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Abstract

Many modern information access problems in-
volve highly complex patterns that cannot be
handled by traditional keyword based search.
Active Search is an emerging paradigm that helps
users quickly find relevant information by effi-
ciently collecting and learning from user feed-
back. We consider active search on graphs,
where the nodes represent the set of instances
users want to search over and the edges encode
pairwise similarity among the instances. Existing
active search algorithms are either short of theo-
retical guarantees or inadequate for graph data.
Motivated by recent advances in active learning
on graphs, namely the Σ-optimality selection cri-
terion, we propose new active search algorithms
suitable for graphs with theoretical guarantees
and demonstrate their effectiveness on several
real-world datasets.

We relate our active search setting to multi-armed
bandits whose rewards are binary values indi-
cating search hits or misses and arms cannot be
pulled more than once. We also discussed the-
oretical guarantees for applying Σ-optimality as
the exploration term for bandits on graphs.1

1 INTRODUCTION

As the world gets increasingly digitized and electronically
recorded, how to quickly identify relevant pieces of infor-
mation becomes a major issue. Internet search engines are

∗ Part of this work was done while the author was with
Carnegie Mellon University.

1An earlier version of this paper included results on bandit cu-
mulative regrets with improved rates (originally Section 4.2.2).
These results depended on proof strategies from Contal et al.
(2014) (originally in Appendix C) which were found to be in-
correct. Therefore, these results have been removed in the current
version of the paper.

an integral part of modern life, serving as a probe into the
diverse, complex and expanding space of human digital
traces. Despite being successful in many information re-
trieval tasks, the keyword-based query mechanism in most
search engines may fall short when targets are character-
ized by complex patterns or signatures beyond keywords.
For example, financial transactions associated with illegal
activities bear signatures involving multiple factors such as
time, location, occupation of the account owner, etc. In the
investigation of organizational misconduct, such as the En-
ron scandal, the important leads or evidences, oftentimes
buried in a sea of diverse electronic and paper trails, usu-
ally involve information exchange among key individuals
and their relationship. To fully understand the users’ intent
in these cases, keyword-based search may serve as a good
starting point, but is certainly far from completing the task.

Such needs of more general search paradigms have recently
motivated several efforts Garnett et al. (2012); Wang et al.
(2013); Vanchinathan et al. (2013), most of which are re-
lated to the Active Search framework proposed by Garnett
et al. (2012). It is an interactive search mechanism that
begins with a full set of instances without supervision and
a given task/keyword-specific similarity measure between
these instances. Based on the similarity measure and an
optional initial set of suggestions from the user, an algo-
rithm figures out what instances the user should examine
next and presents it to the user, who then decides whether
the presented instance is relevant or not. Upon receiving
this feedback, the algorithm updates its search strategy ac-
cordingly and selects the next instance to present. The loop
continues until the user quits, and the goal is to maximize
the total number of relevant instances found.

As one can see, Active Search has close connections to
some well-studied machine learning paradigms. At a first
glance, Active Learning (Settles, 2010) seems the most re-
lated because they both ask for user feedback incrementally
and adaptively. However, Active Learning aims at improv-
ing generalization performances with as few label queries
as possible, while Active Search is evaluated by how many
relevant instances it found along the way, and therefore



must carefully balance exploitation and exploration. This
trade-off relates Active Search to stochastic optimization
in the Multi-Armed Bandit setting (Robbins, 1985; Dani
et al., 2008; Kleinberg et al., 2008; Bubeck et al., 2009),
where the goal is to find the maximum of an unknown func-
tion using as few function evaluations as possible. How-
ever, Active Search deviates from this setting in that it se-
lects instances without replacement and is competing with
the best subset of instances rather than the single best.

We investigate Active Search when the instances are repre-
sented by the nodes on a graph whose edges encode pair-
wise similarity among the instances. For a toy example,
please see Figure 1. Many real-world datasets are of this
type, such as web pages, citation networks, and e-mail cor-
respondences. For data that are not naturally represented as
graphs, a graph representation based on pairwise similarity
can still be beneficial because it may reveal useful mani-
fold structures (Tenenbaum et al., 2000; Belkin and Niyogi,
2001). Existing active search approaches (Wang et al.,
2013; Garnett et al., 2012; Vanchinathan et al., 2013) either
lack theoretical guarantees or ignore certain graph proper-
ties, thereby degrading empirical performances. By draw-
ing ideas from recent advances in active learning on graphs
(Ma et al., 2013), we proposed new active search algo-
rithms with theoretical guarantees, and empirically demon-
strate their advantages over existing methods. In particular,
our new exploration criteria, motivated by Σ-optimality cri-
terion (Ma et al., 2013) for active learning on graphs, favor
nodes with not only high uncertainty, but also high influ-
ence on the other nodes.
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Figure 1: A toy examples for active search where the goals
are “ X ” nodes. Suppose the yellow nodes are observed in
previous rounds, which node should be searched next?

The rest of the paper is organized as follows. We describe
related work in Section 2, and introduce the problem setup
in Section 3. We then present our new methods in Section 4
along with theoretical guarantees, followed by experimen-
tal results in Section 5.

2 RELATED WORK

Wang et al. (2013) proposed an active search algo-
rithm for graphs, building on label propagation and semi-
supervised learning using Gaussian random fields (Zhu

et al., 2003a,b). Despite decent empirical performances,
this approach does not have any theoretical guarantee.
Vanchinathan et al. (2013) proposed a Gaussian-Process
(GP) based algorithm, GP-SELECT, for sequentially se-
lecting instances with high user scores or ratings (rewards).
This algorithm extends the popular GP-UCB algorithm
(Cox and John, 1997; Auer, 2003) for stochastic optimiza-
tion and inherits nice theoretical guarantees (Srinivas et al.,
2012). When applied to graphs, however, it tends to select
nodes at the periphery of the graph because they have large
predictive variances, leading to large exploration factors in
the GP-UCB selection rule. Yet the rewards of these nodes
reveal little information about the reward distribution over
the whole graph.

Similar issues have been observed in active learning on
graphs as well. In their experiments, Ma et al. (2013)
found that selection rules based on mutual information gain
(Krause et al., 2008), which is closely related to per-node
predictive variances, usually end up selecting nodes at the
periphery of a graph. Ji and Han (2012) proposed a selec-
tion criterion based on one-step lookahead decrease of the
average variance of all remaining nodes, which effectively
considers not only the predictive variance of the search
node itself, but also its covariances with all remaining
nodes. This criterion corresponds to standard V-optimality
in experiment design. Ma et al. (2013) further improved the
state of the art by using the Σ-optimality criterion, which
demonstrates greater robustness against outliers and better
empirical performances than V-optimality. Motivated by
these recent advances, we propose new active search algo-
rithms that combine GP-UCB with Σ-optimality.

Valko et al. (2014) considered bandit problems where arms
correspond to nodes on a graph and the reward is a smooth
function over the graph. Their algorithm can be viewed
as a special case of GP-UCB with a kernel defined by the
inverse of a graph Laplacian (augmented with an identity
matrix). To analyze the performance of their UCB-style
algorithm, they propose the notion of effective dimension of
a graph, which can be viewed as a measure of the spectral
decay of the kernel, thereby determining the performance
of the algorithm (Srinivas et al., 2012). We also use the
effective dimension to analyze our proposed methods.

3 PROBLEM SETUP

The database where active search is performed is given as
a graph G with known structure (edge connections). The
edge connections are nonnegative and we use A to repre-
sent the adjacency matrix of G, such thatAij ≥ 0,∀i, j. Let
V = {v1, . . . , vn} denote the set of all nodes in G. From
A we can derive a graph Laplacian matrix, L = D − A,
where D = diag(A · 1) = diag(deg(v1), . . . ,deg(vn)).

Every node v in our graph holds one reward value we de-
note as f(v), indicating whether the node is the search tar-



get. The reward is unknown at first and can be revealed
only when it is queried explicitly. For mathematical bene-
fits, we relax the reward to be a real value and introduce a
Gaussian noise to its observation, as

y(v) = f(v) + ε, where ε ∼ N (0, σ2
n). (1)

Similar to bandit problems, querying a node also means
collecting the true reward of that node. Our goal is to de-
sign a query strategy, which interactively generates a query
sequence vt = (v1, . . . , vt)

> without any repeated selec-
tions, in order to maximize the cumulative reward

FT =

T∑
t=1

f(vt). (2)

The cumulative reward is always upper-bounded by the op-
timal strategy with full knowledge of the true rewards on
all the nodes. Let v∗t = (v∗1 , . . . , v

∗
t ) to be the optimal

query sequence (without repeated selections), our analysis
in Theorem 2 (Section 4.2) bounds the cumulative regret
between our strategy and the optimal strategy,

RT =

T∑
t=1

f(v∗t )− f(vt). (3)

The above characterizes an active search problem, provided
that the values of f(v) are binary and the sequences vt and
v∗t do not allow repeated selections. Otherwise, the above
can also model a multi-armed bandit problem if we relax
f(v) to be real and vt and v∗t to allow repeated selections.
In fact, our formulation discusses them together, providing
analysis to the slightly more rigorous active search model-
ing except that f(v) is relaxed to real values.

In our notations, bold letters indicate vectors or matrices,
while light letters without subscripts mean functions and
light letters with subscripts represent scalars or specific el-
ements. t, τ , and T are time indices, which when applied
as subscripts, always mean the selection or model at that
time step. Other letters as subscripts, such as i, j, n, always
mean the natural indices.

3.1 GAUSSIAN RANDOM FIELD PRIOR

A key assumption in this work is that the reward values,
or the target labels, are constrained by the graph structure
in a non-trivial way. Otherwise, the input graph provides
little information about the reward function, making active
search extremely difficult. More specifically, we assume
that the reward values of all the nodes in the graph, collec-
tively denoted as a vector f ∈ RN , are random variables

distributed jointly as

log p(f) ' −
N∑
i=1

N∑
j=1

Aij(fi − fj)2

2
−

N∑
j=1

ω0(fj − µ0)2

2
,

i.e., f ∼ N
(
µ0 = µ0 · 1, C0 = (L + ω0I)

−1
)
, (4)

where µ0 is a prior mean, and ω0 > 0 is a regulariza-
tion parameter. According to this probabilistic model, it
is more likely for connected nodes to share similar values
than not. Define the initial covariance matrix as, C0 =
(L + ω0I)

−1, and denote L̃0 = L + ω0I. The above prior
model is also known as Gaussian random fields (GRFs).

3.2 POSTERIOR INFERENCE

Assume the nature draws one sample from the prior model,
(4), and we use query observations, (1), to converge to that
particular draw by performing posterior inference condi-
tioned on the history,

Ht = {(vτ , yτ )}tτ=1 = {vt,yt},

which allows us to update the posterior distribution as,

log p(f | Ht) ' −
1

2
(f−µ0)>L̃0(f−µ0)−

t∑
τ=1

(yτ − fvτ )2

2σ2
n

.

Notice that the prior distribution and likelihood model form
Gaussian conjugate pairs. Denote the posterior distribution
as, f | Ht ∼ N (µt,Ct). To some readers, it is easier to
express µt and Ct using the prior precision matrix, as

µt = Ct

(
L̃0µ0+

t∑
τ=1

yτevτ
σ2
n

)
, C−1

t = L̃0+
1

σ2
n

Ht (5)

where evτ = (0, . . . , 0, 1, 0, . . . , 0)> is an indicator vector
of index vτ and Ht is a diagonal matrix of index counts
from vt, whose kth diagonal element is

∑t
τ=1 evτ (vk).

However, for convenience in later descriptions and to con-
nect to Gaussian Process (GP) literature (Rasmussen and
Williams, 2006), we also use the prior covariance matrix to
express the posterior distribution, as,

µt(v) = µ0(v) + c>vtv(Cvtvt + σ2
nI)
−1(yt − µvt),

Ct(v, v
′) = C0(v, v′)− c>vtv(Cvtvt + σ2

nI)
−1cvtv′ ,

(6)

where the matrices can all be defined in terms of the prior:

cvtv = (C0(v1, v), · · · , C0(vt, v))>

Cvtvt =
(
C0(vτ , vτ ′)

)t
τ,τ ′=1

µvt = (µ0(v1), · · · , µ0(vt))
>.

The above update rules also applies to any time interval
that starts with t0, by replacing prior models (variables with
subscript “0”) with the model at time t0.



Define simple notations for correlation coefficients
and standard deviations from the covariance matrix,
Ct(v, v

′) = ρt(v, v
′)σt(v)σt(v

′), which implies that
σ2
t (v) = Ct(v, v). Define ct(v) to be the column of Ct

corresponding to node v.

4 METHOD

Algorithm 1 GP-SOPT and its variants

input µ0, A, ω0, σn, αt, T ; if warm start, {vτ , y(vτ )}t0τ=1

1: Obtain initial N (µ0,C0) // (4)
2: for t = t0, . . . , T − 1, do
3: Update to posterior N (µt,Ct) // (6)
4: vt+1 ← arg maxv∈V \St µt(v) + αt+1st(v)

// (9.a, 9.b, or 9.c)
5: Observe y(vt+1); include St+1 ← St ∪ {vt+1}
6: end for

output ST .

Our proposed active search algorithms are described in Al-
gorithm 1. They resemble general exploration-exploitation
style algorithms with GPs. Here we focus on binary func-
tions that assign value 1 to relevant or target nodes, and 0
to all other nodes. At iteration t + 1, Algorithm 1 selects
the next node to query based on a deterministic selection
rule of the form:

arg max
v∈V \St

µt(v) + αt+1 · st(v), (7)

where µt(v) is the usual exploitation term and st(v) en-
courages exploration, with the two being balanced by a
possibly iteration-dependent parameter at+1 > 0.

Examples from existing literature like the popular GP-
UCB algorithm and its extension to Active Search, GP-
SELECT (Vanchinathan et al., 2013), amount to setting
st(v)2 = σt(v)2, the posterior (as well as predictive) vari-
ance of the reward value at node v. Although this is a very
reasonable choice in many situations, it may lead to unde-
sirable exploration behaviors on graphs. Under our model
assumption, low-degree nodes, which usually lie at the pe-
riphery of a graph, tend to have high predictive variances.
Direct applications of GP-UCB may result in the selection
of many such outliers, which fail to reveal much informa-
tion about the reward values of most other nodes at the core
of the graph (Figure 2(a)).

Intuitively, a good exploration criterion should favor nodes
that have high influences on other parts of the graph. That
is, the knowledge of the function values at these nodes
should reveal a lot about the function values at other nodes.
Under our model assumption, this principle naturally con-
nects with the predictive covariances of a node with others.
Research in active learning on graphs has already made use
of predictive covariances to construct better selection rules.

Ji and Han (2012) proposed to select nodes based on their
sums of squares of predictive covariances with other nodes,
which is derived from the minimization of squared predic-
tion error, known as V-optimality in experiment design. Ma
et al. (2013) observed that V-optimality can still be unde-
sirably sensitive to outliers and used Σ-optimality crite-
rion instead, which by itself selects a set of nodes vt to
minimize the following Bayes survey risk on the posterior
model after the selection,

RΣ
t|vt = E

(∑
v′∈V

ft|vt(v
′)−

∑
v′∈V

µt|vt(v
′)

)2

= 1>Ct|vt1.

For active search, we use this criterion in a greedy sequen-
tial selection manner for exploration scoring, as

st(v) =
√
RΣ
t|St −R

Σ
t+1|St∪{v} =

∑
v′ Ct(v, v

′)√
Ct(v, v) + σ2

n

=
1√

1 + σ2
n/σ2

t (v)
·
∑
v′∈V

ρt(v, v
′)σt(v

′), (8)

where the second equality is easily derived from (6). If we
ignore σn (set it to 0), the Σ-optimality criterion (8) consid-
ers the sum of a node’s correlation times standard deviation
of all nodes on the graph. High score nodes by this criterion
are likely to provide rich information for exploration.

We propose three exploitation-exploration style algorithms
with exploration criteria motivated by Σ-optimality, which
are vanilla Σ-optimality and its two variants with an ad-
ditional parameter k that we will describe next. All algo-
rithms select the next node to query by the general rule (7),
but use different exploration terms:

GP-SOPT (Vanilla Σ-Optimality):

st(v) =
1√

1 + σ2
n/σ2

t (v)
·
∑
v′∈V

ρt(v, v
′)σt(v

′). (9.a)

GP-SOPT.TT (Thresholded Total Covariance):

st(v) = min

(
kσt(v),

∑
v′∈V

ρt(v, v
′)σt(v

′)

)
. (9.b)

GP-SOPT.TOPK (Top-k Covariance):

st(v) := max
B⊂V,|B|=k

∑
v′∈B

ρt(v, v
′)σt(v

′). (9.c)

As one can see in Figure 2(b), the nodes selected by vanilla
GP-SOPT indeed reside in more central parts of the toy
graph than the nodes selected by its competitor. In a large
graph with many peripheral nodes, we believe that the im-
proved exploration criteria of GP-SOPT and its variants
contribute to a better recall rate of search targets in real
graphs in Section 5.
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(a) Choices from UCB
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(b) Choices by our algorithm

Figure 2: For the toy graph example, choices from (a) direct application of UCB (Vanchinathan et al., 2013; Valko et al.,
2014) versus (b) our vanilla GP-SOPT. We observe that our method (b) tends to select more from cluster centers, which
helps reduce variance of the unobserved values/rewards, whereas previous literature (a) tends to select the graph periphery.

The reason we propose the latter two variants, (9.b) and
(9.c), is to both address proof difficulties and increase prac-
tical robustness. By Lemma 3 in Appendix A, we have that
st(v) ≥ σt(v) for both criteria, meaning that st(v) main-
tains the UCB property. Note that the observation noise,
σn, is also dropped from (9.b) and (9.c). As we will show in
our theoretical analysis, we put a threshold in (9.b) against
kσt(v), where k is a tuning parameter, in order to explicitly
control the regret of the algorithm. As implied by Lemma 4
in Appendix A, the Top-k Covariance criterion (9.c) is also
always upper-bounded by kσt(v).

In the next two subsections we discuss in more details the
properties of various exploration criteria, and present our
theoretical analysis.

4.1 DISCUSSIONS

Our approach and two other popular criteria, information
gain from Srinivas et al. (2012) and V-optimality of Ji and
Han (2012), can also be connected by functions of the
eigenvalues of the covariance matrix at each iteration.

To see this connection, assume the updated covariance ma-
trix at iteration (t + 1) has eigen-decomposition Ct =∑n
j=1 λt,(j)qt,(j)q

>
t,(j), where λt = (λt,(1), . . . , λt,(n))

>

represents the eigenvalues and {qt,(j) : j = 1, . . . , n} is
the set of corresponding eigenvectors. Assume the eigen-
values are sorted by λt,(1) ≥ . . . ≥ λt,(n) ≥ 0. We hope to
connect st(v) to the following spectral difference,

∆ht(v) = h
(
λt
)
− h
(
λt+1|v

)
(10)

where h(λ) : Rn → R is a multivariate function defined on
the eigenvalues. Further, by the one-step update rule of (6),
Ct has Loewner order as C0 � C1 � . . . � CT � 0. It
is thus often desirable to require h(·) to be monotone with
respect to this ordering, i.e. Ct � Ct′ ⇒ h(λt) ≥ h(λt′).

Case 1. h(λ) =
∑
j log(λ(j)). Then, ∆ht(v) =

2It(f ; y(v)) = log(1 +
σ2
t (v)
σ2
n

), twice the information gain
from f ∼ N (µt,Ct) to N (µt+1|v,Ct+1|v). This metric

is important to GP-UCB (Srinivas et al., 2012), which set
st(v) = σt(v) and used the inequality, log(1+

σ2
m

σ2
n

)
σ2
t (v)
σ2
m
≤

log(1 +
σ2
t (v)
σ2
n

), where σm = maxv,t σt(v), in its proofs.

Case 2. h(λ) =
∑
j λ(j) gives ∆ht(v) = tr(Ct) −

tr(Ct+1|v) = ‖ct(v)‖22/(σ2
t (v)+σ2

n). For σn = 0, ∆ht(v) is
used as the greedy V-optimal criterion for design of exper-
iments by Ji and Han (2012).

Case 3. h(λ) = λ(1) connects to the greedy design for
E-optimality (Pukelsheim, 1993). To some extent, it is
also related to greedy Σ-Optimality. First, approximate
∆ht(v) by ∂λ(j) = q>(j)∂(C)q(j) around C = Ct, as

∆ht(v) ≈ q>t,(1)(Ct−Ct+1|v)qt,(1) =

( |ct(v)>qt,(1)|√
σt(v)2 + σ2

n

)2

The above resembles (8) if qt,(1) ∝ 1, which holds true for
t = 0 and ω0 = 0 and approximately so for small ts.

In all these cases, exploration is measured by how much the
objective, h(λT ), is eventually decreased after T iterations.
Each definition of h(λt) aggregates the eigenvalues of the
posterior covariance matrices in a different way, which af-
fects the relative importance of large and small eigenvalues.
In Case 1, since ∂ log(λ)

∂λ = 1
λ , the same change introduced

to a smaller λ will have a relatively larger impact on the
objective. Such an effect is not evident in the other two
cases. Particularly in Case 3, changes to small eigenvalues
are ignored unless they become the largest eigenvalue.

Establishing biases to penalize larger eigenvalues more has
the benefit of improving global robustness because the pos-
terior marginal variance of every node is upper-bounded by
λt,(1). Compared with Cases 2 and 3, Case 1 is more sensi-
tive to changes in small eigenvalues, which may be another
explanation of GP-UCB’s strong tendency to select periph-
eral nodes, as seen in Figure 4 of Krause et al. (2008) or
Figure 1(d) of Gotovos et al. (2013).

Although Algorithm 1 is not built around the concept of
functions on eigenvalues, it still establishes strong biases
to penalize large eigenvalues in its initial explorations, per



analysis in Case 3. Note that Σ-optimality achieves a more
complex goal than E-optimality; exact execution of E-
optimality may over-simplify the model and select nodes
between clusters for separation rather than inside them.

4.2 REGRET ANALYSIS

We present an UCB-style analysis for GP-SOPT.TT and
GP-SOPT.TOPK. We combine several results on GP opti-
mization (Srinivas et al., 2012; Vanchinathan et al., 2013)
and the spectral bandit analysis (Valko et al., 2014). As in
these results, our regret bounds depend on the mutual in-
formation between f and the observed values yS at a set S
of nodes:

I(yS ; f) := H(yS)−H(yS | f), (11)

where H(·) denotes the entropy. If f is drawn from a
GP with observation noise distributed independently as
N (0, σn), the mutual information has the following ana-
lytical form:

I(yS ; f) = I(yS ; fS) =
1

2
log |I+σ−2

n CvSvS |. (12)

Let

γT := max
S∈V,|S|=T

1

2
log |I + σ−2

n CvSvS |, (13)

i.e., the maximum information about f gained by observ-
ing T function evaluations. The regrets of our algorithms
depend on the growth rate of γT , which can be linear in
T for arbitrary graphs. However, real-world graphs often
possess rich structures, such as clusters or communities,
and practical measures of relevance are often highly corre-
lated with these structures, resulting in slowly-growing γT .
To formalize this intuition, we follow Valko et al. (2014) to
consider the effective dimension:

d∗T := max

{
i | λi ≤

σ−2
n T

(i− 1) log(1 + T
σ2
nω0

)

}
, (14)

where λi is the ith smallest eigenvalue of L̃0 and λ1 = ω0.
The effective dimension is small when the first few λi’s
are small and the rest increase rapidly, as is often the case
for graphs with community or cluster structures. On the
contrary, if all the eigenvalues are close to ω0, then d∗T may
be linear in T . The following lemma bounds γT in terms
of d∗T :

Lemma 1. Let T be the total number of rounds. Then

γT ≤ 2d∗T log

(
1 +

T

σ2
nω0

)
.

Proof. By Lemma 7.6 of Srinivas et al. (2012) and the fact
that λ−1

i is the ith largest eigenvalue of the kernel C0 =

L̃
−1

0 , we have

γT ≤ max
{mi}Ti=1,mi≥0,∑T

i=1mi=T

T∑
i=1

log

(
1 +

mi

σ2
nλi

)
. (15)

Then by applying the same argument that proves Lemma 6
of Valko et al. (2014), we obtain the desired result.

We will then derive regret bounds in terms of γT .

Recall the cumulative regret of an active search algorithm
is defined as RT :=

∑T
t=1 f(v∗t ) − f(vt), where {vt}Tt=1

is the sequence of unique nodes selected by the algorithm.
For the two proposed UCB-style algorithms, GP-SOPT.TT
(9.b) and GP-SOPT.TOPK (9.c), we give the following
bounds on their cumulative regrets.
Theorem 2. Pick δ ∈ (0, 1). Assume the vector of true
node values, f , has bounded quadratic norm, ‖f‖L̃0

=√
f>L̃0f ≤ B,2 and the observation noise εt is zero-mean

conditioned on the past and is bounded by σn almost surely.
If GP-SOPT.TT and GP-SOPT.TOPK use GRF prior (4) with
zero-mean and graph Laplacian L̃0, the observation noise

modelN (0, σ2
n), and αt :=

√
2B + 300γt log3(t/δ), then

their cumulative regrets will satisfy

Pr({RT ≤ k
√
c1TαT γT ∀T ≥ 1}) ≥ 1− δ,

where the randomness is over the observation noise and
c1 := 8/ω0

log(1+σ−2
n )

. This implies that with high probability,

RT = O(k
√
T (B

√
d∗T + d∗T )).

This result is easily derived from the regret analysis of the
GP-SELECT algorithm proposed by Vanchinathan et al.
(2013) because the exploration terms used by GP-SOPT.TT
and GP-SOPT.TOPK both satisfy σt(v) ≤ st(v) ≤ kσt(v),
thereby maintaining the UCB property. Although our regret
bound is k times worse than the GP-SELECT bound, the
actual regret tends to behave more favorably as we observe
in our experiments that after a few tens of rounds, st(v) be-
comes smaller than kσt(v) for almost all unqueried nodes,
and the two proposed algorithm usually outperforms GP-
SELECT. We give the proof in Appendix B for complete-
ness.3

5 EXPERIMENTS

We conduct experiments on three graph data sets that were
studied by Wang et al. (2013) and a version of the Enron
e-mail data by Priebe et al..

2This is similar to a bounded RKHS norm with kernel C0 in
Srinivas et al. (2012).

3An earlier version of this paper follows on to discuss bounds
on vanilla GP-SOPT. These proofs used strategies from Contal
et al. (2014) which were found to be incorrect. Therefore, they
have been removed in the current version of the paper.
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(a) 5000 Populated Places
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(c) Citation Network

Figure 3: Recall vs. fraction of data queried

5.1 Three Graph Datasets of Wang et al. (2013)

We briefly summarize the datasets below.

5000 Populated Places. The nodes of this graph are 5000
concepts in the DBpedia4 ontology marked as populated
places. Each place is supported by a Wikipedia page, and
an undirected edge is created between two places if either
one of their two Wikipedia pages links to the other. There
can be multiple edges between two places. The DBpedia
ontology divides populated places into five categories: ad-
ministrative regions, countries, cities, towns and villages.
The 725 administrative regions are selected as our target
class while all the others are considered to be in null class.

Citation Network. This dataset consists of 14,117 papers
in top Computer Science venues available on citeseer. The
graph is created by adding an undirected edge between two
papers if either one cites the other. The 1844 NIPS papers
are chosen as our target class.

Wikipedia Pages on Programming Languages. A to-
tal of 5,271 Wikipedia pages related to programming lan-
guages are the nodes of this graph, and an undirected edge
exists between two pages if they are linked together. Wang
et al. (2013) performed topic modeling and chose the 202
pages related to objective oriented programming as our tar-
get class.

As demonstrated by Wang et al. (2013), the three graphs
and their target label distributions exhibit qualitative differ-
ences and thus serve as good benchmarks. The citation net-
work has many small components and target nodes appear
in many of them, while the Wikipedia graph has large hubs
and most target nodes reside in one of them. The graph of
populated places lies in between these two extremes, with
components of various sizes containing target nodes.

On all of the three data sets we compare two of the pro-
posed methods: GP-SOPT.TT and GP-SOPT against GP-
SELECT (GP-UCB without replacement) and the active

4www.dbpedia.org

search algorithm (AS-on-Graph) by Wang et al. (2013).
We only evaluate GP-SOPT.TOPK on the 5000 popu-
lated places data due to its heavy computation. For
each dataset we perform 5 independent runs, each with
a randomly chosen target node as the warm start seed.
For the proposed methods and GP-SELECT, the main
tuning parameters are the exploration-exploitation trade-
off parameter αt and the observation noise variance σ2.
For GP-SOPT.TT and GP-SOPT.TOPK there is addition-
ally the thresholding parameter k. We consider the
following values for them. Populated Places: αt ∈
{4, 2, 1, 0.1, 0.01, 0.001}, σ2 ∈ {1, 0.5, 0.25, 0.1} and k ∈
{200, 400, 800}. Wikipedia: αt ∈ {0.1, 0.01, 0.001},
σ2 ∈ {1, 0.5, 0.25, 0.1} and k ∈ {200, 400, 800}. Cita-
tion Network: αt ∈ {1, 10−1, 10−2, 10−3, 10−4}, σ2 ∈
{1, 0.5, 0.25, 0.1} and k ∈ {400, 800, 1600}. Although
in theory αt should be iteration-dependent, we find that a
fixed value often performs well in practice. On all data
sets we set the kernel regularization parameter ω0 = 0.01.
Wang et al. (2013) algorithm has several parameters, and
we only tune the exploration-exploitation trade-off param-
eter α. It is set to 0.1 on Populated Places and Citation
Network, and 0.0001 on Wikipedia, which are the best per-
forming values. Other parameters are set based on Wang
et al. (2013).

Results are in Figure 3, where we plot the recall, i.e., the
fraction of targets found by the algorithms, versus the frac-
tion of the whole data set queried. More specifically, for
each algorithm we obtain its mean recall curve over the top
15% (except for Wang et al. (2013)) parameter combina-
tions in each experiment, as judged by the area under the
recall curve. We then plot the median, maximum and min-
imum over the five runs in Figure 3.

The three proposed methods clearly outperform Wang et al.
(2013) and GP-SELECT on Populated Places, while all
methods perform equally well on Wikipedia. We think this
has to do with the underlying graph structure and target
distribution. As mentioned before, target nodes in the Pop-
ulated Places graph are spread over sub-graphs of various



sizes, and therefore exploration strategies do make a dif-
ference. We observe that the proposed methods tend to se-
lect high-degree nodes in the first few iterations, thereby
gaining much information, while GP-SELECT initially se-
lects low-degree nodes. In contrast, most target nodes in
the Wikipedia graph reside in one large component, and
therefore less exploration is needed. In fact, the best values
for αt are very small, suggesting that an exploitation-only
strategy is good enough for this data. On Citation Network,
most methods perform well except that GP-SELECT per-
forms quite poorly in one run. This may again indicate
GP-SELECT is less robust against low-degree nodes.

5.2 Enron E-mails

We experimented on the Enron e-mail data set5 with topics
assigned by Priebe et al. based on the annotations by Berry
and Browne. We further processed the dataset into a format
suitable for active search experiments as detailed below.
Each e-mail i is represented by a unique Unix time stamp
ti, a unique sender index and the set of receiver (excluding
self-copying) indices, which are collectively denoted as Ui.
Between e-mails i and j, we created an edge with the fol-
lowing weight:
Aij := exp

(
−(ti − tj)2/τ2

)
· |Ui ∩ Uj |/

√
|Ui||Uj |,

where τ = 12 weeks in seconds and |Ui| denotes the size
of Ui. We thus measure pairwise similarity among e-mails
by the product of nearness in time and degree of overlap
between users involved. The resulting e-mail graph has
20,112 nodes, and we chose the subset of 803 e-mails that
are assigned topic 16 in LDC topics5, which is related to the
downfall of Enron, to be the target class in this experiment.

Due to the size of the dataset, we only compared three
methods: GP-SOPT.TT, GP-SELECT and Wang et al.
(2013) in three independent runs each initialized with a tar-
get node chosen uniformly at random. We also limited the
tuning parameters to be the following fixed values across
the three runs: (k, α, σ2, ω0) = (800, 0.001, 0.05, 0.01)
for GP-SOPT.TT, (α, σ2, ω0) = (0.01, 0.05, 0.01) for GP-
SELECT, and α = 0.001 for Wang et al. (2013). These val-
ues were chosen based on a coarse parameter search to be
indicative of the performance of each method on this data
set. Results are in Figure 4, which shows GP-SOPT.TT is
more stable across initial seeds than the other methods, and
outperforms Wang et al. (2013) significantly at early itera-
tions.

6 CONCLUSION AND DISCUSSIONS

In this paper, we discuss active search on a graph with
known structure. Each node bears a reward, which is un-
known at first but can be noisily observed upon query. An

5Available at http://cis.jhu.edu/˜parky/Enron/
execs.email.linesnum.ldctopic
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Figure 4: Enron: recall vs. fraction of data queried

active search algorithm aims to accumulate as large a sum
of rewards from the queried nodes as possible under limited
budgets. We assume that the node rewards vary smoothly
along the graph.

Popular Bayesian UCB-style algorithms (Srinivas et al.,
2012; Vanchinathan et al., 2013; Valko et al., 2014) use the
marginal standard deviation as their exploration criterion,
leading to the undesirable tendency of selecting peripheral
nodes on a graph. Instead, we consider Σ-optimality on
graphs, which can more efficiently reduce the variance of
the reward function estimate by sampling cluster centers.
We show the advantage of our method in experiments with
real graphs and provide a theoretical guarantee on the cu-
mulative regret.

One interesting future direction is deriving tighter regret
bounds for the proposed methods that match their empirical
performances. We imagine it may be possible to bound
the regret directly by the difference in Σ-optimality (Bayes
survey risks, RΣ), which may have better properties than
differential information gain, γT on graphs.

An equally interesting question is the selection of graph
kernels. Our discussions and experiments mainly con-
sider Gaussian random fields with unnormalized Laplacian,
which is a very popular kernel choice. It is worthwhile to
explore active search with other graph kernels, such as the
ones discussed in Smola and Kondor (2003).
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A Predictive Covariance Matrix

Lemma 3. For augmented graph Laplacian, the posterior
covariance matrix, Ct(v, v′) ≥ 0,∀v, v′.

Proof. Let hk =
∑t
τ=1 evτ (vk) to be the count of queries

on node k; further define its diagonal matrix, H =



diag(h1, . . . , hn). We rewrite (5) as,

(Ct)
−1 = (C0)−1 + σ−2

n H = D−A + ω0I + σ−2
n H

Define Dt = D + ω0I + σ−2
n H, we have

Ct = (Dt −A)−1 = D
− 1

2
t

( ∞∑
k=0

(
D
− 1

2
t AD

− 1
2

t

)k)
D
− 1

2
t ,

where the right hand side is always nonnegative.

The convergence of ‖D−
1
2

t AD
− 1

2
t ‖2 < 1 is as follows.

Define the components for the posterior as Dt =

diag(d
(t)
1 , . . . , d

(t)
n with d(t) =

∑n
i=1 d

(t)
i . Also, define

for the prior model D = diag(d
(0)
1 , . . . , d

(0)
n with d(0) =∑n

i=1 d
(0)
i .

The following holds for any v ∈ Rn,

v>D
− 1

2
t AD

− 1
2

t v =
∑
ij

vivjaij√
d

(t)
i

√
d

(t)
j

≤

√√√√√
∑

ij

v2
i aij

d
(t)
i

∑
ij

v2
jaij

d
(t)
j

 =
∑
i

v2
i

di

d
(t)
i

≤ ‖v‖22.

Further, both equalities cannot hold simultaneously, be-
cause for the first equality to hold, it is required that
v2i aij

d
(t)
i

∝ v2jaij

d
(t)
j

, i.e., v2
j ∝ d

(t)
j ,∀j in the same connected

component, which then dictates that,

∑
i

v2
i

di

d
(t)
i

=
∑
i

(
d

(t)
i

d(t)
‖v‖22

)
di

d
(t)
i

=
d(0)

d(t)
‖v‖22 < ‖v‖22.

Lemma 4. The diagonal elements in Ct is always no
smaller than the off-diagonal elements, i.e., σt(v)2 =
Ct(v, v) ≥ Ct(v, v′),∀v, v′.

Proof. Without loss of generality, let v be the last index of
Ct = (L̃0 + σ−2

n H)−1. For simplicity, let L̃t = L̃0 +
σ−2
n H and it has the following matrix partition,

L̃t =

(
L̃v̄v̄

˜̀
v̄v

˜̀>
v̄v

˜̀
vv

)
,

where v̄ is the complement of v. From Woodbury matrix
inversion lemma, we have

Ct = L̃
−1

t =

(
M − 1

m L̃
−1

v̄v̄
˜̀
v̄v

− 1
m

˜̀>
v̄vL̃

−1

v̄v̄
1
m

)
, (16)

where m = ˜̀
vv − ˜̀>

v̄vL̃
−1

v̄v̄
˜̀
v̄v and M = L̃

−1

v̄v̄ +
1
m L̃

−1

v̄v̄
˜̀
v̄v

˜̀>
v̄vL̃

−1

v̄v̄ . To show that Ct(v, v) ≥ Ct(v, v
′), we

need to verify that (−L̃
−1

v̄v̄
˜̀
v̄v)v′ ≤ 1.

In fact, since L̃t is diagonally dominant, we have L̃t1n ≥
0. Take its first n − 1 rows to get L̃v̄v̄ · 1n−1 + ˜̀

v̄v ≥ 0.

Notice L̃v̄v̄ is also a valid augmented graph Laplacian. By
Lemma 3, we could left multiply the element-wise nonneg-
ative matrix L̃

−1

v̄v̄ to both sides to obtain, 1n−1+L̃
−1

v̄v̄
˜̀
v̄v ≥

0, which completes our proof for any v′ ∈ v̄.

B Active Search Regret Bound

We start by stating the following result.

Theorem 5 (Theorem 6, Srinivas et al. (2012)). Let
δ ∈ (0, 1). Assume the observation noises are uniformly
bounded by σn and f has RKHS norm B with kernel
C0, which is equivalent to f>L̃0f ≤ B2. Define αt =√

2B2 + 300γt log(t/δ)3, then

Pr (∀t,∀v ∈ V, |µt(v)− f(v)| ≤ αt+1σt(v)) ≥ 1− δ.

We use this result to bound our instantaneous regrets.

Lemma 6. Conditioned on the high-probability event in
Theorem 5, the following bound holds:

∀t, rt := f(v∗t )− f(vt) ≤ 2αtkσt−1(vt),

where v∗t is the node with the t-th globally largest function
value and vt is node selected at round t.

Proof. At round t there are two possible situations. If v∗t
was picked at some earlier round, the definition of v∗t im-
plies that there exists some t′ < t such that v∗t′ has not been
picked yet. According to our selection rule, the fact that
st(v) ≥ σt(v), and Theorem 5, the following holds:

µt−1(vt) + αtst−1(vt) ≥ µt−1(v∗t′) + αtst−1(v∗t′)

≥ µt−1(v∗t′) + αtσt−1(v∗t′) ≥ f(v∗t′) ≥ f(v∗t ).

If v∗t has not been picked yet, a similar argument gives

µt−1(vt)+αtst−1(vt) ≥ µt−1(v∗t )+αtst−1(v∗t ) ≥ f(v∗t ).

Thus we always have

f(v∗t ) ≤ µt−1(vt) + αtst−1(vt)

≤ f(vt) + αtσt−1(v − t) + αtst−1(vt)

≤ f(vt) + 2αtkσt−1(vt).

Lemma 7 (Lemma 5.4, Srinivas et al. (2012)). Let αt be
defined as in Theorem 5 and c1 be defined as in Theorem
2. Conditioned on the high probability event of Theorem 5,
the following holds:

∀T ≥ 1,

T∑
t=1

r2
t ≤ αT k2c1I(yvT ; fvT ) ≤ αT k2c1γT .

Finally, the Cauchy-Schwarz inequality gives RT ≤√
T
∑T
t=1 r

2
t ≤ k

√
Tc1αT γT .
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