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Abstract

Network statistics such as node degree distribu-
tions, average path lengths, diameters, or clus-
tering coefficients are widely used to character-
ize networks. One statistic that received consid-
erable attention is the distance distribution — the
number of pairs of nodes for each shortest-path
distance — in undirected networks. It captures
important properties of the network, reflecting
on the dynamics of network spreading processes,
and incorporates parameters such as node cen-
trality and (effective) diameter. So far, however,
no parameterization of the distance distribution is
known that applies to a large class of networks.
Here we develop such a closed-form distribu-
tion by applying maximum entropy arguments to
derive a general, physically plausible model of
path length histograms. Based on the model, we
then establish the generalized Gamma as a three-
parameter distribution for shortest-path distance
in strongly-connected, undirected networks. Ex-
tensive experiments corroborate our theoretical
results, which thus provide new approaches to
network analysis.

1 INTRODUCTION

As networks are combinatorial structures, network analysis
typically relies on statistics such as node degree distribu-
tions, average path lengths, clustering coefficients, or mea-
sures of assortativity [11]. One statistic that received con-
siderable attention is the distance distribution — the num-
ber of pairs of nodes for each shortest-path distance — in
undirected networks. First of all, features such as average
path lengths or network diameters can be determined there-
from. Second of all, path length statistics are closely related
to velocities or durations of network spreading processes.
Analytically tractable models of shortest path distributions
would thus allow for inferring network properties as well
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Figure 1: A highly infectious SIR cascade on a network
realizes a node discovery process. (a) at onset time t “ 0,
most nodes are susceptible and only a single node is in-
fected. (b)–(d) infected nodes immediately recover but al-
ways infect their susceptible neighbors. This way, the num-
ber of newly infected nodes nt at time t corresponds to the
number nd of nodes that are at distance d “ t from the
source node of the epidemic.

as for reasoning about diffusion dynamics. Yet, analytic
models and in particular parameterizing the distance dis-
tribution prove difficult to achieve and related reports are
curiously scarce [7, 9, 14, 34, 35]. Here, we contribute to
these efforts and derive a novel, principled general model
of shortest path length distributions in strongly connected
networks. Considering a duality between network spread-
ing processes and shortest path lengths, we then show that
maximum entropy arguments as to diffusion dynamics lead
to the generalized Gamma distribution as a three-parameter
distribution in closed form.

The work presented here was motivated by questions as
to the dynamics of network spreading processes. Models
of such processes play an important role in various dis-
ciplines. They model the dynamics of epidemic diseases
[20, 27, 22], explain the diffusion of innovations or vi-
ral messages [1, 24], and, in the wake of social media, a
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Figure 2: Shortest path histogram resulting from the net-
work spreading process in Fig. 1 and a corresponding max-
imum likelihood fit of the generalized Gamma distribution.

quickly growing body of research develops graph diffu-
sion models to study patterns of information dissemination
in Web-based social networks [2, 10, 16, 25, 36]. Each
of these examples concerns an instance of a rather gen-
eral phenomenon: An agent (a virus, a rumor, an urge to
buy a product, etc.) spreads in form of a contact process
and thus cascades through a network of interlinked enti-
ties (people, computers, blogs, etc.). At the onset of the
agent’s activity, many networked entities are susceptible to
its effects but only few are actually infected (see Fig. 1(a)).
As time progresses, susceptible entities related to infected
ones may become infected whereas infected entities may
remain infected, recover, become susceptible again, or even
be removed from the population (see Fig. 1(b)–(d)). Crucial
properties of such a process are its infection rate, its recov-
ery rate, or the number of infected entities per unit of time.
If an (information) epidemic is observed to rage through a
community, these features help assessing its progression or
final outbreak size and thus inform contagion or dissemina-
tion strategies. For instance, while public health authorities
need to devise immunization protocols to curtail epidemic
diseases, viral marketers typically aim at maximizing the
effects of their campaigns. In any case, knowledge as to
the structure of a community through which an epidemic
spreads would be beneficial. Alas, in practice, community
structures are hardly ever known but available information
only consists of outbreak data as shown in Fig. 2.

Relating such outbreak data to network structures is the key
idea underyling our contribution and is orthogonal to re-
lated approaches such as [2, 21, 26, 15, 36], which assume
outbreak data and information about network members to
be available and apply machine learning to identify hubs,
link structures, or infection routes. Instead, we follow the
paradigm in [4, 7, 16, 28, 29, 35] which asks for physi-
cal explanations of the noticeably skewed appearance of
outbreak histograms and attempts to relate corresponding
physical models to network properties.

More precisely, we make two technical contributions. First,
we relate outbreak data to network structures via a novel
maximum entropy model. Then, based on the model, we es-
tablish the generalized Gamma distribution as a physically-

plausible, continuous parameterization of the distance dis-
tribution of networks of arbitrary topology. Considering the
fact that temporal distributions of infection counts in highly
infectious spreading processes and distributions of shortest
path lengths are dual phenomena allows us to invoke max-
imum entropy arguments from which we derive physical
characterizations of path lengths- and outbreak statistics. In
other words, our model results from first principles rather
than from data mining. It also generalizes previous theoret-
ical results [7, 35] and provides an explanation for a recent
empirical observation as to path length distributions in so-
cial networks [8].

We proceed as follows. We start off by briefly reviewing ex-
isting analytical models of shortest path- and outbreak dis-
tributions in Section 2. Afterwards, we show that the gen-
eralized Gamma distribution naturally generalizes these,
and discuss its properties and characteristics in Section 3.
In particular, we demonstrate how the generalized Gamma
emerges as a maximum entropy model of path length- and
outbreak data. Before concluding, we support our theoreti-
cal results by exhaustive experiments on both synthetic and
real-world graphs in Section 4.

2 KNOWN RESULTS

Analytically tractable models of shortest path length dis-
tributions and outbreak data are of considerable interest in
the study of epidemic processes on networks. However, as
networks are combinatorial structures, corresponding re-
sults are necessarily statistical [4, 7, 16, 28, 29, 35]. In
a landmark paper [35], Vazquez studied the dynamics of
epidemic processes in power law networks. Arguing based
on branching process models, he showed that for networks
whose node degree distribution has a power law exponent
2 ă γ ă 3, the number of infected nodes at time t follows
a Gamma distribution.

fGApt; θ, ηq “
1

θη
1

Γpηq
tη´1e´t{θ (1)

where Γp¨q is the gamma function and θ ą 0 and η ą 0
are scale and shape parameters, respectively. Curiously, for
power law exponents γ ě 3, this result does not apply.
Concerned with Erdős-Rényi graphs, Bauckhage et al. [7]
derived a different result. Based on models of the expected
number of paths of length t between arbitrary nodes [9, 14],
they resorted to extreme value theory [13] to show that in-
fection counts can be characterized by the Weibull distribu-
tion.

fWBpt;λ, κq “
κ

λκ
tκ´1e´pt{λq

κ

(2)

where λ ą 0 and κ ą 0 are scale and shape parameters.
Neither model was obtained from mere empirical observa-
tions. Both follow from basic principles, provide physically
and hence socially plausible and comprehensible charac-
terizations of shortest path length distributions and diffu-
sion dynamics, and were verified empirically.
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(b) p “ 0.0075

Figure 3: Qualitative examples of shortest path distribution
in Erdős-Rényi graphs. Confirming [7], Weibull fits well.
Yet, generalized Gamma provides better fits.
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(a) µ “ 1, ξ “ 0.75
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(b) µ “ 2, ξ “ 0.75

Figure 4: Qualitative examples of shortest path distribu-
tion in LogNormal graphs. For different node degree dis-
tributions, the models considered here provide more or less
accurate fits. The generalized Gamma, however, always fits
best (cf. Tab. 1).

Finally, Bild et al. [8] recently investigated information
cascades and retweet networks on twitter and found that
they could accurately fit their data using the LogNormal
distribution

fLN pt;µ, ξq “
1

?
2π ξ t

e
´
plog t´µq2

2ξ2 (3)

where µ and ξ are location and scale parameters. Regarding
our approach in this paper, we emphasize that (3) was not
found theoretically but emerged empirically. At the same
time, we note that the Gamma, Weibull, and LogNormal
distribution may easily confused for one another [31]. Our
discussion so far therefore begs the question if the above
results are contradictory or if they can be unified within a
more general framework? In the following, we will show
that the latter is indeed the case.

3 A THREE-PARAMETER DISTANCE
DISTRIBUTION

We will now establish the generalized Gamma distribution
as a comprehensive model of the shortest path distribu-
tions and outbreak data in connected networks of arbitrary
topology. Different versions of the generalized Gamma dis-

tribution can be traced back to 1920s [12]. Here, we are
concerned with the three-parameter version that was intro-
duced by Stacy [33]. Its probability density function is de-
fined for t P r0,8q and given by

fGGpt | σ, α, βq “
β

σα
1

Γpα{βq
tα´1e´pt{σq

β

(4)

where σ ą 0 determines scale and α ą 0 and β ą 0 are
shape parameters. The probability density function in (4)
is unimodal but may be skewed to the left or to the right.
It also contains several other distributions as special cases
[5, 12]. Most notably, we point out that setting β “ 1 yields
the Gamma distribution in (1), equating α “ β yields the
Weibull distribution in (2), letting α{β Ñ 8, the general-
ized Gamma distribution approaches the LogNormal distri-
bution in (3).

These properties immediately suggest that the above results
might be specific instances of a more general model. We
will now prove that this is indeed the case:
Theorem 1. The generalized Gamma distribution provides
a physically plausible model of distance distributions and
outbreak data in strongly-connected, undirected networks.

Before proving this in the following subsections, we would
like to stress that, in contrast to Vazquez [35] and Bauck-
hage et al. [7], our maximum entropy model does not make
any assumption on the topology of the network — next to
being strongly connected — through which a viral agent is
spreading. Rather, it considers general properties of highly
infectious processes as discussed in the introduction and
resorts to the maximum entropy principle together with
likelihood maximization techniques. Any aspects related to
topological properties (e.g. degree distribution or cluster-
ing patterns) of individual networks are absorbed into the
parameters of (4), which, as we shall see in the experimen-
tal section, is flexible enough to represent a wide range of
different path length and spreading statistics.

3.1 A MAXIMUM ENTROPY APPROACH

Let us now demonstrate that the generalized Gamma dis-
tribution provides a principled model of shortest path- and
outbreak statistics in networks. We argue based on Jaynes’
maximum entropy principle [17]. It states that, subject
to observations and contextual knowledge, the probability
distribution that best represents the available information
is the one of highest entropy. In particular, we resort to an
approach by Wallis, cf. [18, chapter 11], which does not
assume entropy as an a priori measure of uncertainty but
uncovers it in the course of the argument.

To derive our analytical model of path length histograms of
arbitrary networks, we consider the network spreading pro-
cess in Fig. 1. Borrowing terminology from epidemiology,
we note that, at onset time t “ 0, most nodes in the net-
work are susceptible and one node is infected. At time t`1,



(a) constant qk (b) decreasing qk (c) increasing qk

Figure 5: The probability of fining a path of length k may
be constant or decrease or increase with k.

nodes that were infected at t have recovered yet did infect
their susceptible neighbors. Highly infectious SIR cascades
like this now realize a node discovery process: the num-
ber nt of newly infected nodes at time t corresponds to the
number of nodes that are at topological distance d “ t from
the source.

Given these considerations, we observe that the discrete
shortest path distribution of the entire network is nothing
but the sum of all node count histograms hsrts taken over
all possible source nodes. Let K denote the length of the
longest shortest path starting at a source vs and use nk to
indicate the number of nodes that are k steps away from
vs. Then, n “

řK
k“0 nk where n denotes the total num-

ber of nodes. The probability of observing a node at dis-
tance k can thus be expressed as pk “ nk{n and we have
1 “

řK
k“0 pk . Moreover, we let qk denote the proba-

bility that there exists a shortest path of length k so that
1 “

řK
k“0 qk and we emphasize that pk and qk will gen-

erally differ (see the didactic examples in Fig. 5). With
these definitions at hand, the joint probability of observing
counts nk of infected nodes corresponds to the multinomial

P pn1, . . . , nKq “ n!
źK

k“1

qnkk
nk!

whose log-likelihood is given by

L “ log n!`
ÿK

k“0
nk log qk ´ log nk! (5)

Assuming that nk " 1, we may apply Stirling’s formula
log nk! « nk log nk ´ nk to simplify (5)

L « n log n´ n`
ÿK

k“0
nk

`

log qk ´ log nk ` 1
˘

“ n log n` n
ÿK

k“0
pk
`

log qk ´ plog pk ` log nq
˘

“ ´n
ÿK

k“0
pk log

pk
qk
. (6)

As the expression in (6) is a Kullback-Leibler divergence,
our considerations so far led indeed to an entropy that needs
to be maximized in order to determine the most likely val-
ues n˚k of the nk.

However, up until now, the quantities qk are not defined
precisely enough to allow for a solution. Also, (6) accounts

only indirectly for temporal aspects of network spreading
processes as any dependency on time is hidden in the index
of summation k. We address both these issues by choosing
the ansatz

qk “ A tα´1
k (7)

whereA is a normalization constant and α ą 0. This choice
and its significance will be justified in detail below. For
now, we continue with our main argument.

Another underspecified quantity so far is the length K of
the supposed longest shortest path. However, dealing with
networks of finite size, we can bypass the need of having to
specifyK by means of introducing the following constraint

ÿ8

k“0
nk “ n (8)

into the problem of maximizing (6). Finally, to prevent de-
generate solutions (e.g. instantaneous or infinite spread),
we impose a constraint on the times tk and require their
moments

ÿ8

k“0

nk
n
tβk “ c (9)

to be finite for some β ą 0. Using differential forms,
we now express the log-likelihood in (6) and the two con-
straints in (8) and (9) as

dL “
ÿ8

k“0

BL

Bnk
dnk “

ÿ8

k“0

`

logAtα´1
k ´ log nk

˘

dnk ,

dn “
ř8

k“0 dnk, and dc “
ř8

k“0 t
β
kdnk, and consider the

Lagrangian with multipliers ρ and γ

L “
ÿ8

k“0

„

log
A tα´1

k

nk
´ ρ´ γtβk



dnk “ 0

in order to determine most likely infection counts n˚k for the
spreading process described above. Since at the solution the
bracketed terms r¨s must vanish identically for every dnk,
we immediately obtain

n˚k “ Ae´ρ tα´1
k e´γt

β
k .

Plugging this result back into pk “ nk{n yields a dis-
crete probability mass function in the now exp-transformed
space

n˚k
n
“

tα´1
k e´γt

β
k

ř8

j“0 t
α´1
j e´γt

β
j

(10)

which explicitly relates infection counts nk to time steps tk.
However, (10) still depends on the Lagrangian multiplier γ
(now in exp-space), which is not immediately related to
any available data. In order to determine γ, we assume the
duration ∆t “ tk`1 ´ tk of time steps to be small. This
permits the following approximation

ÿ8

k“0
tα´1
k e´γt

β
k∆t «

ż 8

0

tα´1 e´γt
β

dt “ γ´
α
β

Γpα{βq

β



so that
n˚k
n
“ ∆t

γ
α
β β

Γpα{βq
tα´1
k e´γt

β
k .

Plugging this into (9), tedious but straightforward algebra
yields γ “ α

βc which is to say that

n˚k
n
“ ∆t

„

β

Γpα{βq

´ α

βc

¯
α
β



tα´1
k e´

α
βc t

β
k . (11)

In order to establish the final result, we now let ∆t Ñ 0
which leads to

n˚k
n
«

ż

∆t

fpτq dτ « ∆t fptq (12)

where tk ´ ∆t
2 ď t ď tk `

∆t
2 . Direct comparison of (11)

and (12) together with the substitution σ “
`

βc
α

˘1{β
finally

establishes that

fptq “
β

σα
1

Γpα{βq
tα´1e´pt{σq

β

which is indeed the generalized Gamma distribution that
was introduced in (4).

3.2 EXTENSIONS TO DIFFERENT TIME SCALES

So far, our derivation above was based on properties of net-
worked SIR cascades for which the infection rate i as well
as the recovery rate r were both assumed to be 100%. Yet,
the empirical result in Section 4 indicate that the general-
ized Gamma distribution also accounts for the dynamics
of less infectious spreading processes where i and r are
smaller. Such epidemics usually last longer as it takes more
time to reach all susceptible nodes and infected nodes may
remain so over extended periods. In other words, such pro-
cesses can be thought of as taking place on a different time
scale. Here, we briefly show that the generalized Gamma
distribution can also explain spreading processes on lin-
early or polynomially transformed time scales.

Recall that if a random variable X is distributed accord-
ing to fpxq, the monotonously transformed random vari-
able Y “ hpXq has a probability function that is given by

gpyq “ f
`

h´1pyq
˘

¨

∣∣∣∣ ddyh´1pyq

∣∣∣∣ .
Now, if t is generalized Gamma distributed and τ “ ct is a
linearly transformed version of t, then

t “
τ

c
and

dt

dτ
“

1

c

so that τ is distributed according to

gpτq “
β

σα
1

Γpα{βq

´τ

c

¯α´1

e´pτ{cσq
β

¨
1

c

“
β

σ1α
1

Γpα{βq
τα´1e´pτ{σ

1
q
β
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Figure 6: Causal graph of the process in Fig. 1. The ad-
jacency matrix of a directed acyclic graph with a single
source node can be brought into strictly upper triangular
form and is thus nilpotent.

which is a generalized Gamma distribution with scale pa-
rameter σ1 “ cσ.

By the same token, if t is generalized Gamma distributed
and τ “ tc is a polynomially transformed version of t, then

t “ τ
1
c and

dt

dτ
“

1

c
τ

1
c´1

so that τ is distributed according to

gpτq “
β

σα
1

Γpα{βq

´

τ
1
c

¯α´1

e´pτ
1{c
{σqβ ¨

1

c
τ

1
c´1

“
β1c

σ1α1
1

Γpα1{β1q
τα

1
´1e´pτ

β1
{σ1β

1
q

which is a generalized Gamma distribution with parameters
σ1 “ σc, α1 “ α

c , and β1 “ β
c .

3.3 JUSTIFYING THE POLYNOMIAL ANSATZ (7)

While the constraints in (8) and (9) are arguably intuitive,
the ansatz in (7) merits further elaboration. Note that causal
graphs as in Fig. 6 indicate possible transmission pathways
of an epidemic. In general they may be arbitrarily complex
but, for the type of spreading process studied here, they are
necessarily directed and acyclic. Now, in a directed, acyclic
graph, the number Nk of shortest paths of lengths k start-
ing from a source node vs may indeed grow exponentially
for a while (for instance in a tree) but the finite size of the
graph causes Nk to drop to zero once k exceeds the length
K of the longest shortest path; there are no shortest paths
longer than K. Because of this finite size effect, a polyno-
mial upper bound always exists for Nk, k ď K.

More formally, consider a network of n nodes. If vs is the
source node of an epidemic on this network and A is the
adjacency matrix1 of the corresponding causal graph then
`

Ak
˘

sj
denotes number of ways the epidemic agent can

reach vj from vs in k steps and qk9
ř

jpA
k
qsj . For causal

1Aij “ 1 if nodes vi infects vj , and Aij “ 0 otherwise.



graphs, A is strictly upper triangular and therefore nilpo-
tent. That is, DK ď n : Ak

“ 0 @ k ą K. Hence,
ρpAq ă 1 which is to say Du ą 0 : ‖Ak‖F ă u @ k
and therefore 0 ď pAk

qsj ď ‖Ak‖F ă u . Accordingly,
ř

jpA
k
qsj P Opk

α´1q for some α ě 1. Setting tk “ εk

where ε ď 1 yields qk P Optα´1
k q which justifies (7).

Put in simple terms, it is sufficient to model the probability
qk of observing an epidemic path of length k as a polyno-
mial in t rather than, say, an exponential function.

The fact that the parameter α reflects aspects of network
topology is easily seen from the examples in Fig. 5. As-
suming the central node to be the source node of an epi-
demic the figure shows that qk may be constant (α “ 1),
decreasing (α ă 1), or increasing (α ą 1) with k.

4 EMPIRICAL SUPPORT

We now support our theoretical results with empirical ev-
idence. First, we present results on distance distributions
of synthesized networks. Then, we report on experiments
with a large number of spreading processes on synthetic
graphs and, finally, we discuss results obtained for large,
real-world networks.

Throughout, we fit continuous distributions to discrete his-
tograms. That is, we apply functions fpt;θq to repre-
sent counts n0, . . . , nK which are grouped into K dis-
tinct intervals pt0, t1s, pt1, t2s, . . ., ptK´1, t8q. For this
setting, it is advantageous to use multinomial likelihood
estimation based on reweighted least squares in order to
determine optimal model parameters θ˚ [19]. For a re-
cent detailed exposition of this robust technique, we re-
fer to [6]. For the fitted models, we report quantitative
goodness-of-fit results in terms of the Hellinger distance

H
`

hrts, f rts
˘

“ 1
2

c

ř

t

´

a

hrts ´
a

f rts
¯2

between dis-

crete empirical data hrts and a discretized model f rts
where

f rts “

$

’

&

’

%

F pt` 1
2 q if t “ 0

F pt` 1
2 q ´ F pt´

1
2 q if 0 ă t ă K

1´ F pt` 1
2 q if t “ K

and F p¨q is the corresponding cumulative density function.
We note that the Hellinger distance is bound as 0 ď H ď 1.

Synthetic Networks. We created different Erdős-Rényi
(ER), Barabási-Albert (BA), power law (PL), and Log-
Normal (LN) graphs of n P t5, 000, 10, 000u nodes. ER
graphs are a staple of graph theory and merit investiga-
tion. To create ER graphs, we used edge probability pa-
rameters π P t0.005, 0.0075, 0.01u. BA and PL graphs
represent networks that result from preferential attachment
processes and are frequently observed in biological, social,
and technical contexts. To create BA graphs, we consid-
ered attachment parameters m P t1, 2, 3u and exponents

Table 1: Goodness of Fit (avg. Hellinger distances) for
shortest path histograms of synthetic networks

network parameters fWB fGA fLN fGG

ER π “ 0.0050 0.058 0.170 0.227 0.051
π “ 0.0075 0.046 0.164 0.205 0.041

BA m “ 1 0.039 0.066 0.135 0.011
m “ 2 0.017 0.125 0.170 0.015
m “ 3 0.015 0.128 0.171 0.015

PL γ “ 2.1 0.154 0.042 0.040 0.030
γ “ 2.3 0.132 0.032 0.046 0.024
γ “ 2.5 0.123 0.037 0.064 0.028
γ “ 2.7 0.101 0.044 0.089 0.028
γ “ 2.9 0.081 0.050 0.108 0.026
γ “ 3.1 0.070 0.093 0.137 0.051

LN µ “ 1, ξ “ 0.75 0.075 0.093 0.149 0.037
µ “ 1, ξ “ 1.25 0.082 0.067 0.113 0.029
µ “ 2, ξ “ 0.75 0.073 0.092 0.145 0.036
µ “ 2, ξ “ 1.25 0.079 0.062 0.102 0.026

of the vertex degree distributions of the PL graphs were
drawn from γ P t2.1, 2.2, . . . , 3.2u. LN graphs show log-
normally distributed vertex degrees and reportedly charac-
terize link structures within sub-communities on the web
[30]. To synthesize LN graphs, parameters were chosen
from µ P t1, 1.5, . . . , 3u and ξ P t0.25, 0.5, 0.75, 1u. For
each parametrization, we created 100 instances.

Table 1 summarizes average goodness of fit results for
graphs of n “ 10, 000 nodes and different topologies (for
lack of space, we omit results for some of the parametriza-
tions considered in our experiments). We observe that (i) in
agreement with Bauckhage et al. [7], the Weibull distribu-
tion provides a well fitting model for the distance distribu-
tionin ER graphs; it outperforms the Gamma and the Log-
Normal distribution; (ii) in agreement with Vazquez [35],
the Gamma distribution provides a well fitting model for
PL graphs where 2 ă γ ă 3; (iii) for PL graphs where
γ À 2.2, the LogNormal fits well, too; (iv) for PL graphs
where γ ě 3, the Weibull fits better than the Gamma or
the LogNormal; in this context, we note that BA graphs are
power law graphs for which γ “ 3 [3]; (v) in any case, the
generalized Gamma distribution provides the best fits in all
cases while still being physically plausible.

Indeed, the latter is not surprising as the densities in (1)-(3)
are functions of two parameters whereas the generalized
gamma in (4) depends on three parameters and therefore of-
fers greater flexibility in statistical model fitting. However,
as proven above, the generalized gamma also follows from
first prcinple and provides accurate fits across a wide va-
riety of underlying network topologies, while the Gamma
and the Weibull distribution apply to particular types of net-
works only. In turn and probably most important, the tradi-
tional reliance of investigating several distributions can be
eliminated. Moreover, as we will demonstrate below, even
without reguarlization, which is an interesting avenue for



future work, the parameters of the generalized Gamma in-
deed allow one to distinguish different graph classes.

Spreading Processes. Given the synthetic networks cre-
ated above, we simulated SIR spreading processes where
the infection rate varied in i P t0.5, 0.6, . . . , 0.9u and the
recovery rate was chosen from r P t0.5, 0.6, . . . , 0.9u. For
each network and each choice of i and r, we created 10 epi-
demics starting at randomly selected source nodes vs and
fitted the generalized Gamma to the resulting outbreak data.

Table 2 shows exemplary results obtained for PL graphs of
10, 000 nodes; rows correspond to different power law ex-
ponents γ and columns indicate different choices of pairs
pi, rq. Each panel plots the outbreak data of all the cor-
responding epidemics (grey dots), the corresponding em-
pirical average taken over the individual outbreak distribu-
tions (black dots), as well as a generalized Gamma fit to
these averages (blue curves). Visual inspection of these re-
sults suggests that the generalized Gamma distribution ac-
counts very well for average outbreak dynamics in power
law graphs. Though not shown in the table, this behavior
was also observed for individual epidemics as well as for
epidemics on other networks, hence, supporting our theo-
retical justification provided in Sec. 3.2.

Real-World Networks. The KONECT network collection
[23] provides a comprehensive set of large scale, real-world
network data freely available for research. Networks con-
tained in this collection comprise (online) social networks
where edges indicate social contacts or friendship relations,
natural networks such as power grids or connections be-
tween airports, and bipartite networks such as typically
found in the context of recommender systems. The sizes of
these networks vary between Op10, 000q to Op1, 000, 000q
nodes and they show different node degree distributions
and clustering coefficients. For further details, we refer to
http://konect.uni-koblenz.de/.

Tables 3 through 5 summarize goodness-of-fit results ob-
tained from fitting the models in (1), (2), (3), and (4) to
hop count distributions of social, natural, and bipartite net-
works respectively. Again in agreement with the theoreti-
cal prediction in [35], we observe that the Gamma distri-
bution provides accurate fits to path length distributions in
social networks which are often reported to be power law
networks with power law exponents 2 ă γ ă 3. For the
case of natural and bipartite networks, we find the LogNor-
mal distribution to provide better fits than the Gamma or
the Weibull distribution. We emphasize that this is an em-
pirical finding which, to our knowledge, has not yet been
justified theoretically. In this sense, the work presented in
this paper can be seen as the first such justification because
the LogNormal is obtained a limiting case of the general-
ized Gamma distribution which, as shown in Sec. 3.1, pro-
vides a physically plausible model of distance distributions
in networks. In fact, just as in the previous subsections, the

Table 3: Goodness of Fit (Hellinger distances) for shortest
path histograms of social networks

network fWB fGA fLN fGG

advogato 0.110 0.014 0.056 0.012
arenas email 0.044 0.036 0.074 0.008
arenas pgp 0.100 0.022 0.057 0.013
ca AstroPh 0.157 0.021 0.047 0.021
ca cit HepPh 0.133 0.023 0.065 0.015
ca cit HepTh 0.089 0.016 0.026 0.010
catster 0.101 0.023 0.032 0.016
cfinder google 0.076 0.021 0.023 0.032
cit HepPh 0.178 0.037 0.065 0.032
cit HepTh 0.135 0.018 0.051 0.016
dblp cite 0.078 0.042 0.077 0.012
dogster 0.215 0.036 0.048 0.026
elec 0.046 0.057 0.096 0.020
email EuAll 0.363 0.331 0.116 0.232
enron 0.122 0.046 0.075 0.023
facebook wosn links 0.186 0.022 0.037 0.018
facebook wosn wall 0.172 0.025 0.048 0.021
filmtipset friend 0.140 0.024 0.052 0.017
gottron net all 0.075 0.038 0.070 0.029
gottron net core 0.049 0.024 0.060 0.006
hep th citations 0.122 0.011 0.036 0.009
loc brightkite edges 0.193 0.027 0.035 0.059
munmun digg reply 0.170 0.028 0.054 0.023
munmun twitter social 0.132 0.089 0.079 0.071
collaboration 0.137 0.097 0.074 0.045
ucsocial 0.084 0.012 0.056 0.008
petster carnivore 0.120 0.116 0.119 0.117
petster friendships cat 0.109 0.023 0.032 0.027
petster friendships dog 0.206 0.036 0.048 0.026
petster friendships hamster 0.167 0.083 0.049 0.060
petster hamster 0.081 0.011 0.033 0.007
sap 0.142 0.063 0.090 0.052
slashdot threads 0.267 0.082 0.055 0.102
slashdot zoo 0.192 0.026 0.052 0.032
wikiconflict 0.134 0.014 0.055 0.014
wikisigned k2 0.268 0.166 0.070 0.136
wikisigned nontext 0.291 0.086 0.058 0.066

avg. 0.146 0.050 0.059 0.039

Table 4: Goodness of Fit (Hellinger distances) for shortest
path histograms of natural networks

network fWB fGA fLN fGG

arenas meta 0.090 0.036 0.025 0.029
as caida20071105 0.277 0.160 0.050 0.113
as20000102 0.065 0.016 0.054 0.005
dbpedia similar 0.685 0.686 0.082 0.018
eat 0.012 0.075 0.115 0.003
lasagne frenchbook 0.017 0.001 0.058 0.003
openflights 0.139 0.025 0.040 0.022
powergrid 0.745 0.745 0.150 0.016
usairport 0.053 0.010 0.040 0.007
sociopatterns infectious 0.030 0.026 0.053 0.012
topology 0.130 0.021 0.055 0.019
wordnet words 0.192 0.031 0.054 0.022
wordnet 0.133 0.188 0.214 0.131

avg. 0.198 0.155 0.076 0.031

http://konect.uni-koblenz.de/


Table 2: Outbreak data obtained from spreading processes in power law networks of 10, 000 nodes

.

i “ 0.5, r “ 0.5 i “ 0.5, r “ 0.7 i “ 0.5, r “ 0.9 i “ 0.9, r “ 0.5 i “ 0.9, r “ 0.7 i “ 0.9, r “ 0.9

γ “ 2.2

γ “ 2.6

γ “ 3.0

Table 5: Goodness of Fit (Hellinger distances) for shortest
path histograms of bipartite networks

network fWB fGA fLN fGG

adjnoun 0.028 0.037 0.065 0.012
bx 0.264 0.096 0.090 0.130
dbpedia occupation 0.165 0.103 0.113 0.101
dbpedia producer 0.734 0.734 0.152 0.156
dbpedia starring 0.721 0.721 0.034 0.032
dbpedia writer 0.754 0.754 0.096 0.072
epinions 0.209 0.036 0.041 0.026
escorts 0.097 0.048 0.076 0.031
filmtipset comment 0.060 0.049 0.089 0.007
github 0.186 0.078 0.082 0.078
gottron reuters 0.128 0.112 0.137 0.106
movielens 10m ti 0.187 0.082 0.101 0.074
movielens 10m ui 0.036 0.083 0.116 0.031
movielens 10m ut 0.199 0.146 0.159 0.144
movielens 1m 0.043 0.005 0.040 0.007
ucforum 0.047 0.050 0.080 0.030
pics ut 0.268 0.164 0.166 0.183
prosper support 0.230 0.259 0.232 0.208
youtube groupmemberships 0.192 0.115 0.119 0.115

avg. 0.239 0.193 0.105 0.081

generalized Gamma distribution is again found to provide
the best overall fits to the data considered here. Qualitative
examples of this behavior are shown in Fig. 7.

We also evaluated how the different distributions perform
in predicting the average shortest path length and compared
empirical means to the means of fitted models. For the
Weibull, the mean is given by λΓp1`1{κq, the mean of the
Gamma is ηθ, that of the LogNormal is exppµ´ξ2{2q, and
for the generalized Gamma we have Ettu “ σ Γppα`1q{βq

Γpα{βq .

Using these formulas, we investigated predicted average
shortest path lengths versus empirically determined ones
for the networks in the KONECT collection. The results are
summarized in Tab. 6, which lists mean squared square er-
rors for the data in the figure. They suggests that w.r.t. pre-
dicting average path lengths, the Weibull performs worse

Table 6: Mean squared errors for predicted average short-
est path lengths versus empirically determined ones for the
networks in the KONECT collection.

fWB fGA fLN fGG

bipartite 1.665 1.382 0.731 0.414
natural 0.216 0.479 0.862 0.093
social 0.474 0.219 0.648 0.220

overall 1.745 1.479 1.303 0.478

than the Gamma which performs worse than the LogNor-
mal which is outperformed by the generalized Gamma.

Distinguishing between Different Graph Classes. An in-
teresting consequence of fitting the distance distribution us-
ing the three-parameter generalized Gamma is that it pro-
vides a non-linear mapping of path length data into three di-
mensions. This allows for visual analytics of the behavior
of different graph topologies w.r.t. distance distributions.
Fig. 8 shows exemplary distance distributions in terms 3D
coordinates pσ, α, βq that result from fitting generalized
Gamma distributions. Looking at the Figure, it appears
that distiance distributions obtained from different network
topologies cluster together or are confined to certain re-
gions in this parameter space. These preliminary observa-
tions are arguably the most interesting finding in this paper
as they suggest that the idea of characterizing networks in
terms of continuous models of shortest path distributions
can inform approaches to the problem of network inference
from outbreak data. Investigating these results more deeply
provides an interesting avenue for future work.

5 CONCLUSIONS

We considered the problem of parameterizing the dis-
tance distribution and epidemic outbreak data of strongly-
connected, undirected networks. Invoking the maxi-
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Figure 7: Qualitative examples of shortest path distributions on real-world networks. Path length distributions of social
and natural networks are well accounted for by the Gamma distribution (a+b) whereas the Weibull provides better fits for
bipartite networks that occur in recommender settings (c). In each case, however, the generalized Gamma fits best.

mum entropy principle, we showed that the generalized
Gamma distribution provides a physically plausible, three-
parameter distribution for these data, independent of the
topology of the underlying networks. This result general-
izes earlier models [7, 35] and explains recent empirical
observations made w.r.t. twitter retweet networks [8]. Em-
pirical tests confirmed our theoretical prediction and re-
vealed that the generalized Gamma distribution accounts
well for distance distributions of synthesized Erdős-Rényi,
Barabási-Albert, power law, and LogNormal graphs as well
as for real-world network in the KONECT collection [23].
Finally, we illustrated that the parameteres of the generl-
ized Gamma provide striking structural regularities in the
resulting low-dimensional network representations.

Our results suggest several attractive avenues for future re-
search. First of all, one should relate the shape and scale pa-
rameters of the generalized Gamma distribution to physical
properties or well established features of networks. Second,
one should use our theoretical results to devised informed
sampling schemes for the problem of computing shortest
paths (and their histograms) for large real-world networks.
Finally, the results in Fig. 8 suggest a nearest-neighbour
approach to network inference from outbreak data. Newly
observed epidemic processes are matched to a large data
base of 3D representations of outbreak data, for which the
network is known; at least this provides helpful prior infor-
mation for network inference approaches such as [32, 22].
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