes.

Except for the aforementioned factors which we explicitly
model, there are a multitude of other factors present in our
training data, corresponding to either known but not yet
modelled factors (such as hygiene events, tachycardias etc.)
or to unknown factors (clear abnormalities which however
have not been identified by the clinicians). We collectively
treat those events as unknown and model them according
to the X-factor model proposed in Quinn et al. (2009). A
total number of 278 X-factor events have been annotated,
with an average duration of 7.5 minutes. Channels which
are unaffected by an artifactual process (as shown in Table
1) are modelled as in the stable case. In every case the
parameters of the x-state models were further optimised by
EM.

Table 1: Channels affected by different processes for the
adult ICU are marked by •.

HR BPsys BPdia ICPsys

Blood sample • •
Damped trace • •

Suction • • • •
X-factor • • • •

Table 2: Comparison of DSLDS, FSLDS and α-mixture
performance for the Neonatal ICU dataset. Optimal value
of the α parameter is shown inside parenthesis.

AUC BS IO TD BR X

DSLDS 0.98 0.83 0.90 0.94 0.57
FSLDS 0.92 0.87 0.88 0.85 0.66

α-mixture(0.5) 0.98 0.89 0.93 0.92 0.67

2.4 Results

For both datasets we compare the performance of the
DSLDS and the FSLDS for the task of inferring a patient’s
state of health. Having obtained estimates st for each factor
and each time step, we proceed to calculate Receiver Oper-
ating Characteristic (ROC) curves for the classification of
each factor. We also measure the performance of the mod-
els by reporting the Area under each ROC curve (AUC).
Plots of the ROC curves, comparing the DSLDS, FSLDS,
and an α-mixture of the two models, are shown in Figures
2 and 3.

In the case of the DSLDS, the features described in Section
2.1 involve a number of hyperparameters that need to be
chosen. Fitting them with a standard cross-validation (CV)
scheme when data are not abundant poses a non-negligible
risk of overfitting. As is shown in Varma and Simon (2006),
using CV to evaluate performance of a model when the
model’s hyperparameters have been themselves tuned us-
ing CV can lead to an optimistic bias of the estimate of
the true performance. In that same work, a nested CV ap-
proach is shown to yield an almost unbiased estimate of
the true performance, which we also follow in our exper-
iments. In the outer loop the data are partitioned into P
disjoint test sets. After choosing one of these partitions,
the rest of the data are used in the inner loop in a standard
CV setup to select the hyperparameters. The hyperparame-
ters which yielded the highest performance (average cross-
validated AUC across factors in our case) in the inner loop
are then used to estimate the performance of the model on
the partition (test set) in the outer loop. This process is re-
peated P times, once for each partition in the outer loop.
For both datasets, we use leave-one-patient-out CV for the



inner loop and 3-fold CV for the outer loop. In the inner
loop, we perform a grid search over hyperparameters in the
following sets: a) number of trees of random forest clas-
sifiers in {10, 25, 50, 100, 200}; b) l in {4, 9, 14, 19, 29,
49}; c) r in {0, 5, 10}. The sub-segments lengths (for slope
features) were always set to max{5, (l + r + 1)/5} and the
kernel widths (for moving average features) were always
set to max{5, (l + r + 1)/5}.

In the case of the FSLDS, it is not necessary to follow the
same procedure. Using the AIC score, as shown in Sec-
tion 1.3, for choosing the orders of the ARIMA processes
(which constitute the model’s hyperparameters) avoids po-
tential overfitting by penalising the model’s likelihood as
the parameters grow. We therefore use 3-fold CV to evalu-
ate the FSLDS’s performance.

To evaluate the α-mixture model, we have chosen the op-
timal α value as the one that maximises the average AUC
across factors, via 3-fold CV. This also allowed us to ex-
plore the behaviour of the model as a function of α for both
datasets.
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Figure 2: ROC curves per modelled factor in the case of
the neonatal ICU.

2.4.1 Neonatal ICU

In the case of the neonatal ICU we compare the two models
on the full set of annotated factors reported in Quinn et al.
(2009). The results are shown in Table 23. The DSLDS
outperforms the FSLDS in three out of the four clinically
identified factors. The difference in favour of the DSLDS
is clear for bradycardias and blood samples, but less pro-
nounced for core temperature disconnections. The FSLDS
achieves slightly higher performance in the case of the in-
cubator open factor, and clearly outperforms the DSLDS
in the case of the X-factor. The FSLDS models the pres-
ence of outliers by the inclusion of an extra factor, which
is essentially governed by the same parameters as stability
with the only difference being that the system noise covari-
ance is an inflated version of the respective covariance of
the stability dynamics (for more details, see Quinn et al.,
2009). Such an approach has the potential to address the
issue of outlier detection in a more general and thus more
satisfactory way. In the case of the DSLDS, our approach
is to collectively treat all abnormal events, other than the
ones attributed to known factors, as an “X-class” and build
a binary classifier to distinguish that class. As the training
datapoints for this class are highly inhomogeneous in terms
of shared discriminative features, and test points belonging
to the X-class may not exhibit a high degree of similarity
to the training set, it is not surprising that the DSLDS may
perform rather poorly for the X-factor. However, by con-
sidering an α-mixture of the two models, we can combine
the discriminative power of the DSLDS for known factors
with the increased performance of the FSLDS for the X-
factor, thus achieving a higher performance (bottom line
of Table 2) compared to considering the two models sepa-
rately. The behaviour of the α-mixture model as a function
of α is shown in Figure 5 (top). The optimal α-mixture
(α = 0.5) yields the best average AUC across factors (in
fact, α = 0.5 yields optimal performance for each factor
separately except bradycardia, where it is almost optimal)
compared to all other considered α values and also outper-
forms the DSLDS and the FSLDS in all cases except for
the bradycardia factor, where the DSLDS performs slightly
better.

2.4.2 Adult ICU

In the case of the adult ICU, inferences for two example
events are shown in Figure 4. In the top, a damped trace
event is shown, which lasts for almost one hour before be-
ing resolved by a flushing event (spiking of both channels).
The DSLDS accurately identifies the damped trace event,

3The FSLDS results were obtained using code provided by
Quinn et al. (2009) with the same parameters as the ones men-
tioned there. The results are very close with the exception of
the core temperature disconnection factor (for which the reported
AUC in Quinn et al. (2009) was 0.79, while we obtained a value of
0.88), and the blood sample factor (for which the reported AUC in
Quinn et al. (2009) was 0.96, while we obtained a value of 0.92).



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

Blood sample

 

 

FSLDS
DSLDS
α−mixture

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

Damped trace

 

 

FSLDS
DSLDS
α−mixture

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

Suction

 

 

FSLDS
DSLDS
α−mixture

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te
X−factor

 

 

FSLDS
DSLDS
α−mixture

Figure 3: ROC curves per modelled factor in the case of
the adult ICU.

Table 3: Comparison of DSLDS, FSLDS and α-mixture
performance for the Adult ICU dataset. Optimal value of
the α parameter is shown inside parenthesis.

AUC BS DT SC X

DSLDS 0.96 0.93 0.67 0.65
FSLDS 0.95 0.79 0.57 0.74

α-mixture(0) 0.99 0.94 0.70 0.71

while the FSLDS fails totally to detect it, but hypothesises
several incorrect blood sample events. In the bottom panel
a blood sample event is shown, where the multiple stages
are clearly visible. The event starts with two artifactual
ramps, followed by a flushing, a zeroing, and finally with
another flushing. This is slightly different than the descrip-
tion we have already given, but slight deviations from the
standard protocol due to human error is to be expected. In
this case, both models manage to capture the event in a gen-
erally satisfactory manner. Summary results are reported
in Table 3. The DSLDS outperforms the FLSDS on all of
the known factors. The damped trace and suction events
particularly are characterised by high variability which is
hard to capture with a generative process. However, sim-
ple discriminative features are able to capture them with
higher accuracy. As was expected, the FSLDS achieves a
higher AUC for the X-factor. Again, the optimal α-mixture
(α = 0) outperforms the DSLDS and the FSLDS in all
cases except for the X-factor, where the FSLDS achieves a
slightly higher AUC. Contrary to the neonatal ICU dataset,
as shown in Figure 5 (bottom) there are alternative α values
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Figure 4: Example of DSLDS and FSLDS inferences for
a damped trace event (top) and a blood sample event (bot-
tom).

which can yield higher AUC across different factors. For
example, an X-factor AUC value of 0.76 can be obtained
by setting α = 5. However, apart from the superior (on
average) performance of the α-mixture, another appealing
property is that α could be treated as a user-tunable param-
eter. In a practical setting, the model could be preset with
the optimal α value, but a clinician could decide, for exam-
ple, to make the model focus on maximising its predictive
performance on the X-factor (or some important physio-
logical factor like bradycardia) to the potential detriment
of other factors. Then the model could adjust its α param-
eter in real-time based on training data results to maximise
its performance on the desired factor.

2.4.3 Inference for x-state

Finally, Figure 6 shows the inferred distribution of underly-
ing physiology during a blood sample taken from a neonate
for both models. In both cases, estimates are propagated
with increased uncertainty under the correctly inferred ar-
tifactual event. Note a small difference at the start of the
event: The DSLDS partially identifies the event causing
an increase in uncertainty, while the FSLDS (incorrectly)
identifies this part as stable and thus its x-state update ex-
hibits lower uncertainty. Maintaining an estimate of the
underlying vital signs in the presence of artifacts can then
be used for data imputation. Another use, which has been
deemed important by our clinical experts, is that such an
estimate can help doctors maintain an approximate view of
a patient’s underlying physiology during artifactual events
that would otherwise completely obscure a patient’s vital
signs. This can be crucial during treatment of a patient un-
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Figure 5: Performance of the α-mixture models as a func-
tion of α (step = 0.25) for the Adult ICU (top) and the
neonatal ICU dataset (bottom). The asterisk marks the op-
timal value for α.

der critical conditions, such as the ones found in an ICU.

3 DISCUSSION

We have presented a discriminative approach for the very
important application of patient monitoring in ICUs. We
show that our new approach is able to outperform the pre-
vious generative approach used for the same task in most of
the investigated cases. We also show that an α-mixture of
the two approaches yields better results than either model
separately. In our approach we have assumed that the pre-
diction of the switching variable factorises over the state
space. However, one could use a structured output model
to predict the joint distribution of different factors. Finally,
another issue is the lack of explicit temporal continuity in
the s-chain. Implicitly, this is handled by the feature con-
struction process. However, a future direction could be to
establish a Markovian connection on the s-chain too and
compare with our current approach.
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