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Abstract

The problem of feature selection is critical in sev-
eral areas of machine learning and data analy-
sis. Here we consider feature selection for super-
vised learning problems, where one wishes to se-
lect a small set of features that facilitate learning
a good prediction model in the reduced feature
space. Our interest is primarily in filter methods
that select features independently of the learning
algorithm to be used and are generally faster to
implement than wrapper methods. Many com-
mon filter methods for feature selection make
use of mutual information based criteria to guide
their search process. However, even in simple bi-
nary classification problems, mutual information
based methods do not always select the best set
of features in terms of the Bayes error. In this pa-
per, we develop a filter method that directly aims
to select the optimal set of features for a general
performance measure of interest. Our approach
uses the Bayes error with respect to the given
performance measure as the criterion for feature
selection and applies a greedy algorithm to opti-
mize this criterion. We demonstrate application
of this method to a variety of learning problems
involving different performance measures. Ex-
periments suggest the proposed approach is com-
petitive with several state-of-the-art methods.

1 INTRODUCTION
The problem of feature selection is critical in several ar-
eas of machine learning and data analysis, particularly for
learning prediction models with good generalization abil-
ity and for reducing the running time of learning algo-
rithms [1–3]. In this paper, we consider feature selection
for supervised learning problems, where one wishes to se-
lect a small set of features that facilitate learning a good

†Work done while at Indian Institute of Science, Bangalore.

prediction model in the reduced feature space. Our focus
is primarily on filter methods that select features indepen-
dently of the learning algorithm to be used, typically by
greedily maximizing some suitable feature selection crite-
rion. These methods are generally faster in practice and
easier to implement than other approaches to feature selec-
tion such as wrapper or embedded methods.

Over the years, there has been much work on designing fil-
ter methods for feature selection, many of which make use
of mutual information based criteria to guide their search
process [4–7]. However, these methods do not explicitly
consider the performance measure used to evaluate a model
in the learning problem. In fact, even in the case of simple
binary classification, one can construct settings where the
popular mutual information criterion does not yield the best
set of features in terms of the Bayes 0-1 classification er-
ror (as we shall shortly see with an example) [8]. Clearly,
there is a need for filter methods that are tailored to directly
optimize a given performance measure of interest.

In this paper, we develop a Bayes optimal filter method
for a general performance measure. Our approach directly
aims to find the optimal set of features in terms of the Bayes
error for the given loss or performance measure, thus allow-
ing for the possibility of learning a good model in the re-
duced feature space. We show that the mutual information
criterion mentioned above is a special case of our setting
when the loss function of interest is the logarithmic loss for
class probability estimation. We use a greedy forward se-
lection algorithm for approximately optimizing the Bayes
criterion for the given performance measure, and demon-
strate application of this method to various learning prob-
lems involving different performance measures. Experi-
ments on several learning tasks suggest that the proposed
approach is competitive with the state-of-the-art methods.

Indeed in the simpler setting of classification with the
0-1 error, there have been some works that have sug-
gested the use of Bayes error as a criterion for feature se-
lection/transformation [8–13]. Of these, only Yang and
Hu (2012) provide an experimental evaluation of a filter
method for optimizing the Bayes 0-1 error [13]; however,



even here, the objective eventually optimized is different
from the Bayes optimal criterion for the 0-1 error (we elab-
orate on this in Section 3.1). On the other hand, we provide
in this paper the first systematic study of Bayes optimal fil-
ter methods for general performance measures, going well
beyond the simple setting of 0-1 classification, and han-
dling a variety of learning settings, including those with
complex performance measures such as the F-measure.

1.1 RELATED WORK

Filter methods have received much attention from the ma-
chine learning/data mining/artificial intelligence commu-
nities, resulting in various hand-crafted filter criteria and
heuristic techniques for optimizing the proposed objectives
[4–7, 14–21]. Predominant among these are methods that
use the mutual information (MI) between a given feature
subset and the output label as a measure of relevance of
the feature subset to the given learning task, often with ad-
ditional information theoretic terms to account for redun-
dancy among the features in the given subset [4–7, 16–21].
While there have been arguments made to justify the use
of MI as a criterion for binary classification by establish-
ing lower/upper bounds on MI in terms of the 0-1 Bayes
error [21–24], these bounds are tight only for certain set-
tings; in general, the optimal feature subset for the MI cri-
terion need not be the same as that for the 0-1 Bayes error.

There has also been some work on designing filter methods
for specific learning tasks, such as text retrieval [25], class
imbalanced classification [26], and ranking [27]. However,
the feature selection criteria proposed therein are either
based on heuristics and do not explicitly promote feature
subsets that are Bayes optimal for the given problem, or as
in the case of [25], require a certain (binary) representation
of the features and do not apply to general settings.

Apart from filter methods, other popular families of feature
selection techniques include wrapper methods, where the
quality of a subset of features is determined by explicitly
learning a model on the feature subset and evaluating its
accuracy on a held-out sample [2, 28, 29]; and embedded
methods, which combine model learning and feature selec-
tion into a single step, such as using sparse regularization
in the learning problem [30]. While both these approaches
allow us to incorporate different loss functions during fea-
ture selection, filter methods are computationally cheaper
as they decouple feature selection from model learning, and
are typically simpler to implement in practice.

Organization. Section 2 gives preliminaries, together with
an example illustrating that the MI feature selection crite-
rion can be suboptimal for binary classification. Section 3
describes the proposed Bayes feature selection method, fol-
lowed by examples of how it can be applied to different
learning problems and performance measures. Section 4
gives results of experiments on several learning tasks.

2 PRELIMINARIES AND BACKGROUND

Notation. For n ∈ Z+, we denote [n] = {1, . . . , n}.
For a vector x = (x1, . . . , xn) ∈ Rn and set J =
{j1, . . . , jk} ⊆ [n] with j1 < . . . < jk, we denote
xJ = (xj1 , . . . , xjk) ∈ Rk. For random variables X and
Y , we denote by H(X) the entropy of X , by H(Y |X) the
conditional entropy of Y givenX , and by I(X;Y ) the mu-
tual information between X and Y . For a predicate φ, we
denote by 1(φ) the indicator of φ, which takes the value 1
if φ is true and 0 otherwise. For any z ∈ R, sign(z) = 1 if
z > 0 and −1 otherwise.

Problem Setup. Let X ⊆ Rn be an n-dimensional in-
stance space. We will be interested in feature selection for
supervised learning problems, where there is some label
space Y and prediction space Ŷ; one receives a training
sample S = ((x1, y1), · · · , (xm, ym)) ∈ (X × Y)m, and
the goal is to learn a prediction model h : X→Ŷ .1 Typ-
ically, one assumes all examples (both training examples
and future test examples) are drawn i.i.d. from some prob-
ability distribution D on X × Y , and the goal is to learn
a prediction model with good prediction performance (ac-
cording to a suitable performance measure) on future ex-
amples from D. We will denote by (X,Y ) a random vari-
able drawn from D. Often, performance is measured via a
loss function ` : Y × Ŷ→R+; the goal then is to learn a
model h minimizing the expected loss on a new example
from D, which we refer to as the `-error of h w.r.t. D:
er`D[h] = E(X,Y )∼D[`(Y, h(X))]. The smallest achiev-
able `-error over all possible prediction models is called
the Bayes `-error for D: er`,∗D = infh:X→Ŷ er`D[h]. For ex-
ample, in binary classification, one has Y = Ŷ = {±1},
and the loss function of interest is often the 0-1 loss `0-1 :
{±1} × {±1}→R+ defined as `0-1(y, ŷ) = 1(ŷ 6= y). For
problems with binary labels Y = {±1}, we will denote by
p = P(Y = 1) the overall probability of label +1 under
D, and by η : X→[0, 1] the associated class probability
function: η(x) = P(Y = 1 |X = x). Here the Bayes 0-1
error has the form er0-1,∗

D = EX [min(η(X), 1− η(X))].

The feature selection problem we are interested in is to
select a subset of features J ⊆ [n] of some speci-
fied size k ∈ [n] (usually k � n), such that one can
then learn a good prediction model in the reduced k-
dimensional feature space XJ = {xJ |x ∈ X} ⊆
Rk.2Specifically, given a training sample S ∈ (X × Y)m
as above, one works with the reduced training sample
SJ = ((x1

J , y
1), · · · , (xmJ , ym)) ∈ (XJ × Y)m, and

learns a prediction model hJ : XJ→Ŷ in the reduced
space XJ . We will denote by DJ the marginal distri-
bution of D on XJ × Y; for problems with binary la-

1Often Ŷ = Y , but this is not always the case.
2In this paper, we assume for simplicity that the target fea-

ture subset size k is given as part of the problem. However, the
methods developed easily extend to settings where k is unknown.



bels Y = {±1}, we will also denote by ηJ : XJ→[0, 1]
the class probability function on the reduced feature space
XJ : ηJ (z) = P(Y = 1 |XJ = z), where XJ contains
components of the random vector X corresponding to in-
dices in J . Clearly, if the examples in S are drawn i.i.d.
from D, then the examples in SJ can be viewed as be-
ing drawn i.i.d. from DJ . In the loss function setting, the
performance of a model hJ learned in the reduced feature
space is measured via its `-error w.r.t. DJ : er`DJ

[hJ ] =
E(Z,Y )∼DJ [`(Y, hJ (Z))] = E(X,Y )∼D[`(Y, hJ (XJ ))].

Feature Selection as (Approximate) Optimization. We
will view feature selection methods as (approximately) op-
timizing some objective or criterion CD : 2[n]→R, which
typically depends on distribution D. Given such a criterion
CD and a target feature subset size k, one aims to select

J ∗ ∈ argmax
J ⊆ [n]
|J |= k

CD(J ) . (1)

Of course, in practice, one does not know the distribution
D, and so instead uses an approximate version of the cri-
terion CD based on the training sample S, which we shall
denote as ĈS : 2[n]→R. Moreover, the combinatorial opti-
mization problem (over

(
n
k

)
subsets) is generally computa-

tionally hard, and so one settles for an approximate search
strategy, such as a greedy approach. We shall elaborate fur-
ther on both these approximations below.

Filter Methods and Mutual Information (MI) Criterion.
In a filter method for feature selection, the choice of the
feature subset does not depend on the particular learning
algorithm to be used in the reduced feature space, i.e. the
criterion CD is independent of the particular learning algo-
rithm to be used. A popular filter criterion that is widely
used in feature selection for supervised learning is the mu-
tual information (MI) criterion, defined as the mutual in-
formation between the selected features and the labels:

CMI
D (J ) = I(XJ ;Y ) , (2)

where (X,Y ) denotes a random variable distributed ac-
cording to D.The motivation for using the MI criterion is
that it is expected to preserve the information necessary
for learning a good prediction model. Indeed, in the case
of binary classification, monotonic functions of the mutual
information I(X;Y ) are known to both upper and lower
bound the Bayes error er0-1,∗

D [21–24]. However, as seen
below, even in the case of binary classification, there are
situations where the MI criterion does not select an opti-
mal set of features:

Example 1 (Suboptimality of MI criterion for binary clas-
sification with 0-1 error). Consider a binary classification
problem on a 2-dimensional instance space with binary
features: X = {0, 1}2, Y = {±1}. Let D be a probability
distribution on (X × Y) under which P(Y = 1) = 0.3,
the random variables X1, X2 (components of the random

vector X) are conditionally independent given the label Y ,
and the class-conditional distributions are given by

P(X1 = 1 |Y = 1) = 0.4 ; P(X1 = 1 |Y = −1) = 0.1 ;
P(X2 = 1 |Y = 1) = 0.9 ; P(X2 = 1 |Y = −1) = 0.4.

Clearly, P(X1 = 1) = 0.19, P(X2 = 1) = 0.55,
η{1}(0) = 0.22, η{1}(1) = 0.63, η{2}(0) = 0.07 and
η{2}(1) = 0.49. Now consider selecting a single feature
for use in learning a binary classifier (thus here n = 2,
k = 1). It can be verified that under the above distribution,

CMI
D ({1}) = I(X1;Y ) = 0.08

CMI
D ({2}) = I(X2;Y ) = 0.17.

Therefore the MI criterion would select feature 2 and learn
a classifier in the feature space X{2}. One can also com-
pute the Bayes 0-1 errors in X{1} and X{2}; these can be
verified to be

er0-1,∗
D{1}

= 0.25 ; er0-1,∗
D{2}

= 0.30 .

Thus even if one uses the best possible learning algorithm
in the feature space X{2} selected by the MI criterion, the
best classifier one can learn will have 0-1 error 0.30. On
the other hand, if we had selected feature 1, we could po-
tentially have learned a classifier with 0-1 error 0.25!

The above example suggests looking directly for a feature
subset that yields low Bayes error with respect to a given
performance measure of interest.

3 BAYES OPTIMAL FEATURE
SELECTION

Motivated by the above discussion, we now develop a fil-
ter method for feature selection that is tailored to optimize
a general performance measure of interest. In particular,
rather than selecting a feature subset by maximizing the
mutual information with the labels, our approach optimizes
the information most relevant to the supervised learning
task at hand, with the aim of learning as good a prediction
model in the reduced feature space as possible in terms of
the given loss or performance measure. More formally, for
a supervised learning problem with label space Y , predic-
tion space Ŷ , and with loss function ` : Y × Ŷ→R+, we
will be interested in selecting a feature subset that mini-
mizes the Bayes `-error in the reduced feature space, or
equivalently, maximizes the following criterion:

CBayes,`
D (J ) = −er`,∗DJ

. (3)

Note that this is different from a wrapper method, which
looks for a feature subset that maximizes prediction perfor-
mance of a model learned by a particular algorithm; here,
we are instead interested in finding the best feature subset
for a given performance measure of interest, without being
tied to any particular learning algorithm.



3.1 EXAMPLES OF BAYES CRITERION FOR
VARIOUS LEARNING PROBLEMS AND
PERFORMANCE MEASURES

Here we give several examples of the above Bayes criterion
for specific learning problems/performance measures. We
shall see that for the case of binary class probability esti-
mation with the logarithmic loss, the Bayes criterion effec-
tively reduces to the MI criterion (Example 5); thus the MI
criterion can be viewed as finding a good feature space for
class probability estimation. Similarly, for regression with
squared error, the Bayes criterion is exactly the criterion
optimized in the forward regression feature selection algo-
rithm for sparse linear regression (Example 6). We begin
with the simple case of binary classification with 0-1 error.

Example 2 (Bayes criterion for binary classification with
0-1 error). Let Y = Ŷ = {±1}, with `0-1 : {±1} ×
{±1}→R+ defined as `0-1(y, ŷ) = 1(ŷ 6= y). Then

CBayes,0-1
D (J ) = −EX

[
min

(
ηJ (XJ ), 1− ηJ (XJ )

)]
.

As noted earlier, the filter method provided by Yang and Hu
(2012) [13] for optimizing the Bayes 0-1 error eventually
optimizes an objective different from the above one; while
the authors initially discuss a feature selection criterion of
the above form, they end up prescribing and analyzing a
variant −EX,Y

[
(1 − Y )ηJ (XJ ) + Y

(
1 − ηJ (XJ )

)]
=

−EX
[
2ηJ (XJ )

(
1− ηJ (XJ )

)]
, which is not necessarily

optimal for the 0-1 error (see Eq. (7) in their paper). In this
work, we go well beyond the simple setting of 0-1 classi-
fication, and present a systematic study of Bayes optimal
criteria for general performance measures, as seen below.

Example 3 (Bayes criterion for binary classification with
cost-sensitive error). Let Y = Ŷ = {±1}. Let c ∈ (0, 1)
denote the cost of a false positive and (1 − c) the cost of
a false negative; the corresponding cost-sensitive loss `c :
{±1} × {±1}→R+ is defined as

`c(y, ŷ) =


c if y = −1, ŷ = 1

1− c if y = 1, ŷ = −1
0 otherwise.

Then

CBayes,c
D (J )
= −EX

[
min

(
(1− c)ηJ (XJ ), c(1− ηJ (XJ ))

)]
.

Example 4 (Bayes criterion for binary classification with
balanced 0-1 error). Let Y = Ŷ = {±1}. The balanced
loss `bal : {±1} × {±1}→R+ seeks to balance predic-
tion errors on positive and negative examples by weighting
them according to their inverse class probabilities, and is
frequently used to measure classification performance in
class imbalance settings [31]; it depends on the underly-
ing distribution D via the probability p = P(Y = 1), and

is defined as

`bal(y, ŷ) =


1

1−p if y = −1, ŷ = 1
1
p if y = 1, ŷ = −1
0 otherwise.

Here the Bayes criterion becomes

CBayes,bal
D (J ) = −EX

[
min

(ηJ (XJ )
p

,
1− ηJ (XJ )

1− p

)]
.

Example 5 (Bayes criterion for binary class probability
estimation with logarithmic loss). Let Y = {±1} and
Ŷ = [0, 1], with logarithmic loss `log : {±1} × [0, 1]→R+

defined as

`log(y, ŷ) = −1(y = 1) ln(ŷ)− 1(y = −1) ln(1− ŷ) .

Then

CBayes,log
D (J )
= −EX

[
− ηJ (XJ ) ln(ηJ (XJ ))

−(1− ηJ (XJ )) ln(1− ηJ (XJ ))
]

= −H(Y |XJ ) = I(XJ ;Y )−H(Y )

= CMI
D (J )−H(Y ) .

This is equivalent to using the MI criterion! Thus, in the bi-
nary setting, the MI criterion effectively selects a feature set
that minimizes Bayes log-error, i.e. that allows for a good
class probability estimator (in terms of logarithmic loss) in
the resulting feature space! (Note that this is not the same
as selecting good features for binary classification with 0-1
error or other performance measures; e.g. see Example 1.
This is also demonstrated in our experiments in Section 4.)

Example 6 (Bayes criterion for regression with squared er-
ror). Let Y = Ŷ = R, with squared loss `sq : R× R→R+

defined as `sq(y, ŷ) = (ŷ − y)2. Then

CBayes,sq
D (J ) = −EX

[
Var(Y |XJ )

]
.

This is exactly the criterion used in the well-known forward
regression feature selection algorithm for sparse linear re-
gression (where one assumes E[Y |X = x] = β>x for
some sparse β ∈ Rn) [32].

While all examples seen so far have involved performance
measures that can be expressed as an expected value of a
loss function, we shall next consider examples of learn-
ing problems where the performance measure of interest
is complex and non-additive.

Example 7 (Bayes criterion for binary classifica-
tion/retrieval with Fβ-measure). Let Y = Ŷ = {±1},
and consider a classification or retrieval problem where the
goal is to learn a classifier h : X→{±1} with performance
measured by the Fβ-measure (higher values are better):

Fβ,D[h] =
1 + β2

β2

PrecD[h] +
1

RecD[h]

,



Algorithm 1 `-BayesGreedy

1: Inputs: S = (x1, y1), . . . , (xm, ym)) ∈ (Rn × Y)m
k ∈ [n]

2: Initialize: J ← ∅
3: for t = 1 . . . k do
4: jt ← argmax

j∈[n]\J
ĈBayes,`
S (J ∪ {j})

5: J ← J ∪ {jt}
6: end for
7: Output: J

where PrecD[h] = P
(
Y = 1 |h(X) = 1

)
and RecD[h] =

P
(
h(X) = 1 |Y = 1

)
are the precision and recall of h, re-

spectively, and β > 0 trades off the relative importance of
these two quantities. In this case, the performance measure
cannot be expressed as the expected value of a loss func-
tion over individual data points. Nevertheless, it is known
that the Bayes optimal classifier for the Fβ-measure is ob-
tained by thresholding the class probability function η for
the given distribution at an optimal point [24, 33]. One
can therefore compute the Bayes optimal value of the Fβ-
measure for a given distribution, and use this as the crite-
rion to be optimized in feature selection:

C
Bayes,Fβ
D (J ) = sup

hJ :XJ→{±1}
Fβ,DJ [hJ ]

= sup
t∈[0,1]

Fβ,DJ [sign ◦(ηJ − t)].

Example 8 (Bayes criterion for bipartite ranking with
AUC). Let Y = {±1}, and consider a bipartite rank-
ing problem where the goal is to learn a scoring function
f : X→R, with performance measured by the area under
the ROC curve (AUC) (higher values are better):

AUCD[f ] = E
[
1
(
(Y − Y ′)(f(X)− f(X ′)) > 0

)
+ 1

2 1
(
f(X) = f(X ′)

) ∣∣ Y 6= Y ′
]
,

where (X,Y ), (X ′, Y ′) are drawn i.i.d. from D. While
here again, the performance measure cannot be expressed
as an expectation of loss function, one can indeed compute
the Bayes optimal value of the performance measure for a
given distribution (e.g. see [34]); we use this as the crite-
rion to be optimized in feature selection:

CBayes,AUC
D (J )
= sup

fJ :XJ→R
AUCDJ [fJ ]

= 1−
E
[
min

(
αJ (XJ , X

′
J ), αJ (X

′
J , XJ )

)]
2p(1− p)

,

where αJ (Z,Z ′) = ηJ (Z)(1− ηJ (Z ′)).

3.2 GREEDY ALGORITHM FOR OPTIMIZING
BAYES CRITERION

As noted earlier, in practice, one does not have access to the
true distributionD, and therefore must optimize an approx-
imate version of the Bayes criterion based on the training

sample S = ((x1, y1), . . . , (xm, ym)). In particular, for a
label space Y , prediction space Ŷ , and loss ` : Y×Ŷ→R+,
note that the Bayes `-error w.r.t. D can be written as

er`,∗D = EX

[
inf
ŷ∈Ŷ

EY |X
[
`(Y, ŷ)

]]
.

To obtain a sample-based estimate of er`,∗D , one can replace
the outer expectation over X by an average over the train-
ing instances xi in S, and use an empirical estimate of the
conditional distribution of Y given X in computing the in-
ner expectation:

êr`,∗S =
1

m

m∑
i=1

inf
ŷ∈Ŷ

ÊY |X=xi
[
`(Y, ŷ)

]
,

where ÊY |X denotes expectation with respect to an approx-
imate conditional distribution P̂(Y |X) estimated from the
sample S. This gives the approximate Bayes criterion

ĈBayes,`
S (J ) = −êr`,∗SJ

= − 1

m

m∑
i=1

inf
ŷ∈Ŷ

ÊY |XJ=xiJ

[
`(Y, ŷ)

]
,

where again ÊY |XJ denotes expectation with respect to an
approximate conditional distribution P̂(Y |XJ ) estimated
from the sample SJ . For example, for binary classification
with 0-1 error, one gets the approximate criterion:

ĈBayes,0-1
S (J ) = − 1

m

m∑
i=1

min
(
η̂J (x

i
J ) , 1− η̂J (xiJ )

)
,

where η̂J : XJ→[0, 1] is a suitable estimate of ηJ based on
SJ . An ideal algorithm would then select the best subset
of k features according to the above approximate criterion:

ĴS ∈ argmax
J ⊆ [n]
|J |= k

ĈBayes,`
S (J ) .

However, this optimization problem (over
(
n
k

)
subsets) is

typically still hard due to its combinatorial nature. As is
often done in other feature selection approaches, one pos-
sibility is to use an algorithm that selects features to maxi-
mize the above criterion in a greedy fashion. For example,
one can use a forward selection algorithm which starts with
an empty feature set, and at each iteration, adds the feature
with the highest marginal value of the objective ĈBayes,`

S to
the current set of features (see Algorithm 1).3

Conditional probability estimation for large k using s-
variate approximations. Applying the above algorithm

3We note that the proposed greedy method easily extends to
settings where the value of k is not available to us; for example,
one can terminate this method based on an appropriate stopping
criterion (such as when the difference in feature criterion across
two successive iterations falls below a certain value) and use the
features chosen up to that point to learn a suitable predictor.



Table 1: Data sets used in our experiments.
Data set No. of features No. of instances Feature type p = P(Y = 1)
Mushroom 116 8124 Binary 0.482
Adult 123 48824 Binary 0.239
Splice 240 3190 Binary 0.519
Semeion 256 1593 Binary 0.102
KDDCup01 139351 1909 Binary 0.022
Pcmac 3289 1943 Integer 0.495
Basehock 4862 1993 Integer 0.501
Gisette 5000 6000 Integer 0.500
Waveform 40 5000 Real 0.331

as shown requires computing conditional probability esti-
mates P̂(Y |XJ ) for feature sets J of size up to k. For
small k, this is easy to do; for example, for problems with
binary labels, one computes:

η̂J (z) = P̂(Y = 1 |XJ = z) =
∑m
i=1 1(x

i
J = z, yi = 1)∑m

i=1 1(x
i
J = z)

if
∑m
i=1 1(x

i
J = z) > 0

1
2 otherwise.

When k is large, one runs into difficulties in later iterations
of the algorithm. Specifically, consider the t-th iteration,
when (t − 1) < k features j1, . . . , jt−1 have been added
to J and the t-th feature is to be selected. For large t, it
is likely that most configurations of xiJ appear only once
in the training sample, and therefore for all potential fea-
tures jt ∈ [n] \ J , one gets (in a setting with binary labels)
that η̂J∪{jt}(x

i
J∪{jt}) is either 0, 1 or 1

2 , thus giving many
ties and no useful basis for selecting the next feature. This
is an inherent difficulty that arises when estimating high-
dimensional multivariate distributions from limited data. A
common approach to overcome this problem, often used
in the context of optimizing the MI criterion (e.g. see [5]),
is to use approximate calculations that require estimating
conditional distributions on only smaller subsets of the fea-
tures; one such approach is a s-variate approximation (for
some small s < k), where the given filter criterion on a set
of k features J is approximated by the average value of the
criterion on all subsets of J of size s [20]:

ĈBayes
S (J ) ≈ 1(

k
s

) ∑
A⊂J ,|A|=s

ĈBayes
S (A).

With such approximations, one can use algorithms based
on both forward selection and backward elimination to
greedily maximize the Bayes criterion. In our experiments
with large feature subsets, we use the standard bivariate ap-
proximation with s = 2.

4 EXPERIMENTS

We now report results of experiments designed to evalu-
ate the proposed Bayes optimal feature selection method in

a variety of settings with different performance measures.
These include binary classification with both the standard
0-1 and cost-sensitive losses, binary class probability es-
timation (CPE) with the logarithmic loss (under which our
Bayes criterion reduces to MI criterion), and learning under
class imbalance with the balanced 0-1 loss and F-measure.
The data sets used in our experiments are shown in Ta-
ble 1; these include varying numbers of features/examples,
feature types, and class probabilities.4 Each data set was
split into train-test sets, with the feature selection methods
and learning algorithms applied on the training set, and the
learned model evaluated on the test set; the average per-
formance over 5 random train-test splits is then reported.
All tunable parameters in the learning algorithms used were
chosen using a held-out portion of the training set.5,6

Baselines. Our main method, which optimizes the Bayes
criterion corresponding to the loss or performance mea-
sure of interest in a greedy manner (possibly with some
approximations in estimating high-dimensional conditional
distributions), is termed BayesGreedy. We also include a
score-based variant of our method (BayesScore) that scores
each feature independently using the Bayes criterion eval-
uated on the corresponding one-dimensional feature space,
and selects the top k features according to this score. As
baselines, we consider a number of standard filter meth-
ods popular in practice. These include a method that opti-
mizes the MI criterion in a greedy manner (again with some
approximations in estimating high-dimensional conditional
distributions), termed MIGreedy [5, 7]; a score-based vari-

4We obtained Pcmac and Basehock from the
ASU repository (http://featureselection.asu.edu), KD-
DCup01 from the KDD Cup Challenge 2001
(http://pages.cs.wisc.edu/dpage/∼kddcup2001/) and the rest
from the UCI ML repository (http://www.ics.uci.edu/∼mlearn/
MLRepository.html). Of these, Semeion and Waveform are
multi-class data sets, where one of the class was taken as positive,
and the remaining were combined into the negative class.

5In the case of the larger Adult data set, 20% of the data was
used for training and the remaining for testing. On all other data
sets, 70% was used for training. In each case, a held-out 20% of
the training set was used for parameter tuning.

6For data sets with integer/real valued features, we discretized
each feature into three categories based on intervals: (−∞, µ −
σ), [µ− σ, µ+ σ), and [µ+ σ,∞), where µ is the mean feature
value and σ is the standard deviation.
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(d) Semeion (0-1)
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(e) Pcmac (0-1)
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(f) Basehock (0-1)
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(g) Gisette (0-1)
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Figure 1: Feature selection for binary 0-1 classification. Plots show test 0-1 error vs. number of features for different
feature selection methods, with SVM (RBF kernel) as the classification algorithm.
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Figure 2: Feature selection for cost-sensitive binary classification with different costs c. Plots show test cost-sensitive error
vs. number of features for various filter methods, with cost-sensitive SVM (RBF kernel) as the classification algorithm.

ant of this method for optimizing the MI criterion (MIS-
core) [21]; and a score-based method that optimizes an-
other popular feature selection criterion, namely the Fis-
cher score (F-score) [35]. Apart from the above methods,
there are other filter methods based on MI that in addition
to optimizing for relevant feature subsets, also seek to pro-
mote some form of ‘diversity’ among the chosen features.
Popular among these is the minimal-redundancy-maximal-
relevance (mRMR) method [6], which we include as a rep-
resentative baseline from this category.

The above baselines are indeed representative of the vari-
ous filter methods used in practice, with most other meth-
ods based on MI being variants of the MIGreedy or mRMR
methods. Since the focus of this paper is entirely on filter
methods, we do not compare our approach against wrap-
per or embedded methods, which unlike filter methods are
closely tied to the learning algorithm used.

In experiments below, unless otherwise specified, the
BayesGreedy and MIGreedy methods shall use exact es-
timates of class-conditional distributions.

4.1 BINARY CLASSIFICATION (0-1 ERROR AND
COST-SENSITIVE ERROR)

The first task that we consider is binary classification with
the standard 0-1 error (see Example 2 for the Bayes crite-
rion for this performance measure). We used kernel SVM
(with RBF kernel) as the learning algorithm for this task.
Figure 1 contains the test 0-1-error for the different feature
selection methods as a function of the number of features
chosen. As seen, on all data sets except Semeion and for
most feature subset sizes, the features chosen by the pro-
posed BayesGreedy method (that explicitly optimizes the
0-1 error) perform comparable to or better than the base-
line methods. The poor performance of BayesGreedy on
the Semeion data set was due to the inexact/greedy search
technique used by the method (when the Bayes criterion
was optimized exactly on this data set using an exhaus-
tive search over feature subsets, we did obtain better per-
formance than the MI criterion).

We also consider the task of binary classification with cost-
sensitive error (see Example 3 for the Bayes criterion).
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(d) Semeion (CPE)
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(e) Pcmac (CPE)
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(f) Basehock (CPE)
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(g) Gisette (CPE)
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Figure 3: Feature selection for binary CPE. Plots show test logarithmic error vs. number of features for different feature
selection methods, with logistic regression (RBF kernel) as the CPE algorithm. Here, MI is the Bayes optimal criterion for
the logarithmic error; one can see that MIGreedy performs the best in most cases.
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(a) Semeion (Balanced 0-1)
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(b) Semeion (F1-measure)
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(c) KDDCup01 (Balanced 0-1)

Figure 4: Feature selection for learning under class imbalance. (a), (c) Test balanced 0-1 error vs. number of features, with
balanced SVM (RBF kernel) used as the learning algorithm. (b) Test F1-measure vs. number of features, with a plug-in
method that uses logistic regression (RBF kernel) followed by empirical thresholding as the learning algorithm. Bivariate
approximations were used in estimating class-conditionals for KDDCup01. Higher values are better for F1-measure.

We used cost-sensitive kernel SVM as the learning algo-
rithm here. Figure 2 contains results on the Adult and
Mushroom data sets with different costs. In three of four
cases, BayesGreedy yields lower cost-sensitive error than
the baselines for smaller feature subset sizes and compara-
ble values for larger feature subset sizes.

On most data sets, the score-based methods do not perform
as well as the other methods; this is due to their naive search
strategy where the features are scored independently.

4.2 BINARY CLASS PROBABILITY ESTIMATION
(LOGARITHMIC ERROR)

The next task that we consider is class probability estima-
tion with the logarithmic error. As mentioned earlier, the
Bayes criterion here effectively reduces to the MI criterion
(see Example 5). We used regularized kernel logistic re-
gression (with RBF kernel) as the class probability estima-

tion algorithm here. Figure 3 contains plots of the test loga-
rithmic error vs. the number of features chosen for different
feature selection methods; we also include for comparison
methods that optimize the Bayes criterion for the 0-1 loss.
MIGreedy, which optimizes the Bayes criterion for the log-
arithmic error, performs comparable to or better than the
other methods for most feature subset sizes.

4.3 LEARNING UNDER CLASS IMBALANCE
(BALANCED 0-1 ERROR AND F-MEASURE)

We now move to the task of binary classification under
class imbalance. Commonly used performance measures in
this setting include the balanced 0-1-error and F1-measure,
both of which aim to balance errors on either classes (see
Examples 4 and 7 for the Bayes criterion for these mea-
sures). We used a balanced version of SVM (where the
positive and negative points were weighted with costs 1/p
and 1/(1 − p) respectively) as the learning algorithm for
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(a) Gisette (0-1) – large k

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

No. of features

T
es

t b
al

an
ce

d 
er

ro
r

 

 
bal−BayesGreedy
MIGreedy
bal−BayesScore
MIScore
mRMR
FScore

(b) Semeion (Balanced 0-1)
– large k

Figure 5: Selecting larger numbers of features. The settings
here are similar to previous plots, except that bivariate ap-
proximations were used in estimating class-conditionals.

the balanced 0-1-error; and a plug-in method using logistic
regression followed by thresholding of the resulting class
probability estimate at a sample-based optimal point as the
learning algorithm for the F1-measure [33, 36, 37]. Fig-
ure 4 contains results on the class-imbalanced Semeion
(p = 0.102) and KDDCup01 (p = 0.022) data sets. In the
case of Semeion, the BayesGreedy methods perform the
best over all. With KDDCup01, where we include results
for the balanced 0-1 error (the performance measure used
in the KDD Cup 2001 challenge), there is no clear win-
ner; here, BayesScore performs the best for smaller feature
subsets, and MIGreedy performs better for larger subsets.

4.4 SELECTING LARGER NUMBER OF
FEATURES

We also evaluated the proposed filter methods on large fea-
ture subset sizes k. As noted earlier, an exact implementa-
tion of the prescribed greedy algorithm is difficult in this
case as estimation of high-dimensional class-conditional
distributions from limited data is prone to errors and is also
computationally expensive. We therefore resorted to the
bivariate approximation technique described in Section 3.2
for estimating the class-conditional distributions; the MI-
Greedy method also used the same estimation procedure,
while the search technique in mRMR inherently used a sim-
ilar approximation [6]. Figure 5 contains results on the
Gisette (binary classification with 0-1 loss) and Semeion
(binary classification with balanced 0-1 loss) data sets. In
the case of Semeion, the BayesGreedy method consistently
performs as well as (if not better than) the baselines; in the
case of Gisette, BayesGreedy is the second best over all.

4.5 RUN-TIME COMPARISONS

We now present run-time comparisons of the various fil-
ter methods for different values of k. Table 2 contains the
run-times (in seconds) for cost-sensitive classification on
Adult data, and 0-1 binary classification with large k on
Gisette data (with approximations used to estimate condi-
tional distributions). All methods here were implemented
in MATLAB. As expected, the score-based methods, re-
quiring only a single sort operation, offer the least run-

Adult (c = 0.25)
k = 5 k = 10 k = 15

c-BayesGreedy 1.75 12.78 71.14
MIGreedy 1.95 15.63 94.06
c-BayesScore 0.10 0.10 0.10

MIScore 0.17 0.19 0.17
mRMR 1.32 5.27 11.71
FScore 0.06 0.08 0.08

Gisette (0-1) – large k
k = 25 k = 50 k = 75

0-1-BayesGreedy 954 3784 8475
MIGreedy 2123 8330 18475

0-1-BayesScore 2.62 2.65 2.71
MIScore 2.67 2.73 2.76
mRMR 1242 5046 11384
FScore 1.01 1.08 1.04

Table 2: Run-time comparison of various filter methods for
different values of k. All values are in seconds. The set-
tings here are same as before. For Gisette, bivariate approx-
imations were used to estimate conditional distributions.

times; however, as seen earlier, these methods often per-
form poorly in terms of accuracy. Among the other meth-
ods, BayesGreedy is significantly faster than MIGreedy,
despite both methods using the same search procedure (this
is because the Bayes criteria for the 0-1 and cost-sensitive
losses involve simple ‘max’ operations that can be imple-
mented efficiently). On the Adult data, where BayesGreedy
computes exact estimates of conditional distributions, it
is slower than mRMR; however, when BayesGreedy uses
computationally cheaper bivariate approximations to esti-
mate probabilities, it yields lower run-times than mRMR
even for larger values of k, as seen with the Gisette data.

5 CONCLUSION

We have developed a Bayes optimal filter method for fea-
ture selection with supervised learning considering general
performance measures, and provided instantiations of our
method for a variety of learning problems and performance
measures. Experiments demonstrate that our approach is
competitive with many state-of-the-art methods. While our
focus has been on problems with binary labels, our ap-
proach easily generalizes to multiclass settings.

A possible direction of work in the future is to investigate
approximation guarantees for the greedy algorithm used to
optimize a given Bayes optimal criteria. Indeed (under spe-
cific assumptions) such guarantees have been established
for the MI criterion and the criterion for regression with
squared loss, by leveraging tools from submodular opti-
mization [38,39]. It would be interesting to explore similar
results for the other filter criteria developed in this work.
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