
(Nearly) Optimal Differentially Private Stochastic Multi-Arm Bandits

Nikita Mishra
Department of Computer Science

University of Chicago
nmishra@cs.uchicago.edu

Abhradeep Thakurta
Yahoo! Research, Sunnyvale

guhathakurta.abhradeep@gmail.com

Abstract

We study the problem of private stochastic multi-
arm bandits. Our notion of privacy is the same as
some of the earlier works in the general area of
private online learning [13, 17, 24]. We design
algorithms that are i) differentially private, and
ii) have regret guarantees that (almost) match the
regret guarantees for the best non-private algo-
rithms (e.g., upper confidence bound sampling
and Thompson sampling). Moreover, through
our experiments, we empirically show the effec-
tiveness of our algorithms.

1 INTRODUCTION

A general abstraction of bandit problems is the following:
Given a set of k arms C = {a1, · · · , ak}, at each time step
one pulls an arm ai ∈ C, gets a reward corresponding to ai
and the objective of the algorithm is to obtain large cumu-
lative reward over all time steps T . In a class of problems
called the adversarial bandits, it is assumed that the re-
ward can be adversarial, in the sense that the rewards for
each of the arms in C are arbitrarily chosen. The other
class of problems is called the stochastic bandits where it
is assumed that the reward for each of the arm in C is from
an unknown distribution. (See [5] for a detailed introduc-
tion to these classes.) In this paper we are interested in the
stochastic bandit setting. We analyze two of the most com-
mon algorithms in this setting in the context of differential
privacy, upper confidence bound (UCB) sampling by [4]
and Thompson sampling by [2, 18]. We show that one can
modify UCB sampling and Thompson sampling algorithms
in such a way that ensures: i) differential privacy, and ii) re-
gret guarantee which is only poly log T factor worse com-
pared to the regret for the non-private variants.

We now focus on the semantics of differential privacy in
this setting where the data points (the rewards) arrive on-
line in a stream at every time step. This setting was first
studied by [13] and then followed by [17] and [24]. Let

ft = 〈ft(a1), · · · , ft(ak)〉 be the vector of rewards for all
the arms in C at time step t. Privacy guarantee will ensure
that from the output of the algorithm over all the T time
steps the adversary will not be able to distinguish between
the presence or absence of any single reward vector ft. [16]
studied differentially private online algorithms in the full-
information setting, where at each time step t the algorithm
can see the complete reward vector ft as opposed to ft(a)
for the arm a pulled in the bandit setting. [24] extended
this line of work to obtain tighter and nearly optimal regret
guarantees for both full-information and adversarial ban-
dit settings. Recall that in the non-private world, the full-
information and the adversarial bandit settings both have
optimal regret guarantee of Ω(

√
T ) (see [23]). In contrast,

stochastic bandit algorithms enjoy a regret of O(log T ). In
this work we obtain the first and nearly optimal regret guar-
antees for stochastic bandit problems. Since, stochastic
bandit algorithms have a very different flavor than adver-
sarial online algorithms, we needed to introduce new proof
techniques tailored to our problem.

The stochastic multi-armed bandit algorithms usually run
in the two implicit phases exploration phase and exploita-
tion phase. During the exploration phase, the algorithm
uses the pull of the arms in the initial rounds to get a suf-
ficiently accurate estimate of the means of the arms, and
then in the second phase uses this information to guide the
decision of pulling of arms in the later rounds. However,
in order to ensure differential privacy, we are required to
introduce certain randomness in the observed rewards, but
this tends to grossly corrupt the estimation of the means of
the arms. At a high-level, for both UCB and Thompson
sampling, we address this issue by increasing the number
of rounds used by the algorithm to estimate these means.
The exact details are very different for both the algorithms
are discussed in the respective sections. One important
point to keep in mind is that although we make stochas-
tic assumptions on the data to ensure strong utility guaran-
tees, we do not make any assumptions on the data while
ensuring privacy for our algorithms. Using the distribu-
tional assumption on the data for any kind of privacy guar-
antee may be disastrous, since real world data may not fol-



low the assumed distribution. For our algorithms, privacy
should hold in the worst case scenario but the utility guar-
antee holds under distributional assumptions on the data.
Finally, to fortify our theoretical guarantees we show that
they work well in experiments and often are competitive
w.r.t. the non-private algorithms.

Practical motivation. In the past few years bandit algo-
rithms have become extremely popular in both the theoret-
ical and applied online learning community. Along with
having strong theoretical guarantees, these algorithms have
found wide applicability in Internet scale systems. A con-
crete usage scenario is in the online search advertisement
industry. Companies like Google, Microsoft and Yahoo run
multi-million dollar industry based on showing relevant ad-
vertisements for a web-queries. For a given search query
by the user, the search engine displays a few advertisement
which the user is most likely to click (commonly known
as the main-line advertisement). After the advertisement
gets displayed, the user chooses to either click or not click.
If he/she clicks, then we say that the search engine gets a
reward of one, and zero otherwise. To earn maximum rev-
enue, the search engine strives to get high overall reward.
One important feature of this setup (and generally in ban-
dit learning) is that the search engine only gets to see the
reward for the advertisements that were shown to the user,
and gets no feedback about what the user would have done
on other candidate advertisements. Bandit algorithms have
been extremely successful in such settings and often enjoy
strong theoretical guarantees for the overall reward. Set-
tings like search advertisements immediately raise privacy
concern for the users whose data get used in training the
learning algorithms. Consider the example of a user who
searches for a lawyer in Port Jefferson, NY and clicks on an
advertisement of a divorce law farm. If the learning algo-
rithm uses this feedback to show the same advertisement
for similar query (e.g., finance lawyer in Port Jefferson,
NY), then one can use such feedbacks to infer significant
amount of information about a particular user. [19] on the
Facebook advertisement recommendation system and [6]
on the Amazon recommendation system, showed that one
can leverage such side information to breach user privacy.

1.1 Our Contributions

Here, we provide an overview of our contributions.

• Differentially private UCB sampling [Section 3]. We
provide a differentially private variant of UCB sampling
which enjoys the same utility guarantee as the non-
private algorithm up to poly-logarithmic factors in the
number of time steps T . The privacy guarantee follows
via standard reduction to the tree-based-aggregation
scheme, proposed by [14, 7]. Our utility analysis goes
via carefully analyzing the exploration phase of the al-
gorithm, where it estimates the means of the arms. Thus,
we provide a version of UCB sampling algorithm which

is robust to noise.
• Differentially private Thompson sampling [Section

4]. We also provide a differentially private variant of
Thompson sampling which enjoys the same utility guar-
antee as the non-private algorithm up to poly-logarithmic
factors in the number of time steps T . The privacy anal-
ysis is very similar to the UCB sampling. But, the utility
analysis is much trickier. In fact even without privacy an-
alyzing the exploration phase was considered extremely
difficult and it took more than seventy years for the com-
munity to come up with a formal analysis (see [2, 18]).
The main technical contribution of this section is to come
up with a noise robust version of Thompson sampling. In
order to obtain this robustness, the exploration phase of
the original algorithm had to be modified significantly.
A question that we leave open in this work is that if that
is necessary.

2 BACKGROUND AND PROBLEM
DEFINITION

2.1 Background on Differential privacy

In this section we provide a short overview of differential
privacy. D = 〈f1, · · · , fT 〉 be a data set of all the reward
functions. We call a data set D′ neighbor of D if it differs
fromD in exactly one reward function. Let CT be the space
of all T outputs of Algorithm A.

Definition 1 (Differential privacy [12]). A randomized al-
gorithm A is ε-differentially private if for any two neigh-
boring data sets D and D′, and for all sets O ⊆ CT the
following holds:

Pr[A(D) ∈ O] ≤ eε Pr[A(D′) ∈ O].

As per the semantics of the definition, differential privacy
ensures that an adversary gets to know “almost the same
thing” about a reward function ft irrespective of its pres-
ence or absence in the data set D. This closeness is mea-
sured by the privacy parameter ε. A typical choice of ε is
a small constant (e.g., 0.1). One important requirement of
the definition is that the guarantee should hold for every
pair of neighboring data sets. This directly implies that al-
though for the regret analysis of our algorithmAwe can as-
sume that the reward function comes from some underlying
distribution, but we cannot use any stochastic assumption
on the reward functions for privacy guarantee. Next, we
discuss some of the basic tools for designing differentially
private algorithms.

Laplace and Gamma mechanism. Laplace [12] and
Gamma mechanism [10] are sensitivity based methods to
achieve differential privacy. The best way to introduce
Laplace mechanism is via the following setting. Consider
a domain of data entries U and a function f : U∗ → R. For
the domain of data sets Un, we define the sensitivity of the



function f as below.

s = Sensitivity(f) = max
NeighborsD,D′∈U∗

|f(D)− f(D′)|

Let Lap(λ) be the Laplace distribution with scaling pa-
rameter λ, i.e., the density function of this distribution is
given by 1

2λe
−|x|/λ. Laplace mechanism states that for a

given data set D and noise N ∼ Lap
(
s
ε

)
, f(D) + N is

ε-differentially private. The proof of this claim directly fol-
lows from the density function for Laplace distribution and
triangle inequality. [12]

Gamma mechanism is also very similar to Laplace mecha-
nism. The only difference being that we are now working
with a vector valued function f : U∗ → Rp. Analogous to
Laplace mechanism, let us define the L2-sensitivity of the
function f as below.

s = Sensitivity(f) = max
NeighborsD,D′∈U∗

‖f(D)− f(D′)‖2

Gamma mechanism states that if we sample the noise
vector N ∈ Rp from the noise distribution with kernel
e−ε‖N‖2/s, then f(D) +N is ε-differentially private. (See
[10] for the proof.)

Tree based aggregation. Initially proposed by [14, 7], this
aggregation scheme is extremely effective in releasing pri-
vate continual statistics over a data stream. To define the
scheme formally, consider a data set D = 〈f1, · · · , fT 〉,
where each entry ft ∈ [0, 1], and these entries arrive in a
stream, i.e., at every time step t ∈ [T ], one entry ft arrives.

At every time step t, the task is to output vt =
t∑

τ=1
ft while

ensuring that the complete output sequence 〈v1 · · · , vT 〉 is
ε-differentially private. One can design an algorithm (us-
ing a binary tree based aggregation), which assures an ad-
ditive error of O

(
log1.5 T

ε

)
per query. Moreover, it is sim-

ple to extend this scheme to the case where ft ∈ Rp and
‖ft‖2 ≤ 1 for all t ∈ [T ]. Since, the noise used in this
scheme is exponential in nature, a high-probability guaran-
tee is also immediate. We defer the details of the scheme
to Appendix A. Suppose at every time step t ∈ [T ], one
entry from dataset D, ft ∈ [0, 1] arrives and the task is to

output vt =
t∑

τ=1
ft while ensuring that the complete output

sequence 〈v1 · · · , vT 〉 is ε-differentially private. This algo-
rithm uses a binary tree based aggregation scheme, which
assures an additive error of O

(
log1.5 T

ε

)
per query. We de-

fer the details of the scheme to Appendix A. Moreover, it
can be extended to the case where ft ∈ Rp and ‖ft‖2 ≤ 1
for all t ∈ [T ].

2.2 Background on Stochastic Multi-arm Bandits

A typical setup for an online learning problem is as fol-
lows: There is a sequence of reward functions f1, · · · , fT

arriving in a stream (i.e., one at every time step t ∈ [T ]),
where each fi maps from some fixed set C to R. At ev-
ery time step t, an online learning algorithm A is expected
to produce an element xt ∈ C before ft is revealed to it.
Once ft gets revealed to A, the algorithm pays a reward of
ft(xt). The objective of A is to be competitive with the
best choice of x ∈ C in the hindsight, i.e., be competitive

with max
x∈C

T∑
t=1

ft(x). A natural measure of the utility ofA is

regret, defined: RegretA(T ) = max
x∈C

T∑
t=1

ft(x)−
T∑
t=1

ft(xt).

(For a detailed discussion, see [23]

There are two popular settings under which these problems
are studied, namely, i) online learning under complete feed-
back or the full-information setting, and ii) online learning
under partial feedback or the bandit setting. In the first set-
ting, it is assumed that at time step t after the algorithm A
has produced xt, it gets to see the complete reward function
ft. In the second setting, the algorithm gets much lesser
information from the environment and just sees the evalua-
tion of ft at xt.

2.3 Problem Definition

Let us assume that for all t ∈ [T ] we have ft : C → [0, 1],
where C is the set of k-arms. Additionally we assume that
for each arm a ∈ C, each ft(a) is an independent sam-
ple from a distribution with mean µa. The objective is to
design differentially private algorithms, whose regret (de-
fined in (1)) depends poly-logarithmically in the number of
reward functions T .

E [RegretA(T )] = T max
a∈C

µa − E

[
T∑
t=1

ft(a(t))

]
. (1)

Here, a(t) ∈ C is the arm played in the t-th time step.

3 PRIVATE UCB SAMPLING

Upper Confidence Bound (UCB) sampling by [4] is a
heuristic for stochastic multi-arm bandit (MAB) problems,
which despite being very simple gives strong utility guar-
antees. The regret for UCB O∗(log T ) in fact matches the
asymptotic lower given by [20] upto a problem dependent
constant. This is in sharp contrast with the algorithms for
adversarial multi-arm bandit problems where the regret de-
pends polynomially on the time horizon T (see [1, 15]).
Recently [24] provided differentially private algorithms for
adversarial bandit problems, which are almost optimal in
the parameter T . In this section, for the UCB algorithm
for stochastic MAB, we provide a differentially private al-
gorithm whose expected regret is only poly-logarithmically
worse in T . Before we move on to the differentially private
UCB algorithm, we provide a brief overview of the non-
private version of the algorithm.



Background on UCB sampling. Recall that in the MAB

problem there are k-arms denoted by the set C, and at each
time step t each arm a ∈ C produces either 0 or 1 from
some unknown but fixed distribution on [0, 1] with mean
µa. The objective is to minimize the regret defined in (1).
For each arm a, the UCB algorithm records the number
of times it got pulled na(t) and the average reward ra(t)

na(t)

aggregated so far upto time t. Upon initialization, the al-
gorithm pulls each arm exactly once. Later, the algorithm
picks the arm with the highest upper confidence bound, i.e.,

arg max
a∈C

ra(t)
na(t) +

√
2 log t
na(t) .

Theorem 2 (Regret for non-private UCB Sampling [4]).
Let µ∗ = max

a∈C
µa. For each arm a ∈ C, let ∆a = µ∗ −

µa. The expected regret of UCB sampling algorithm is as
follows:

E [RegretUCB(T )] = O

 ∑
a∈C:µa<µ∗

log T

∆a
+ ∆a

 .

The expectation is over the randomness of the data.

3.1 Private UCB Sampling: Algorithm and Analysis

In Algorithm 1 we modify the UCB sampling algorithm
to obtain an ε-differentially private variant. Notice that for
each arm a ∈ C the average reward ra(t), is the only term
that depends directly on the data set whose privacy we want
to protect. So, if we can ensure that this sequence, ra(t),
t ∈ [T ] is ε/k-differentially private for each arm a, then
immediately we have ε-differential privacy for the com-
plete algorithm. We invoke the tree based aggregation al-
gorithm from Section 2.1 to make these sequences private.
Additionally, to counter the noise added to the empirical
mean, we loosen the confidence interval for the biases of
each arm.
3.1.1 Privacy Analysis

Theorem 3 (Privacy guarantee). Algorithm 1 is ε-
differentially private.

Proof. The algorithm only accesses the reward for its com-
putation via the tree based aggregation scheme (see Sec-
tion 2). Since, there are k-arms, we maintain k separate
trees, each of which is guaranteed to be ε0 = ε

k differen-
tially private. Using the composition property of differen-
tial privacy, we immediately conclude that Algorithm 1 is
ε-differentially private.

3.1.2 Regret Analysis

The expected regret of the algorithm is given by
E[

∑
a∈C:µa<µa∗

∆ana(T )]. Hence, if our algorithm limits

the pulls of the bad arms, we are done. Our regret analysis
proceeds as follows, first we bound the amount of noise that

Algorithm 1 Differentially Private UCB Sampling
Input: Time horizon: T , arms: C = {a1, · · · , ak}, privacy

parameter: ε, failure probability: γ.
1: Create an empty tree Treeai with T -leaves for each arm
ai. Set ε0 ← ε/k.

2: for t← 1 to k do
3: Pull arm at and observe reward ft(at).
4: Insert ft(at) into Treeat via tree based aggregation

(see Section 2.1) with privacy parameter ε0.
5: Number of pulls: nat = 1.
6: end for
7: Confidence relaxation:Γ← k log2 T log((kT log T )/γ)

ε .
8: for t← k + 1 to T do
9: Total reward: ra(t) ← Total reward computed us-

ing Treea, for all a ∈ C.

10: Pull arm a∗ = arg max
a∈C

(
ra(t)
na

+
√

2 log t
na

+ Γ
na

)
and observe ft(a∗).

11: Number of pulls: na∗ ← na∗ + 1.
12: Insert ft(a∗) into Treea∗ using tree based aggrega-

tion and privacy parameter ε0.
13: end for

can be present in any of the total rewards ra(t). And later
using this bound, we show that the number of times the
suboptimal arms get pulled is small. We bifurcate the anal-
ysis of the each of the suboptimal arms into exploration and
exploitation phase. We argue that in case of bad arms, after
getting pulled forO

(
k log2 T log(kT )

ε∆2
a

)
rounds the arm is not

selected again with high probability. The main arguments
in this analysis follow the general sequence of arguments
in the analysis for non-private UCB sampling. (See [9] for
a comparison.)

Theorem 4 (Utility guarantee). Let {µa : a ∈ C} be the
biases of the k-arms in the set C. Let µ∗ = max

a∈C
µa and for

each arm a ∈ C, ∆a = µ∗ − µa. With probability at least
1− γ (over the randomness of the algorithm), the expected
regret (over the randomness of the data) is as follows:

E
[
RegretPriv−UCB(T )

]
= O

 ∑
a∈C:µa<µ∗

k log2 T log(kT/γ)

ε∆a
+ ∆a

 .

In the following lemma, we bound the error in the computa-
tion of the total reward in Line 9 in Algorithm 1, introduced
due to privacy.

Lemma 5. For all arms a ∈ C and all time step t ∈ [T ],
w.p. ≥ 1 − γ (over the randomness of the algorithm), the
error in the computation of the total reward for a till time t
is at most k log2 T log((kT log T )/γ)

ε .



The proof of this lemma is given in Appendix B.

Lemma 6. For a given arm a ∈ C, if the mean µa < µ∗

and ∆a = µ∗−µa, then w.p. ≥ 1−γ (over the randomness
of the algorithm) E [na(T )] = O

(
log2 T log(kT/γ)

ε∆2
a

)
+ ζ.

Here ζ is a fixed positive constant independent of the prob-
lem parameters. The expectation is over the randomness of
the data and O(·) only hides multiplicative constants.Proof. This lemma provides us with an upper limit on the
expected number of pulls of the suboptimal arms. For
each arm we partition the analysis into two phases (explo-
ration phase and exploitation phase). For an arm a, such
that µa < µ∗, we show that the exploration phase lasts
for sa = 8k log2 T log((kT log T )/γ)

ε∆2
a

many pulls. Once ex-
ploration phase is over, the exploitation phase starts. If
na(T ) ≤ sa, then we are done, since it means the arm was
never finished the exploration phase. Otherwise, we show
that the probability of pulling an arm after its exploration
phase is very low. In principle, what we show that for the
bad arms, the expected number of pulls for those arms is
bounded during its exploration phase.

Let Xa(t) be the true total reward and Noisea(t) = ra(t)−
Xa(t) for an arm a. For the ease of notation, let Γ =
k log2 T log((kT log T )/γ)

ε . At time step t ∈ [T − 1], an arm a
is pulled over a∗ if the following is true.

ra∗(t)

na∗(t)
+

√
2 log t

na∗(t)
+

Γ

na∗(t)

≤ ra(t)

na(t)
+

√
2 log t

na(t)
+

Γ

na(t)

⇔ Xa∗

na∗(t)
+

√
2 log t

na∗(t)
+

Γ

na∗(t)
+

Noisea∗(t)

na∗(t)

≤ Xa

na(t)
+

√
2 log t

na(t)
+

Γ

na(t)
+

Noisea(t)

na(t)
(2)

It can be easily shown that (2) is true, only if at least one of
the following equations hold.

Xa∗

na∗(t)
≤ µ∗ −

√
2 log t

na∗(t)
(3)

Xa

na(t)
≥ µa +

√
2 log t

na(t)
(4)

µ∗ +
Γ

na∗(t)
+

Noisea∗(t)

na∗(t)

< µa +
Γ

na(t)
+ 2

√
2 log t

na(t)
+

Noisea(t)

na(t)
(5)

Directly by the use of Chernoff bound, we can show that
with probability at least 1 − 2t−4, (3) and (4) are false.
To ensure that (5) does not hold, it suffices to ensure the

following.

Γ

na(t)
+ 2

√
2 log t

na(t)
+

Noisea(t)

na(t)
≤ Γ

na∗(t)
+

Noisea∗(t)

na∗(t)
+ ∆a

⇔ 2

√
2 log t

na(t)
+

Γ + Noisea(t)

na(t)
−
(

Γ + Noisea∗(t)

na∗(t)

)
≤ ∆a

(6)

From Lemma 5 we know that during the execution of the
algorithm, w.p. ≥ 1 − γ, |Noisea∗(t)| and |Noisea(t)| are
at most Γ. Therefore, to ensure (6) it suffices to ensure the
following.

2

√
2 log t

na(t)
+

Γ + Noisea(t)

na(t)
≤ ∆a (7)

If for some 0 < ν < 1 we have, 2
√

2 log t
na(t) ≤ ν∆a and

Γ+Noisea(t)
na(t) ≤ (1 − ν)∆a, then we can claim (7). Hence

to ensure (7), by setting y =
√

log(t)
Γ (assume T > 3) it

suffices to have na(t) ≥ 8Γ
∆2

a
since ∆a < 1. Recall that this

is the exactly the threshold for the exploration phase for the
arm a. We now focus our attention to the term E [na(T )]
we initially intended to bound. It is easy to see the follow-
ing.

E [na(T )] ≤
⌈

8Γ

∆2
a

⌉
+

T∑
t= 8Γ

∆2
a

Pr [Pulling arm a at time t]

≤
⌈

8Γ

∆2
a

⌉
+

T∑
t= 8Γ

∆2
a

Pr [∃na(t), na∗(t) s.t. (2) holds]

≤
⌈

8Γ

∆2
a

⌉
+

T∑
t= 8Γ

∆2
a

t∑
na∗=1

t∑
na= 8Γ

∆2
a

2t−4

≤
⌈

8Γ

∆2
a

⌉
+

T∑
t=1

2t−2 ≤ 8Γ

∆2
a

+ ζ (8)

This completes the proof Lemma 6.

Proof of Theorem 4. In order to obtain the final regret guar-
antee of Theorem 4 and conclude the proof, we notice

that, E
[
RegretPriv−UCB(T )

]
= E

[ ∑
a∈C:µa<µa∗

∆ana(T )

]
.

Using Lemma 6 in the expression above concludes the
proof.

4 PRIVATE THOMPSON SAMPLING

In this section we study a different flavor of bandit learn-
ing algorithms called Thompson sampling. Historically,



Thompson sampling [25] is much older than UCB sam-
pling style algorithms, dating back to early 20th century.
Although Thompson sampling is a very powerful heuris-
tic and often outperforms UCB sampling in experimental
setups, until recently little was known about its regret guar-
antees. [2] provided the first regret analysis for Thomp-
son sampling and they showed that it has regret logarithmic
in the time horizon T . We provide a differentially private
variant of the Thompson sampling algorithm. One reason
for studying private Thompson sampling along with pri-
vate UCB sampling is because it is known that in the non-
private world the experimental performance of Thompson
sampling is much better than UCB sampling. Moreover it
demonstrates properties like stability to delayed feedback.
(See [8] for details.) The question we want to answer is
whether we can obtain a differentially private variant of
Thompson sampling which preserves the asymptotic regret
guarantee of as the same order as the non-private algorithm
and also demonstrate similar experimental properties.

Background on Thompson sampling. The basic Thomp-
son sampling heuristic is extremely simple. Sup-
pose there are k-arms C = {a1, · · · , ak} which give
Bernoulli rewards (i.e., {0,1} rewards) and have biases
µa1

, · · · , µak . Let ra1
(t), · · · , rak(t) be the number of

ones and na1
(t), · · · , nak(t) be the total number of arm

pulls, upto time t. The rule to pick the arm for each round
is: Sample θi ∼ Beta(rai(t) + 1, nai(t) − rai(t) + 1)
for i ∈ [k] for i ∈ [k] and pull the arm correspond-
ing to the highest θi. Based on the result of the arm
pull, the posterior distribution for that particular arm gets
updated.[2] showed that the expected regret for this algo-
rithm (over the randomness of the algorithm and the data)

isO
( ∑
a∈C−a∗

(
1

∆2
a

)2

log T

)
, where a∗ be the optimal arm

and ∆a = µa∗ − µa.

4.1 Private Thompson Sampling: Algorithm and
Analysis

In this section we modify this generic Thompson sampling
algorithm to obtain an ε-differentially private variant (Al-
gorithm 2). We show that even with the privacy constraint
our algorithm has almost the same regret as non-private al-
gorithm with only poly log T overhead. This is the same
setting in which [2] also proved their results. One inter-
esting observation in the MAB problems is that all the
sequential algorithms would encourage a downward bias,
which means that if an arm does not give good results ini-
tially then it will not be pulled again, therefore it’s empir-
ical mean would be much lower than its true mean. UCB
algorithm overcomes this problem by adding a monotoni-
cally decreasing function of the number of pulls (na(t) ) to
the empirical mean, thus in some sense balancing out this
downward bias. But in case of Thompson sampling, we are
randomizing our decision hence the bias correction mech-

anism is different, it is due to randomization. In Thompson
sampling, the biggest challenge is to bound the number of
mistakes in the initial rounds. Moreover to ensure differ-
ential privacy, we introduce additional randomness to the
original Thompson sampling algorithm, it becomes even
harder for us to analyze the number of mistakes in the ini-
tial rounds. So, we take a slightly different approach. We
segregate the algorithm into explicit exploration phase and
a combined exploration and exploitation phase. The idea
in the exploration phase is to estimate the biases of the
two arms (within sufficient confidence) without bothering
about the number of mistakes made. In the joint explo-
ration and exploitation phase, we use the standard Thomp-
son sampling, except we make sure the algorithm only has
differentially private access to the rewards. Similar to the
private UCB algorithm (Algorithm 1), we use the private
tree based aggregation (from Section 2.1) to ensure differ-
ential privacy. In the following section, for the convenience
of notation we assume that µ∗ = µa1

> µa2
≥ · · · ≥ µak .

4.1.1 Privacy Analysis

Theorem 7 (Privacy guarantee). Algorithm 2 is ε-
differentially private.

Proof. The proof of privacy is segregated into two parts.
In the first part we argue that the gap estimation section is
ε/2-differentially private. In the second part we argue that
the rest of the sections of the algorithm are combined ε/2-
differentially private. Using these two arguments and the
composition property of differential privacy we argue that
Algorithm 2 is ε-differentially private. Notice that in the
first part, each arm i, i ∈ [k] is pulled in batches of m-
pulls, till the condition in Line 8 in Algorithm 2 is satisfied.
If each of this batch is made ε

2k -differentially private, then
by parallel composition property of differential privacy, the
first phase is ε/2-differentially private. To guarantee ε

2k -
differential privacy for a given batch, we use Laplace mech-
anism from Section 2.1. The ε/2-privacy guarantee for
the second phase follows directly from the analysis of tree
based aggregation scheme described in Section 2.1.

4.1.2 Regret Analysis

In this section, we provide the regret analysis for our private
Thompson sampling algorithm (Algorithm 2). The high-
level structure of the analysis is as follows. First we estab-
lish that in the gap estimation phase, the estimated gap ∆̂ is
within constant factor of the true gap ∆ =

∣∣µa(1)
− µa(2)

∣∣
(i.e. the mean difference of the best arm and the second
best arm). Moreover, we argue that the gap estimation runs
for at most poly log T number of rounds. Second, assum-
ing our estimation ∆̂ is reasonably accurate, we pull all
the arms randomly for certain number of steps to ensure
sufficient concentration of the empirical means around the
true means. In the third and final stage, we analyze the
noisy version of the classic Thompson sampling with beta
prior. The analysis of this part resembles the analysis of [2]



Algorithm 2 Differentially Private Thompson Sampling
Input: Time horizon: T , arms: C = {a1, a2, · · · , ak}, pri-

vacy parameter: ε.
1: Gap (∆ = |µa1

− µa2
|) estimation

2: Initialize: Time counter: τ ← 0, estimated gap: ∆̂←
1, total pulls: na1 , na2 , · · · , nak .

3: repeat
4: Pull each arm ai m = 192k log T

ε∆̂2
times to obtain av-

erage rewards µ̃ai ∀ai ∈ C. Increment nai ←
nai +m ∀ai ∈ C.

5: Differentially private means: µ̂ai ← µ̃ai +
Lap

(
2k
εm

)
, ∀ai ∈ C.

6: Set ∆̂← ∆̂/2 and τ ← τ + km.
7: Find the best and second best arms as, a(1) =

argmax
ai∈C

µai and a(2) = argmax
ai∈C,ai 6=a(1)

µai

8: until |µ̂a(1) − µ̂a(2)| > ∆̂
9: Create empty trees Treeai with (T−τ)-leaves ∀ai ∈ C.

Set ε0 ← ε/2k.
10: Random pullings of arms to build confidence
11: Confidence parameter: Γ← 192 log3 T

ε .
12: Pull each arm ai, Γ

∆̂2
times. Record the total rewards ri

∀ai ∈ C. Insert ri in Treeai with privacy parameter ε0,
∀ai ∈ C. Increment nai ← nai + Γ

∆̂2
and τ ← τ+ kΓ

∆̂2
.

13: Combined explore-exploit phase of Thompson sam-
pling

14: for t← τ + 1 to T do
15: Total reward: ra(t) ← Total reward computed us-

ing Treea, ∀ai ∈ C. θa(t) ∼ Beta(ra(t)+1, na(t)−
ra(t)+1) , ∀ai ∈ C. Pull arm a∗ = arg max

ai∈C
(θa(t))

and observe reward ft(a∗), Insert ft(a∗) into Treea∗
using tree based aggregation and privacy parameter
ε0,

16: Number of pulls: na∗(t)← na∗(t) + 1.
17: end for

closely. The overall regret guarantee is given in Theorem 8
below.
Theorem 8 (Utility guarantee). Let µa1 , µa2 , · · · , µak be
the biases of the k arms. Let ∆ =

∣∣µa(1)
− µa(2)

∣∣, where
a(1) = arg max

ai∈C
µai and a(2) = arg max

ai∈C,ai 6=a(1)
µai .

Then, for T ≥ 8 max {log2
1
∆ , 1} and ε < 1 expected re-

gret of Algorithm 2 (over the randomness of the data and
the algorithm) is as follows:

E
[
RegretPriv−Thomspon(T )

]
= O

(
k

log3 T

∆2ε2

)
.
Let N1, N2 and N3 denote the number of times the wrong
arm is pulled in the gap estimation phase, random pullings
phase and combined explore and exploit phase of Algo-
rithm 2 respectively. We would bound the expected val-
ues of N1, N2 and N3 using the following lemmas which
would allow us to prove Theorem 8.

Lemma 9 (Bound on gap estimation phase). Following
the notation of Theorem 8, then with probability at least
1 − 1/T 4 (over the randomness of the algorithm and the
data distribution), for T ≥ 8kmax {log2

1
∆ , 1} and ε < 1

the estimated gap ∆̂ in Algorithm 2 is in [∆/3, 2∆], the ex-
pected number of times incorrect arm is pulled is, E[N1] =

O
(
k log2 T

ε

)
.

The proof of this Lemma is provided in Appendix C.

Lemma 10 (Bound on geometric random variables
(Lemma 3 [2])). Let sj be a random variable, index by
j ∈ Z+ s.t. for fixed parameters T ∈ Z+ and µ ∈ [0, 1],
with probability at least 1−T−2, sjj > µ+y

2 . Let y ∈ [0, µ)

be a predefined threshold and let X(sj , y) be the random
variable that counts the number samples w ∼ Beta(sj +
1, j − (sj + 1)) that need to be drawn i.i.d. before w ex-
ceeds y. Using T as the fixed upper bound on X(sj , y), if
j ≥ 4 log2 T

(µ−y)2 , then Es [Ew [min {X(sj , y), T}]] = O
(

1
T

)
.

Lemma 11 (Bound on Beta random variable
[Lemma 7 [2]). ] Let us define event E(t) as,
E(t) : θa(t) ∈ [µa − ∆a

2 , µa + ∆a

2 ],∀a ∈ C, a 6= a1.

Then Pr(E(t), na(t) ≥ 32 log2 T
∆2 ) ≥ 1− 4(k−1)

T 3 , ∀t.
Lemma 12 (Regret bound in the combined explore and
exploit phase). Suppose N3 is a random variable which
counts the number of times the suboptimal arms are pulled
in Algorithm 2. Then, over the randomness of the algorithm
and the data, E[N3] = O (1).

Proof. In order to calculate the regret we count the num-
ber of times the sub-optimal arms get pulled since it upper
bounds the regret. The main idea behind the proof of this
lemma is that via random pulling of the arms in Algorithm
2, the arm a1 is well separated from the other sub-optimal
arms. Hence, in the combined explore and exploit phase,
with high probability the optimal arm gets pulled almost
always. We will use the proof technique from [2] for ana-
lyzing the number of pulls of the suboptimal arms.

We denote the set of suboptimal arms by S and S =
a2, · · · , ak. We count the number of pulling of sub-optimal
arm as, by the following scheme: count the number of
pulls of arm as in between two successive pulls of arm a1.
First, recall that with probability at least 1 − T−4 (from
Lemma 9), ∆̂ (the estimated gap) is within [∆/3, 2∆]. By
the property of the tree based aggregation discussed earlier,
the difference between the true total reward at time t(j) and
ra(t(j)) is at most log3

2 T
ε , with probability 1 − negl(T ).

Since by the beginning of combined explore and exploit
phase, we have pulled arm a1 at least Γ

∆̂2
-times, it follows

that with probability at least 1− 2T−4, difference between
the true total reward at time t(j) and ra1

(t(j)) is at most ∆
4 .

Using Lemma 11 and the fact that we pulled all the arms for
Γ/∆2 > 32 log2 T

∆2
a

, we observe that with probability atleast



(a) (b)

Figure 1: Simulation results for our differentially private
algorithms UCB sampling (Algorithm 1) and Thompson
sampling (Algorithm 2) for the number of arms k = 5 and
∆ = 0.5. Smaller ε indicates more privacy.

1− 4k−2
T 3 , θa < µa+∆a/2. Hence bundled up failure prob-

abilities obtained so far for θa1
< θas using union bound is

1− 4
T 2 . Let j and j + 1 be any two successive pulls of arm

a1, let t(j) and t(j + 1) be the respective time epochs and
denote ∆s = µas − µa1

.The Beta distribution for the sam-
ple θafrom arm a in between these pulls (not including the
(j+1)-th pull is Beta(ra(t(j))+1, na(t(j))−ra(t(j))+1).
Now a suboptimal arm as is pulled during round j and j+1
pull of arm a1 if θa1

< µa1
− minas∈S ∆as . In order to

use Lemma 10 above, we set the threshold y = µa2
+ ∆

2 .
Moreover, if we set sj = ra1(t(j)), then we know that
with probability at least 1− 4T−2, sjj > µa1 − ∆

4 . Hence,
the conditions of Lemma 10 holds and summing over all T
rounds, we complete the proof.

Proof of Theorem 8. The expected regret of multi-armed
bandit algorithms can be upper bounded by the number of
times the suboptimal arm is pulled. We defined N1, N2

and N3 to denote the number of times the wrong arm is
pulled in the gap estimation phase ,random pullings phase
of Algorithm 2 and combined explore and exploit phase of
Algorithm 2 respectively. Thus we have,

E
[
RegretPriv−Thomspon(T )

]
= E [N1] + E [N2] + E [N3]

From Lemma 9 we know that E [N1] = O
(
k log T

ε2

)
.

From Lemma 9 and Algorithm 2, we know that E [N2] =

O
(
k Γ

∆2

)
, where Γ = O

(
log3 T
ε

)
. Finally from Lemma 12,

we know that E [N3] = O (1). Combining these bounds,
we get the bound on the expected regret.

5 EXPERIMENTAL EVALUATION

In this section, we support the theoretical regret bounds for
our algorithms (Algorithm 1 and 2) with empirical results.
The experimental results show that there is a smooth trade-
off between privacy and accuracy. As we increase our pri-
vacy parameter ε, the regret improves. We perform the
simulation experiments on for stochastic multi-arm ban-
dits, with rewards in {0, 1}. The k-arm private UCB sam-
pling algorithm is described in Section 3. The 2-arm pri-
vate Thompson sampling and its extension to k-arm private

Figure 2: Comparison of different differentially private and
non-private multi-armed bandit algorithms on Yahoo! front
page News article recommender system. The click-through
rates for each algorithm is normalized with respect a ran-
dom algorithm.

Thompson sampling are given in Section 4.1. The true un-
derlying distribution of the arms are chosen as follows. The
mean for the best arm is 0.9 and the other arms have biases
of 0.9 −∆ each, where ∆ = 0.5. We tune the parameters
of our private algorithms, the confidence parameter (see
Line 9 in Algorithm 1) for UCB and the number of ran-
dom pullings (see Line 12 in Algorithm 1) for Thompson
to enhance accuracy. Note, the parameter tuning does not
violate privacy, since the access to the aggregated rewards
is still based the on tree based aggregation scheme. All
the UCB type sampling algorithms have a common param-
eter, the confidence interval; same as Line 9 in Algorithm
1. For our experiment on private UCB sampling (Algo-
rithm 1), we use a particular confidence interval, given in
[8], which seems to perform the best. The confidence inter-

val is given as,
√
ra(t) log t

na(t) + log t
na(t) , where ra(t) and na(t)

are the reward and number of pulls for arm a ∈ C up to
time t respectively. For our experiments on private Thomp-
son sampling (see Algorithm 2) we do not implement the
gap estimation phase and for the second phase that involves
random pullings (Line 10 of 2), use a smaller value for m.

Conclusions drawn from simulations. We observe in the
plots that the regret for the private algorithms saturates af-
ter certain time, similar to that of their non-private coun-
terparts (see Figure 1). Also notice that in the simula-
tions, Thompson sampling tends to perform much better
than UCB sampling.

5.1 Yahoo! Front Page Data set

In this section, we describe our results on Yahoo! front
page news article recommendation data set. The data set
contains 45,811,883 user visits to the Today module during
first 10 days in May 2009. Each user click on a news article
shown corresponds to a reward of one for that article. This
data set has also been used by [21], [11] for bandit exper-
iments. One property of this data set is that the displayed
article is chosen uniformly at random from the candidate
article pool allowing us to use an unbiased offline evalua-



tion method [21, 22]. The pool of articles is small (around
20 articles), but it is dynamic which means that the articles
may be added or removed from this pool. For each visit,
both the user and each of the candidate articles are asso-
ciated with a feature vector of dimension 6. The feature
vector acts as a context for the news article recommender
and based on this context the most suited article can be cho-
sen using a bandit algorithm. This is the contextual bandit
setting. In this setting, in each of T rounds, a learner is
presented with the context vector: za ∈ Rd for each arm
a ∈ C and based on his previous observations and this new
context vector, the learner needs to select one out of k ac-
tions. The learner’s aim is to learn the relation between the
reward and the context vector in an online fashion.

Differentially private contextual sampling (Algorithm 3
and Algorithm 4 in Appendix D.2 and D.3.) The private
contextual UCB algorithm is adapted from the LinUCB al-
gorithm in [21] and is similar to the basic UCB sampling
algorithm, as it computes the expected reward of each arm
and then chooses the arm with the highest upper confidence
bound. The expected reward is given as zTt θt, where θt is
estimated using ridge regression and the confidence bound
is given as

√
za(t)TAtza(t), which is the Mahalanobis dis-

tance of the context vector with covariance matrix A. On
the other hand, the private contextual Thompson sampling
algorithm is a differentially private version for the algo-
rithm provided by [3]. In regular Thompson sampling, for
each round we choose an arm according to its posterior
probability of having the best parameter. A natural gen-
eralization of Thompson Sampling for contextual bandits
is to use Gaussian prior and Gaussian likelihood function.
The extension of these algorithms to private algorithms is
straightforward. In both the private algorithms, we restrict
our access to the parameters which aggregate over each
time stamp and use tree based aggregation scheme to re-
trieve those parameters. We give the details of these algo-
rithms in Appendix D.2 and D.3.

Conclusions on experiments with Yahoo! front page data
set. The results for this experiment are summarized in Fig-
ure 2. We find that the private algorithms do not perform
much worse than the non-private algorithms. Since, the
feature vector is of length 6 by setting the privacy ε0 of each
parameter as 0.1, the total privacy measured in terms of the
total privacy parameter ε = 2.7. We also investigate the
performance of the algorithms with respect to delays. We
have considered the delay values in {0, 100, 1000}. When
the input data does not have any delay in the feedback,
the private algorithms perform slightly worse than the non-
private counter parts and as the delay increases the perfor-
mance of the non-private algorithms is hurt more than the
private algorithms.



References

[1] Alekh Agarwal, Ofer Dekel, and Lin Xiao. Optimal algo-
rithms for online convex optimization with multi-point ban-
dit feedback. In COLT, pages 28–40, 2010.

[2] Shipra Agrawal and Navin Goyal. Analysis of thompson
sampling for the multi-armed bandit problem. In COLT,
2012.

[3] Shipra Agrawal and Navin Goyal. Thompson sampling
for contextual bandits with linear payoffs. arXiv preprint
arXiv:1209.3352, pages 1–29, 2012.

[4] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-
time analysis of the multiarmed bandit problem. Machine
learning, 47(2-3):235–256, 2002.

[5] Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analy-
sis of stochastic and nonstochastic multi-armed bandit prob-
lems. CoRR, abs/1204.5721, 2012.

[6] Joseph A. Calandrino, Ann Kilzer, Arvind Narayanan, Ed-
ward W. Felten, and Vitaly Shmatikov. ”you might also like:
” privacy risks of collaborative filtering. In IEEE Symposium
on Security and Privacy, 2011.

[7] TH Hubert Chan, Elaine Shi, and Dawn Song. Private and
continual release of statistics. In ICALP. 2010.

[8] Olivier Chapelle and Lihong Li. An empirical evaluation
of thompson sampling. In Advances in Neural Information
Processing Systems, pages 2249–2257, 2011.

[9] Kamalika Chaudhuri. Topics in online learning: Lecture
notes. 2011.

[10] Kamalika Chaudhuri and Claire Monteleoni. Privacy-
preserving logistic regression. In Daphne Koller, Dale Schu-
urmans, Yoshua Bengio, and Léon Bottou, editors, NIPS.
MIT Press, 2008.

[11] Wei Chu, Seung-Taek Park, Todd Beaupre, Nitin Motgi,
Amit Phadke, Seinjuti Chakraborty, and Joe Zachariah. A
case study of behavior-driven conjoint analysis on yahoo!:
front page today module. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 1097–1104. ACM, 2009.

[12] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam
Smith. Calibrating noise to sensitivity in private data analy-
sis. In Theory of Cryptography Conference, pages 265–284.
Springer, 2006.

[13] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N
Rothblum. Differential privacy under continual observation.
In STOC, 2010.

[14] Cynthia Dwork, Moni Naor, Omer Reingold, Guy Roth-
blum, and Salil Vadhan. On the complexity of differentially
private data release: efficient algorithms and hardness re-
sults. In STOC, pages 381–390, 2009.

[15] Abraham D Flaxman, Adam Tauman Kalai, and H Brendan
McMahan. Online convex optimization in the bandit setting:
gradient descent without a gradient. In Proceedings of the
sixteenth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 385–394. Society for Industrial and Applied
Mathematics, 2005.

[16] Prateek Jain, Pravesh Kothari, and Abhradeep Thakurta.
Differentially private online learning. arXiv preprint
arXiv:1109.0105, 2011.

[17] Prateek Jain, Pravesh Kothari, and Abhradeep Thakurta.
Differentially private online learning. In Conference on
Learning Theory, pages 24.1–24.34, 2012.

[18] Emilie Kaufmann, Nathaniel Korda, and Rémi Munos.
Thompson sampling: An asymptotically optimal finite-time
analysis. In Algorithmic Learning Theory, pages 199–213.
Springer, 2012.

[19] Aleksandra Korolova. Privacy violations using microtar-
geted ads: A case study. In International Conference on
Data Mining Workshops, 2010.

[20] Tze Leung Lai and Herbert Robbins. Asymptotically effi-
cient adaptive allocation rules. Advances in applied mathe-
matics, 6(1):4–22, 1985.

[21] Lihong Li, Wei Chu, John Langford, and Robert E Schapire.
A contextual-bandit approach to personalized news article
recommendation. In Proceedings of the 19th international
conference on World wide web, pages 661–670. ACM, 2010.

[22] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang.
Unbiased offline evaluation of contextual-bandit-based
news article recommendation algorithms. In Proceedings
of the fourth ACM international conference on Web search
and data mining, pages 297–306. ACM, 2011.

[23] Shai Shalev-Shwartz. Online learning and online convex
optimization. Foundations and Trends in Machine Learning,
4(2):107–194, 2011.

[24] Adam Smith and Abhradeep Thakurta. Nearly optimal al-
gorithms for private online learning in full-information and
bandit settings. In NIPS (To appear), 2013.

[25] William R Thompson. On the likelihood that one unknown
probability exceeds another in view of the evidence of two
samples. Biometrika, 25(3/4):285–294, 1933.


