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Abstract

We propose an efficient nonparametric strategy
for learning a message operator in expectation
propagation (EP), which takes as input the set
of incoming messages to a factor node, and pro-
duces an outgoing message as output. This
learned operator replaces the multivariate inte-
gral required in classical EP, which may not have
an analytic expression. We use kernel-based re-
gression, which is trained on a set of probabil-
ity distributions representing the incoming mes-
sages, and the associated outgoing messages.
The kernel approach has two main advantages:
first, it is fast, as it is implemented using a novel
two-layer random feature representation of the
input message distributions; second, it has prin-
cipled uncertainty estimates, and can be cheaply
updated online, meaning it can request and in-
corporate new training data when it encounters
inputs on which it is uncertain. In experiments,
our approach is able to solve learning problems
where a single message operator is required for
multiple, substantially different data sets (logis-
tic regression for a variety of classification prob-
lems), where it is essential to accurately assess
uncertainty and to efficiently and robustly update
the message operator.

1 INTRODUCTION

An increasing priority in Bayesian modelling is to make
inference accessible and implementable for practitioners,
without requiring specialist knowledge. This is a goal

∗Currently at Google DeepMind.

sought, for instance, in probabilistic programming lan-
guages (Wingate et al., 2011; Goodman et al., 2008), as
well as in more granular, component-based systems (Stan
Development Team, 2014; Minka et al., 2014). In all cases,
the user should be able to freely specify what they wish
their model to express, without having to deal with the
complexities of sampling, variational approximation, or
distribution conjugacy. In reality, however, model con-
venience and simplicity can limit or undermine intended
models, sometimes in ways the users might not expect. To
take one example, the inverse gamma prior, which is widely
used as a convenient conjugate prior for the variance, has
quite pathological behaviour (Gelman, 2006). In general,
more expressive, freely chosen models are more likely
to require expensive sampling or quadrature approaches,
which can make them challenging to implement or imprac-
tical to run.

We address the particular setting of expectation propaga-
tion (Minka, 2001), a message passing algorithm wherein
messages are confined to being members of a particular
parametric family. The process of integrating incoming
messages over a factor potential, and projecting the result
onto the required output family, can be difficult, and in
some cases not achievable in closed form. Thus, a num-
ber of approaches have been proposed to implement EP
updates numerically, independent of the details of the fac-
tor potential being used. One approach, due to Barthelmé
and Chopin (2011), is to compute the message update via
importance sampling. While these estimates converge to
the desired integrals for a sufficient number of importance
samples, the sampling procedure must be run at every iter-
ation during inference, hence it is not viable for large-scale
problems.

An improvement on this approach is to use importance
sampled instances of input/output message pairs to train
a regression algorithm, which can then be used in place



of the sampler. Heess et al. (2013) use neural networks
to learn the mapping from incoming to outgoing messages,
and the learned mappings perform well on a variety of prac-
tical problems. This approach comes with a disadvantage:
it requires training data that cover the entire set of possible
input messages for a given type of problem (e.g., datasets
representative of all classification problems the user pro-
poses to solve), and it has no way of assessing the uncer-
tainty of its prediction, or of updating the model online in
the event that a prediction is uncertain.

The disadvantages of the neural network approach were the
basis for work by Eslami et al. (2014), who replaced the
neural networks with random forests. The random forests
provide uncertainty estimates for each prediction. This al-
lows them to be trained ‘just-in-time’, during EP inference,
whenever the predictor decides it is uncertain. Uncertainty
estimation for random forests relies on unproven heuris-
tics, however: we demonstrate empirically that such heuris-
tics can become highly misleading as we move away from
the initial training data. Moreover, online updating can re-
sult in unbalanced trees, resulting in a cost of prediction of
O(N) for training data of size N , rather than the ideal of
O(log(N)).

We propose a novel, kernel-based approach to learning a
message operator nonparametrically for expectation prop-
agation. The learning algorithm takes the form of a distri-
bution regression problem, where the inputs are probability
measures represented as embeddings of the distributions to
a reproducing kernel Hilbert space (RKHS), and the out-
puts are vectors of message parameters (Szabó et al., 2014).
A first advantage of this approach is that one does not need
to pre-specify customized features of the distributions, as in
(Eslami et al., 2014; Heess et al., 2013). Rather, we use a
general characteristic kernel on input distributions (Christ-
mann and Steinwart, 2010, eq. 9). To make the algorithm
computationally tractable, we regress directly in the pri-
mal from random Fourier features of the data (Rahimi and
Recht, 2007; Le et al., 2013; Yang et al., 2015). In par-
ticular, we establish a novel random feature representation
for when inputs are distributions, via a two-level random
feature approach. This gives us both fast prediction (linear
in the number of random features), and fast online updates
(quadratic in the number of random features).

A second advantage of our approach is that, being an in-
stance of Gaussian process regression, there are well es-
tablished estimates of predictive uncertainty (Rasmussen
and Williams, 2006, Ch. 2). We use these uncertainty es-
timates so as to determine when to query the importance
sampler for additional input/output pairs, i.e., the uncertain
predictions trigger just-in-time updates of the regressor. We
demonstrate empirically that our uncertainty estimates are
more robust and informative than those for random forests,
especially as we move away from the training data.
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Figure 1: Distributions of incoming messages to logistic
factor in four different UCI datasets.

Our paper proceeds as follows. In Section 2, we introduce
the notation for expectation propagation, and indicate how
an importance sampling procedure can be used as an ora-
cle to provide training data for the message operator. We
also give a brief overview of previous learning approaches
to the problem, with a focus on that of Eslami et al. (2014).
Next, in Section 3, we describe our kernel regression ap-
proach, and the form of an efficient kernel message oper-
ator mapping the input messages (distributions embedded
in an RKHS) to outgoing messages (sets of parameters of
the outgoing messages). Finally, in Section 4, we describe
our experiments, which cover three topics: a benchmark of
our uncertainty estimates, a demonstration of factor learn-
ing on artificial data with well-controlled statistical prop-
erties, and a logistic regression experiment on four differ-
ent real-world datasets, demonstrating that our just-in-time
learner can correctly evaluate its uncertainty and update
the regression function as the incoming messages change
(see Fig. 1). Code to implement our method is avail-
able online at https://github.com/wittawatj/
kernel-ep.

2 BACKGROUND

We assume that distributions (or densities) p over a set of
variables x = (x1, . . . xd) of interest can be represented as
factor graphs, i.e. p(x) = 1

Z

∏J
j=1 fj(xne(fj)). The fac-

tors fj are non-negative functions which are defined over
subsets xne(fj) of the full set of variables x. These vari-
ables form the neighbors of the factor node fj in the factor
graph, and we use ne(fj) to denote the corresponding set
of indices. Z is the normalization constant.

We deal with models in which some of the factors have
a non-standard form, or may not have a known analytic
expression (i.e. “black box” factors). Although our ap-
proach applies to any such factor in principle, in this pa-
per we focus on directed factors f(xout|xin) which spec-
ify a conditional distribution over variables xout given xin

(and thus xne(f) = (xout,xin)). The only assumption
we make is that we are provided with a forward sam-
pling function f : xin 7→ xout, i.e., a function that maps
(stochastically or deterministically) a setting of the input
variables xin to a sample from the conditional distribution
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over xout ∼ f(·|xin). In particular, the ability to evaluate
the value of f(xout|xin) is not assumed. A natural way to
specify f is as code in a probabilistic program.

2.1 EXPECTATION PROPAGATION

Expectation Propagation (EP) is an approximate iterative
procedure for computing marginal beliefs of variables by
iteratively passing messages between variables and factors
until convergence (Minka, 2001). It can be seen as an alter-
native to belief propagation, where the marginals are pro-
jected onto a member of some class of known parametric
distributions. The message mf→V (xV ) from factor f to
variable V ∈ ne(f) is

proj
[´

f(xne(f))
∏
V ′∈ne(f)mV ′→f (xV ′)dxne(f)\V

]
mV→f (xV )

,

(1)
where mV ′→f are the messages sent to factor f
from all of its neighboring variables xV ′ , proj [p] =
argminq∈QKL [p||q], and Q is typically in the exponential
family, e.g. the set of Gaussian or Beta distributions.

Computing the numerator of (1) can be challenging, as it
requires evaluating a high-dimensional integral as well as
minimization of the Kullback-Leibler divergence to some
non-standard distribution. Even for factors with known
analytic form this often requires hand-crafted approxima-
tions, or the use of expensive numerical integration tech-
niques; for “black-box” factors implemented as forward
sampling functions, fully nonparametric techniques are
needed.

Barthelmé and Chopin (2011); Heess et al. (2013); Eslami
et al. (2014) propose an alternative, stochastic approach to
the integration and projection step. When the projection is
to a member q(x|η) = h(x) exp

(
η>u(x)−A(η)

)
of an

exponential family, one simply computes the expectation
of the sufficient statistic u(·) under the numerator of (1).
A sample based approximation of this expectation can be
obtained via Monte Carlo simulation. Given a forward-
sampling function f as described above, one especially
simple approach is importance sampling,

Exne(f)∼b [u(xV )] ≈ 1

M

M∑
l=1

w(xlne(f))u(xlV ), (2)

where xlne(f) ∼ b̃, for l = 1, . . . ,M and on the left hand
side,

b(xne(f)) = f(xne(f))
∏

W∈ne(f)

mW→f (xW ).

On the right hand side we draw samples xlne(f) from some

proposal distribution b̃ which we choose to be b̃(xne(f)) =
r(xin)f(xout|xin) for some distribution r with appropriate

support, and compute importance weights

w(xne(f)) =

∏
W∈ne(f)mW→f (xW )

r(xin)
.

Thus the estimated expected sufficient statistics provide us
with an estimate of the parameters η of the result q of the
projection proj [p], from which the message is readily com-
puted.

2.2 JUST-IN-TIME LEARNING OF MESSAGES

Message approximations as in the previous section could
be used directly when running the EP algorithm, as in
Barthelmé and Chopin (2011), but this approach can suf-
fer when the number of samples M is small, and the im-
portance sampling estimate is not reliable. On the other
hand, for large M the computational cost of running EP
with approximate messages can be very high, as impor-
tance sampling must be performed for sending each outgo-
ing message. To obtain low-variance message approxima-
tions at lower computational cost, Heess et al. (2013) and
Eslami et al. (2014) both amortize previously computed ap-
proximate messages by training a function approximator to
directly map a tuple of incoming variable-to-factor mes-
sages (mV ′→f )V ′∈ne(f) to an approximate factor to vari-
able message mf→V , i.e. they learn a mapping

Mθ
f→V : (mV ′→f )V ′∈ne(f) 7→ mf→V , (3)

where θ are the parameters of the approximator.

Heess et al. (2013) use neural networks and a large, fixed
training set to learn their approximate message operator
prior to running EP. By contrast, Eslami et al. (2014) em-
ploy random forests as their class of learning functions,
and update their approximate message operator on the fly
during inference, depending on the predictive uncertainty
of the current message operator. Specifically, they endow
their function approximator with an uncertainty estimate

Vθ
f→V : (mV ′→f )V ′∈ne(f) 7→ v, (4)

where v indicates the expected unreliability of the pre-
dicted, approximate message mf→V returned by Mθ

f→V .
If v = Vθ

f→V
(
(mV ′→f )V ′∈ne(f)

)
exceeds a pre-

defined threshold, the required message is approximated
via importance sampling (cf. (2)) and Mθ

f→V is up-
dated on this new datapoint (leading to a new set
of parameters θ′ with Vθ′

f→V
(
(mV ′→f )V ′∈ne(f)

)
) <

Vθ
f→V

(
(mV ′→f )V ′∈ne(f)

)
.

Eslami et al. (2014) estimate the predictive uncertainty
Vθ
f→V via the heuristic of looking at the variability of the

forest predictions for each point (Criminisi and Shotton,
2013). They implement their online updates by splitting the
trees at their leaves. Both these mechanisms can be prob-
lematic, however. First, the heuristic used in computing un-
certainty has no guarantees: indeed, uncertainty estimation



for random forests remains a challenging topic of current
research (Hutter, 2009). This is not merely a theoretical
consideration: in our experiments in Section 4, we demon-
strate that uncertainty heuristics for random forests become
unstable and inaccurate as we move away from the initial
training data. Second, online updates of random forests
may not work well when the newly observed data are from
a very different distribution to the initial training sample
(e.g. Lakshminarayanan et al., 2014, Fig. 3). For large
amounts of training set drift, the leaf-splitting approach of
Eslami et al. can result in a decision tree in the form of
a long chain, giving a worst case cost of prediction (com-
putational and storage) of O(N) for training data of size
N , vs the ideal of O(log(N)) for balanced trees. Finally,
note that the approach of Eslami et al. uses certain bespoke
features of the factors when specifying tree traversal in the
random forests, notably the value of the factor potentials
at the mean and mode of the incoming messages. These
features require expert knowledge of the model on the part
of the practitioner, and are not available in the “forward
sampling” setting. The present work does not employ such
features.

In terms of computational cost, prediction for the random
forest of Eslami et al. costs O(KDrDt log(N)),
and updating following a new observation costs
O(KD3

rDt log(N)), where K is the number of trees
in the random forest, Dt is the number of features used
in tree traversal, Dr is the number of features used in
making predictions at the leaves, and N is the number of
training messages. Representative values are K = 64,
Dt = Dr ≈ 15, and N in the range of 1,000 to 5,000.

3 KERNEL LEARNING OF OPERATORS

We now propose a kernel regression method for jointly
learning the message operator Mθ

f→V and uncertainty esti-
mate Vθ

f→V . We regress from the tuple of incoming mes-
sages, which are probability distributions, to the parameters
of the outgoing message. To this end we apply a kernel over
distributions from (Christmann and Steinwart, 2010) to the
case where the input consists of more than one distribution.

We note that Song et al. (2010, 2011) propose a related re-
gression approach for predicting outgoing messages from
incoming messages, for the purpose of belief propagation.
Their setting is different from ours, however, as their mes-
sages are smoothed conditional density functions rather
than parametric distributions of known form.

To achieve fast predictions and factor updates, we follow
Rahimi and Recht (2007); Le et al. (2013); Yang et al.
(2015), and express the kernel regression in terms of ran-
dom features whose expected inner product is equal to the
kernel function; i.e. we perform regression directly in the
primal on these random features. In Section 3.1, we de-

fine our kernel on tuples of distributions, and then derive
the corresponding random feature representation in Sec-
tion 3.2. Section 3.3 describes the regression algorithm, as
well as our strategy for uncertainty evaluation and online
updates.

3.1 KERNELS ON TUPLES OF DISTRIBUTIONS

In the following, we consider only a single factor, and
therefore drop the factor identity from our notation. We
write the set of c incoming messages to a factor node as a
tuple of probability distributions R := (r(l))cl=1 of random
variables X(l) on respective domains X (l). Our goal is to
define a kernel between one such tuple, and a second one,
which we will write S := (s(l))cl=1.

We define our kernel in terms of embeddings of the tuples
R,S into a reproducing kernel Hilbert space (RKHS). We
first consider the embedding of a single distribution in the
tuple: Let us define an RKHS H(l) on each domain, with
respective kernel k(l)(x(l)1 , x

(l)
2 ). We may embed individual

probability distributions to these RKHSs, following (Smola
et al., 2007). The mean embedding of r(l) is written

µr(l)(·) :=

ˆ
k(l)(x(l), ·) dr(l)(x(l)). (5)

Similarly, a mean embedding may be defined on the prod-
uct of messages in a tuple r = ×cl=1r

(l) as

µr :=

ˆ
k([x(1), . . . , x(c)], ·) dr(x(1), . . . , x(c)), (6)

where we have defined the joint kernel k on the product
space X (1)× · · · ×X (c). Finally, a kernel on two such em-
beddings µr, µs of tuples R,S can be obtained as in Christ-
mann and Steinwart (2010, eq. 9),

κ(r, s) = exp

(
−‖µr − µs‖2H

2γ2

)
. (7)

This kernel has two parameters: γ2, and the width parame-
ter of the kernel k defining µr = Ex∼rk(x, ·).

We have considered several alternative kernels on tuples
of messages, including kernels on the message parameters,
kernels on a tensor feature space of the distribution em-
beddings in the tuple, and dot products of the features (6).
We have found these alternatives to have worse empirical
performance than the approach described above. We give
details of these experiments in Section C of the supplemen-
tary material.

3.2 RANDOM FEATURE APPROXIMATIONS

One approach to learning the mappingMθ
f→V from incom-

ing to outgoing messages would be to employ Gaussian
process regression, using the kernel (7). This approach is



not suited to just-in-time (JIT) learning, however, as both
prediction and storage costs grow with the size of the train-
ing set; thus, inference on even moderately sized datasets
rapidly becomes computationally prohibitive. Instead, we
define a finite-dimensional random feature map ψ̂ ∈ RDout

such that κ(r, s) ≈ ψ̂(r)>ψ̂(s), and regress directly on
these feature maps in the primal (see next section): stor-
age and computation are then a function of the dimension
of the feature map Dout, yet performance is close to that
obtained using a kernel.

In Rahimi and Recht (2007), a method based on Fourier
transforms was proposed for computing a vector of ran-
dom features ϕ̂ for a translation invariant kernel k(x, y) =
k(x− y) such that k(x, y) ≈ ϕ̂(x)>ϕ̂(y) where x, y ∈ Rd
and ϕ̂(x), ϕ̂(y) ∈ RDin . This is possible because of
Bochner’s theorem (Rudin, 2013), which states that a con-
tinuous, translation-invariant kernel k can be written in the
form of an inverse Fourier transform:

k(x− y) =

ˆ
k̂(ω)ejω

>(x−y) dω,

where j =
√
−1 and the Fourier transform k̂ of the kernel

can be treated as a distribution. The inverse Fourier trans-
form can thus be seen as an expectation of the complex ex-
ponential, which can be approximated with a Monte Carlo
average by drawing random frequencies from the Fourier
transform. We will follow a similar approach, and derive a
two-stage set of random Fourier features for (7).

We start by expanding the exponent of (7) as

exp

(
− 1

2γ2
〈µr, µr〉+

1

γ2
〈µr, µs〉 −

1

2γ2
〈µs, µs〉

)
.

Assume that the embedding kernel k used to define the
embeddings µr and µs is translation invariant. Since
〈µr, µs〉 = Ex∼rEy∼sk(x − y), one can use the result of
Rahimi and Recht (2007) to write

〈µr, µs〉 ≈ Ex∼rEy∼sϕ̂(x)>ϕ̂(y)

= Ex∼rϕ̂(x)>Ey∼sϕ̂(y) := φ̂(r)>φ̂(s),

where the mappings φ̂ are Din standard Rahimi-Recht ran-
dom features, shown in Steps 1-3 of Algorithm 1.

With the approximation of 〈µr, µs〉, we have

κ(r, s) ≈ exp

(
−
‖φ̂(r)− φ̂(s)‖2Din

2γ2

)
, (8)

which is a standard Gaussian kernel on RDin . We can thus
further approximate this Gaussian kernel by the random
Fourier features of Rahimi and Recht, to obtain a vector
of random features ψ̂ such that κ(r, s) ≈ ψ̂(r)>ψ̂(s) where
ψ̂(r), ψ̂(s) ∈ RDout . Pseudocode for generating the ran-
dom features ψ̂ is given in Algorithm 1. Note that the sine

Algorithm 1 Construction of two-stage random features
for κ

Input: Input distribution r, Fourier transform k̂ of the em-
bedding translation-invariant kernel k, number of in-
ner features Din, number of outer features Dout, outer
Gaussian width γ2.

Output: Random features ψ̂(r) ∈ RDout .
1: Sample {ωi}Din

i=1
i.i.d∼ k̂.

2: Sample {bi}Din
i=1

i.i.d∼ Uniform[0, 2π].

3: φ̂(r) =
√

2
Din

(
Ex∼r cos(ω>i x+ bi)

)Din

i=1
∈ RDin

If r(x) = N (x;m,Σ),

φ̂(r) =

√
2

Din

(
cos(ω>i m+ bi) exp

(
−1

2
ω>i Σωi

))Din

i=1

.

4: Sample {νi}Dout
i=1

i.i.d∼ k̂gauss(γ
2) i.e., Fourier transform of a

Gaussian kernel with width γ2.
5: Sample {ci}Dout

i=1

i.i.d∼ Uniform[0, 2π].

6: ψ̂(r) =
√

2
Dout

(
cos(ν>i φ̂(r) + ci)

)Dout

i=1
∈ RDout

component in the complex exponential vanishes due to the
translation invariance property (analogous to an even func-
tion), i.e., only the cosine term remains. We refer to Sec-
tion B.3 in the supplementary material for more details.

For the implementation, we need to pre-compute
{ωi}Din

i=1 , {bi}
Din

i=1 , {νi}
Dout

i=1 and {ci}Dout

i=1 , where Din and
Dout are the number of random features used. A more ef-
ficient way to support a large number of random features is
to store only the random seed used to generate the features,
and to generate the coefficients on-the-fly as needed (Dai
et al., 2014). In our implementation, we use a Gaussian
kernel for k.

3.3 REGRESSION FOR OPERATOR
PREDICTION

Let X = (x1| · · · |xN ) be the N training samples of
incoming messages to a factor node, and let Y =(
ExV ∼q1f→V

u(xV )| · · · |ExV ∼qNf→V
u(xV )

)
∈ RDy×N be

the expected sufficient statistics of the corresponding out-
put messages, where qif→V is the numerator of (1). We
write xi = ψ̂(ri) as a more compact notation for the ran-
dom feature vector representing the ith training tuple of
incoming messages, as computed via Algorithm 1.

Since we require uncertainty estimates on our predictions,
we perform Bayesian linear regression from the random
features to the output messages, which yields predictions
close to those obtained by Gaussian process regression with
the kernel in (7). The uncertainty estimate in this case will



be the predictive variance. We assume prior and likelihood

w ∼ N
(
w; 0, IDout

σ2
0

)
, (9)

Y | X, w ∼ N
(
Y;w>X, σ2

yIN
)
, (10)

where the output noise variance σ2
y captures the intrinsic

stochasticity of the importance sampler used to generate Y.
It follows that the posterior of w is given by (Bishop, 2006)

p(w|Y) = N (w;µw,Σw), (11)

Σw =
(
XX>σ−2y + σ−20 I

)−1
, (12)

µw = ΣwXY
>σ−2y . (13)

The predictive distribution on the output y∗ given an obser-
vation x∗ is

p(y∗|x∗,Y) =

ˆ
p(y∗|w, x∗,Y)p(w|Y) dw (14)

= N
(
y∗; x∗>µw, x

∗>Σwx
∗ + σ2

y

)
. (15)

For simplicity, we treat each output (expected sufficient
statistic) as a separate regression problem. Treating all out-
puts jointly can be achieved with a multi-output kernel (Al-
varez et al., 2011).

Online Update We describe an online update for Σw and
µw when observations (i.e., random features representing
incoming messages) xi arrive sequentially. We use ·(N) to
denote a quantity constructed from N samples. Recall that
Σ
−1(N)
w = XX>σ−2y + σ−20 I . The posterior covariance

matrix at time N + 1 is

Σ(N+1)
w = Σ(N)

w −
Σ

(N)
w xN+1x

>
N+1Σ

(N)
w σ−2y

1 + x>N+1Σ
(N)
w xN+1σ

−2
y

, (16)

meaning it can be expressed as an inexpensive update of the
covariance at time N . Updating Σw for all the Dy outputs
costs O((DinDout + D2

out)Dy) per new observation. For
µw = ΣwXY

>σ−2y , we maintain XY> ∈ RDout×Dy , and
update it at cost O(DinDoutDy) as(

XY>
)(N+1)

=
(
XY> + xN+1y

>
N+1

)
. (17)

Since we have Dy regression functions, for each tuple of
incoming messages x∗, there are Dy predictive variances,
v∗1 , . . . , v

∗
Dy

, one for each output. Let {τi}
Dy

i=1 be pre-
specified predictive variance thresholds. Given a new input
x∗, if v∗1 > τ1 or · · · or v∗Dy

> τDy
(the operator is uncer-

tain), a query is made to the oracle to obtain a ground truth
y∗. The pair (x∗, y∗) is then used to update Σw and µw.

4 EXPERIMENTS

We evaluate our learned message operator using two differ-
ent factors: the logistic factor, and the compound gamma

factor. In the first and second experiment we demonstrate
that the proposed operator is capable of learning high-
quality mappings from incoming to outgoing messages,
and that the associated uncertainty estimates are reliable.
The third and fourth experiments assess the performance
of the operator as part of the full EP inference loop in two
different models: approximating the logistic, and the com-
pound gamma factor. Our final experiment demonstrates
the ability of our learning process to reliably and quickly
adapt to large shifts in the message distribution, as encoun-
tered during inference in a sequence of several real-world
regression problems.

For all experiments we used Infer.NET (Minka et al., 2014)
with its extensible factor interface for our own operator. We
used the default settings of Infer.NET unless stated other-
wise. The regression target is the marginal belief (numer-
ator of (1)) in experiment 1,2,3 and 5. We set the regres-
sion target to the outgoing message in experiment 4. Given
a marginal belief, the outgoing message can be calculated
straightforwardly.

xi

dot

w

zi
logistic (f)

pi
Bernoulli

yi

i = 1, . . . , N

Figure 2: Factor graph for binary logistic regression.
The kernel-based message operator learns to approximate
the logistic factor highlighted in red. The two incom-
ing messages are mzi→f = N (zi;µ, σ

2) and mpi→f =
Beta(pi;α, β).

Experiment 1: Batch Learning As in (Heess et al.,
2013; Eslami et al., 2014), we study the logistic factor
f(p|z) = δ

(
p− 1

1+exp(−z)

)
, where δ is the Dirac delta

function, in the context of a binary logistic regression
model (Fig. 2). The factor is deterministic and there are
two incoming messages: mpi→f = Beta(pi;α, β) and
mzi→f = N (zi;µ, σ

2), where zi = w>xi represents the
dot product between an observation xi ∈ Rd and the coef-
ficient vector w whose posterior is to be inferred.

In this first experiment we simply learn a kernel-based
operator to send the message mf→zi . Following Eslami
et al. (2014), we set d to 20, and generated 20 different
datasets, sampling a different w ∼ N (0, I) and then a
set of {(xi, yi)}ni=1 (n = 300) observations according to
the model. For each dataset we ran EP for 10 iterations,
and collected incoming-outgoing message pairs in the first
five iterations of EP from Infer.NET’s implementation of
the logistic factor. We partitioned the messages randomly
into 5,000 training and 3,000 test messages, and learned
a message operator to predict mf→zi as described in Sec-
tion 3. Regularization and kernel parameters were chosen



by leave-one-out cross validation. We set the number of
random features to Din = 500 and Dout = 1, 000; em-
pirically, we observed no significant improvements beyond
1,000 random features.
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Figure 3: Prediction errors for predicting the projected be-
liefs to zi, and examples of predicted messages at different
error levels.

We report log KL[qf→zi‖q̂f→zi ] where qf→zi is the
ground truth projected belief (numerator of (1)) and q̂f→zi
is the prediction. The histogram of the log KL errors is
shown in Fig. 3a; Fig. 3b shows examples of predicted
messages for different log KL errors. It is evident that the
kernel-based operator does well in capturing the relation-
ship between incoming and outgoing messages. The dis-
crepancy with respect to the ground truth is barely visible
even at the 99th percentile. See Section C in the supple-
mentary material for a comparison with other methods.

Experiment 2: Uncertainty Estimates For the approx-
imate message operator to perform well in a JIT learning
setting, it is crucial to have reliable estimates of opera-
tor’s predictive uncertainty in different parts of the space
of incoming messages. To assess this property we com-
pute the predictive variance using the same learned oper-
ator as used in Fig. 3. The forward incoming messages
mzi→f in the previously used training set are shown in
Fig. 4a. The backward incoming messages mpi→f are not
displayed. Shown in the same plot are two curves (a blue
line, and a pink parabola) representing two “uncertainty
test sets”: these are the sets of parameter pairs on which
we wish to evaluate the uncertainty of the predictor, and
pass through regions with both high and low densities of
training samples. Fig. 4b shows uncertainty estimates of
our kernel-based operator and of random forests, where we
fix mpi→f := Beta(pi; 1, 2) for testing. The implemen-
tation of the random forests closely follows Eslami et al.
(2014).

From the figure, as the mean of the test message moves
away from the region densely sampled by the training
data, the predictive variance reported by the kernel method
increases much more smoothly than that of the random
forests. Further, our method clearly exhibits a higher un-
certainty on the test set #1 than on the test set #2. This
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(b) Uncertainty estimates

Figure 4: (a) Incoming messages from z to f from 20 EP
runs of binary logistic regression, as shown in Fig. 2. (b)
Uncertainty estimates of the proposed kernel-based method
(predictive variance) and Eslami et al.’s random forests
(KL-based agreement of predictions of different trees) on
the two uncertainty test sets shown. For testing, we fix the
other incoming message mpi→f to Beta(pi; 1, 2).

behaviour is desirable, as most of the points in test set #1
are either in a low density region or an unexplored region.
These results suggest that the predictive variance is a ro-
bust criterion for querying the importance sampling ora-
cle. One key observation is that the uncertainty estimates
of the random forests are highly non-smooth; i.e., uncer-
tainty on nearby points may vary wildly. As a result, a
random forest-based JIT learner may still query the impor-
tance sampler oracle when presented with incoming mes-
sages similar to those in the training set, thereby wasting
computation.

We have further checked that the predictive uncertainty of
the regression function is a reliable indication of the error in
KL divergence of the predicted outgoing messages. These
results are given in Figure 10 of Appendix C.

Experiment 3: Just-In-Time Learning In this experi-
ment we test the approximate operator in the logistic re-
gression model as part of the full EP inference loop in
a just-in-time learning setting (KJIT). We now learn two
kernel-based message operators, one for each outgoing di-
rection from the logistic factor. The data generation is the
same as in the batch learning experiment. We sequentially
presented the operator with 30 related problems, where a
new set of observations {(xi, yi)}ni=1 was generated at the
beginning of each problem from the model, while keeping
w fixed. This scenario is common in practice: one is of-
ten given several sets of observations which share the same
model parameter (Eslami et al., 2014). As before, the infer-
ence target was p(w|{(xi, yi)}ni=1). We set the maximum
number of EP iterations to 10 in each problem.

We employed a “mini-batch” learning approach in which
the operator always consults the oracle in the first few hun-
dred factor invocations for initial batch training. In princi-
ple, during the initial batch training, the operator can per-
form cross validation or type-II maximum likelihood esti-
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Figure 5: Uncertainty estimate of KJIT in its prediction of outgoing messages at each factor invocation, for the binary
logistic regression problem. The black dashed lines indicate the start of a new inference problem.

mation for parameter selection; however for computational
simplicity we set the kernel parameters according to the
median heuristic (Schölkopf and Smola, 2002). Full detail
of the heuristic is given in Section A in the supplementary
material. The numbers of random features wereDin = 300
and Dout = 500. The output noise variance σ2

y was fixed
to 10−4 and the uncertainty threshold on the log predictive
variance was set to -8.5. To simulate a black-box setup, we
used an importance sampler as the oracle rather than In-
fer.NET’s factor implementation, where the proposal dis-
tribution was fixed to N (z; 0, 200) with 5× 105 particles.

Fig. 5 shows a trace of the predictive variance of KJIT in
predicting the mean of each mf→zi upon each factor in-
vocation. The black dashed lines indicate the start of a
new inference problem. Since the first 300 factor invoca-
tions are for the initial training, no uncertainty estimate is
shown. From the trace, we observe that the uncertainty
rapidly drops down to a stable point at roughly -8.8 and
levels off after the operator sees about 1,000 incoming-
outgoing message pairs, which is relatively low compared
to approximately 3,000 message passings (i.e., 10 itera-
tions × 300 observations) required for one problem. The
uncertainty trace displays a periodic structure, repeating it-
self in every 300 factor invocations, corresponding to a full
sweep over all 300 observations to collect incoming mes-
sages mzi→f . The abrupt drop in uncertainty in the first
EP iteration of each new problem is due to the fact that In-
fer.NET’s inference engine initializes the message from w
to have zero mean, leading to mzi→f also having a zero
mean. Repeated encounters of such a zero mean incom-
ing message reinforce the operator’s confidence; hence the
drop in uncertainty.

Fig. 6a shows binary classification errors obtained by using
the inferred posterior mean of w on a test set of size 10000
generated from the true underlying parameter. Included in
the plot are the errors obtained by using only the impor-
tance sampler for inference (“Sampling”), and using the
Infer.NET’s hand-crafted logistic factor. The loss of KJIT
matches well with that of the importance sampler and In-
fer.NET, suggesting that the inference accuracy is as good
as these alternatives. Fig. 6b shows the inference time re-
quired by all methods in each problem. While the inference
quality is equally good, KJIT is orders of magnitude faster
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Figure 6: Classification performance and inference times
of all methods in the binary logistic regression problem.

than the importance sampler.

2 2.5 3 3.5

2

2.5

3

3.5

Inferred by Infer.NET + KJIT

In
fe

rr
ed

 b
y 

In
fe

r.
N

E
T

Correlation: 1

 

 

Log shape

(a) Inferred shape

0 5 10

0

5

10

Infered by Infer.NET + KJIT

In
fe

rr
ed

 b
y 

In
fe

r.
N

E
T

Correlation: 0.999895

 

 

Log rate

(b) Inferred rate

0 500 1000 1500
0

2

4

6

8

10

T
im

e 
in

 lo
g(

m
s)

Problems seen

Inference time

 

 

Infer.NET
Infer.NET + KJIT

(c) Inference time

Figure 7: Shape (a) and rate (b) parameters of the inferred
posteriors in the compound gamma problem. (c) KJIT is
able to infer equally good posterior parameters compared
to Infer.NET, while requiring a runtime several orders of
magnitude lower.

Experiment 4: Compound Gamma Factor We next
simulate the compound gamma factor, a heavy-tailed prior
distribution on the precision of a Gaussian random vari-
able. A variable τ is said to follow the compound gamma
distribution if τ ∼ Gamma(τ ; s2, r2) (shape-rate parame-
terization) and r2 ∼ Gamma(r2; s1, r1) where (s1, r1, s2)
are parameters. The task we consider is to infer the pos-
terior of the precision τ of a normally distributed variable
x ∼ N (x; 0, τ) given realizations {xi}ni=1. We consider
the setting (s1, r1, s2) = (1, 1, 1) which was used in Heess
et al. (2013). Infer.NET’s implementation requires two
gamma factors to specify the compound gamma. Here, we
collapse them into one factor and let the operator learn to
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Figure 8: Uncertainty estimate of KJIT for outgoing messages on the four UCI datasets.

directly send an outgoing messagemf→τ givenmτ→f , us-
ing Infer.NET as the oracle. The default implementation
of Infer.NET relies on a quadrature method. As in Eslami
et al. (2014), we sequentially presented a number of prob-
lems to our algorithm, where at the beginning of each prob-
lem, a random number of observations n from 10 to 100,
and the parameter τ , were drawn from the model.

Fig. 7a and Fig. 7b summarize the inferred posterior param-
eters obtained from running only Infer.NET and Infer.NET
+ KJIT, i.e., KJIT with Infer.NET as the oracle. Fig. 7c
shows the inference time of both methods. The plots collec-
tively show that KJIT can deliver posteriors in good agree-
ment with those obtained from Infer.NET, at a much lower
cost. Note that in this task only one message is passed to
the factor in each problem. Fig. 7c also indicates that KJIT
requires fewer oracle consultations as more problems are
seen.

Experiment 5: Classification Benchmarks In the fi-
nal experiment, we demonstrate that our method for learn-
ing the message operator is able to detect changes in the
distribution of incoming messages via its uncertainty es-
timate, and to subsequently update its prediction through
additional oracle queries. The different distributions of in-
coming messages are achieved by presenting a sequence of
different classification problems to our learner. We used
four binary classification datasets from the UCI repository
(Lichman, 2013): banknote authentication, blood transfu-
sion, fertility and ionosphere, in the same binary logistic
regression setting as before. The operator was required to
learn just-in-time to send outgoing messages mf→zi and
mf→pi on the four problems presented in sequence. The
training observations consisted of 200 data points subsam-
pled from each dataset by stratified sampling. For the fer-
tility dataset, which contains only 100 data points, we sub-
sampled half the points. The remaining data were used
as test sets. The uncertainty threshold was set to -9, and
the minibatch size was 500. All other parameters were the
same as in the earlier JIT learning experiment.

Classification errors on the test sets and inference times are
shown in Fig. 9a and Fig. 9b, respectively. The results
demonstrate that KJIT improves the inference time on all
the problems without sacrificing inference accuracy. The
predictive variance of each outgoing message is shown in
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Figure 9: Classification performance and inference times
on the four UCI datasets.

Fig. 8. An essential feature to notice is the rapid increase of
the uncertainty after the first EP iteration of each problem.
As shown in Fig. 1, the distributions of incoming messages
of the four problems are diverse. The sharp rise followed
by a steady decrease of the uncertainty is a good indica-
tor that the operator is able to promptly detect a change in
input message distribution, and robustly adapt to this new
distribution by querying the oracle.

5 CONCLUSIONS AND FUTURE WORK

We have proposed a method for learning the mapping be-
tween incoming and outgoing messages to a factor in ex-
pectation propagation, which can be used in place of com-
putationally demanding Monte Carlo estimates of these up-
dates. Our operator has two main advantages: it can re-
liably evaluate the uncertainty of its prediction, so that it
only consults a more expensive oracle when it is uncertain,
and it can efficiently update its mapping online, so that it
learns from these additional consultations. Once trained,
the learned mapping performs as well as the oracle map-
ping, but at a far lower computational cost. This is in large
part due to a novel two-stage random feature representation
of the input messages. One topic of current research is hy-
perparameter selection: at present, these are learned on an
initial mini-batch of data, however a better option would be
to adapt them online as more data are seen.
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