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Abstract

Significant progress has recently been made to-
wards formalizing symmetry-aware variational
inference approaches into a coherent framework.
With the exception of TRW for marginal infer-
ence, however, this framework resulted in ap-
proximate MAP algorithms only, based on equi-
table and orbit partitions of the graphical model.
Here, we deepen our understanding of it for
marginal inference. We show that a large class of
concave free energies admits equitable partitions,
of which orbit partitions are a special case, that
can be exploited for lifting. Although already in-
teresting on its own, we go one step further. We
demonstrate that concave free energies of pair-
wise models can be reparametrized so that ex-
isting convergent algorithms for lifted marginal
inference can be used without modification.

1 INTRODUCTION

Computing likelihoods and marginals using graphical mod-
els [24] is an important task for many applications in bi-
ology, information retrieval, and computer vision, among
other fields. If the graphical models are defined over trees,
marginals can be efficiently computed using belief propa-
gation. For models with cycles, however, exact inference
is generally intractable. This motivates approximate infer-
ence algorithms, favoring algorithms which are as accurate
as possible while being guaranteed to converge. One promi-
nent example are variational inference approaches [24, 7,
14], where one aims to approximate a given distribution by
a simpler one, i.e., one whose marginals are easier to read
off. If a good fit is found, the marginals of the approxi-
mating distribution can be used as approximations to the
marginals of the original one. Such approaches are typi-
cally obtained in two steps: (1) one selects an approxima-
tion criterion (a free energy), which is a function of the

approximating marginals, and (2) designs optimization al-
gorithms to minimize that free energy efficiently.

A recent development in probabilistic inference has been
the use of symmetry [18, 1, 19, 23] as a basis for effi-
cient algorithms. Detecting and utilizing symmetry is es-
tablishing itself as an important component of inference.
On one hand, there are classes of models where symme-
try provides the only means for tractable inference [4]. On
the other, in approximate inference algorithms (which tend
to be tractable by design) symmetry usually translates to
significant improvements in running time as a result of re-
ducing the number of variables of the problem. Symmetry-
aware inference approaches are often referred to as lifted
inference approaches [20, 9], and one of the first lifted vari-
ational inference approaches was lifted loopy belief prop-
agation [8, 22, 10]. These works, however, are largely of
algorithmic nature and specific to loopy belief propagation.
More recently, Bui et al. [1] proposed a general, algebraic
framework for lifted variational inference. It formalizes the
notion of symmetry in graphical models via lifting parti-
tions and shows how to exploit them within corresponding
variational optimization problems. With the exception of
lifted TRW via Frank-Wolfe optimization [2], however, the
framework resulted in approximate MAP inference algo-
rithms only, based on equitable and orbit partitions of the
graphical model [1, 17, 16].

Our goal in this paper is to deepen our understanding of
the lifted variational framework for marginal inference. We
do so by extending the notion of equitable partitions — a
formalization of symmetry — of models to equitable parti-
tions of energies. We show that within a well-known class
of concave energies, a) given a concave energy that admits
an equitable partition, the number of variables in the re-
sulting optimization problem can be reduced in a way that
an exact solution can still be found. Moreover, b) given
a model that admits an equitable partition, a concave en-
ergy that admits the same equitable partition can always
be constructed. In combination, these two results allow us
to perform concave inference without breaking the sym-
metry of the model. Although already interesting on its
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Figure 1: Representations. (a) An MRF and its factor graph.
(b) An LP and its factor graph. (Best viewed in color)

own, we go one step further. We demonstrate that for the
case of pairwise models, “lifted” concave free energies can
be reparametrized to “ground” energies of smaller models.
That is, for any pair pG, cq of pairwise model and energy
parameters as well as an appropriate partition, we can find
a pair pG1, c1q of smaller size such that the resulting ener-
gies are equivalent, regardless of the solver. This enables
us to use existing highly efficient and distributed conver-
gent message passing algorithms for lifted marginal infer-
ence such (as [21]) without modification. Furthermore, we
provide a novel angle on the open question raised by Bui
et al. regarding the applicability equitable partitions within
lifted variational inference. While they point out that parti-
tions coarser than an orbit partition of the model generally
cannot lift the TRW energy [2] faithfully, we show that a
large class of other energies in the same class do admit any
equitable partition of the model.

To achieve the above goal(s) we start off by reviewing the
required tools from (lifted) variational inference. Section 3
then introduces the notion of an equitable partition of a con-
vex energy and shows that this partition is a lifting partition.
In Section 4, we show to reparametrize energies and models
modulo equitable partitions in order to eliminate the neces-
sity of a lifted solver. Before concluding, we illustrate our
theoretical results empirically.

2 BACKGROUND

We will start with reviewing variational inference in
Markov random fields (MRF). Then we will touch upon the
basics of the lifting framework for variational problems.

Variational Inference in MRFs. Let X “

pX1, X2, . . . , Xnq be a set of n discrete-valued ran-
dom variables and let xα represent the possible re-
alizations of a subset α of these random variables.
Markov random fields (MRFs) compactly repre-
sent a joint distribution over X as a factorization
P pX “ xq “ Z´1 exp r

ř

α θαpxαq `
ř

i θipxiqs , see
[24] for more details.

It is often convenient to represent MRFs by their factor

graphs. In this paper, however, we will slightly modify the
standard definition of a factor graph. For our purposes, a
factor graph G is a colored tri-partite graph, whose nodes
represent the variables, factors and the positions of vari-
ables in factors within an MRF. In contrast to standard
factor graphs and as illustrated in Fig. 1a, we connect a
variable Xi to factor θα via a dummy position node ♦iα,
which we color according to the symmetry of θα. More pre-
cisely, if the positions of Xi and Xj are compatible, that is,
θαp. . . , xi, . . . , xj , . . .q “ θαp. . . , xj , . . . , xi, . . .q for all
realizations xi, xj , we color ♦iα and ♦jα with the same
color. If the positions are not compatible, they receive dif-
ferent colors. Moreover, we assume that factors, variables
and positions use different color spaces, e.g. a position and
factor node cannot share the same color. While this is not
the most compact representation, it will allow us to use a
common graphical representation across various kinds of
partitions and optimization problems.

Inference in MRFs is generally intractable, hence, infer-
ence tasks are often addressed via approximations. One
prominent class of approximate inference algorithms arises
from the following optimization problem:

µ˚ “ argmax
µPLpGq

”

θTµ` T ¨ pHpµq
ı

loooooooooomoooooooooon

“:F pµq

, (1)

where F is the free energy and the set LpGq, defined as

LpGq “
"

µ ě 0

ˇ

ˇ

ˇ

ˇ

ř

xi
µipxiq “ 1

ř

xαzxi
µαpxαq “ µipxiq

*

, (2)

is known as the local polytope [24]. The problem in Eq. 1 is
at the heart of many message-passing inference algorithms.
For instance, if we set T “ 0 (or sufficiently small in the
sense of [13]), µ˚ in Eq. 1 yields a linear programming ap-
proximation of the Maximum a-Posteriori (MAP) problem
and prominent MAP algorithms such as MPLP and MSD
are typically derived as specialized solvers for the latter. If,
on the other hand, we choose T to be 1 and pH to be an ap-
proximation of the entropy function, µ˚ approximates the
vector of single-node and factor marginals of the distribu-
tion P . For example, we can choose pH “ pHc as

pHcpµq “
ÿ

i
ciHipµiq `

ÿ

α
cαHαpµαq , (3)

where Hi and Hα are local entropies. For ci “ 1´ |nbpiq|
and cα “ 1, F becomes the Bethe energy, FBethe. In this
case, solving the set of saddle-point equations of Eq. 1 by
means of fixed-point iteration yields the popular Loopy Be-
lief Propagation algorithm. The Bethe Energy often gives
surprisingly good approximations to the true marginals,
however, it is rather difficult to optimize over. Thus, one
may prefer to consider instances of pHc, where maximiza-
tion is efficient.

Naturally, a class of such energies results from pH being
concave. In particular, we are interested in values of c that
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Figure 2: Model symmetry of G propagates to its MAP-LP. (a) G – colored by the classes of the CEP. (b) The MAP-LP
of G (nonnegativity and normalization constraints as well as position nodes have been omitted for clarity). (c) The factor
graph of the MAP-LP of G colored by its CEP. The colors indicate that the classes can be deduced from the CEP of G..
Note that the darker and lighter version of each color are not grouped together. (Best viewed in color)

make pHc in Eq. 3 concave, as the structure of these en-
ergies gives rise to message-passing algorithms with de-
sirable theoretical properties, cf. [14, 6]. A sufficient con-
dition for pHc to be concave is that nonnegative auxiliary
numbers cαα, cii, and ciα exist, called counting numbers,
obeying to

CpGq “

$

&

%

cα, ci

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Dcαα, cii, ciα ě 0 ,
cα “ cαα `

ř

iPα ciα,
ci “ cii ´

ř

α:iPα ciα

,

.

-

. (4)

Finally, note that for T “ 0, Eq. 1 becomes a linear pro-
gram (LP), called the MAP-LP of G. An LP is an opti-
mization problem of the form maximize cTx subject to
Ax ď b. While LPs are not the focus of this paper, they
will be an important tool in the analysis of variational in-
ference problems. Note that linear programs, like MRFs,
can be represented by factor graphs. We represent a con-
straint α (row α ofA) as a factor node φα, LP variable i as
a variable node xi and the coefficient Aαi as position node
♦αi. Our notion of compatibility of positions here is that
♦αi is colored with the same color as ♦βj if Aαi “ Aβj .
Additionally, xi and xj are colored with the same color if
ci “ cj , while φα and φβ are colored the same if bα “ bβ .
An example is given in Fig. 1b. Having set-up the varia-
tional inference problem, we now give a short review of
lifted variational inference.

Lifted Variational Inference via Lifting Partitions.
Lifted inference approaches essentially amount to reduc-
ing the size a model by grouping together indistinguishable
variables and factors. In other words, they exploit symme-
tries. To formalize the notion of symmetry more concisely,
we follow [1].

Consider the linearly constrained concave program

x˚ “ argmaxAxďb Jpxq . (♣)

We are interested in partitioning the variables of the pro-
gram by a partition P “ tP1, . . . , Ppu, Pi X Pj “ H,

Ť

i Pi “ rx1, . . . , xns, such that there exists at least one so-
lution that respects the partition. More formally, P is a lift-
ing partition of p♣q if p♣q admits a solution with xi “ xj
whenever xi and xj are in the same class in P . We call the
linear subspace defined by the latter condition RP .

Having obtained a lifting partition of the ground varia-
tional problem, we can now restrict the solution space to
tx : Ax ď buXRP . That is, we constrain equivalent vari-
ables to be equal, knowing that at least one solution will be
preserved in this space of lower dimension. Since ground
variables of the same class are now equal, they can be re-
placed with a single aggregated (lifted) variable. The result-
ing lifted problem has one variable per equivalence class,
thus, if the lifting partition is coarse enough, significant
compression and in turn run-time savings can be achieved.
To recover a ground solution from the lifted solution, one
assigns the value of the lifted variable to every ground vari-
able in the class.

For linear programs, Mladenov et al. [15, 17, 16, 5] have
shown that equitable partitions [3] act as lifting parti-
tions. An equitable partition of a graph is a partition
P of the vertex set such that for any pair of vertices
u and v in the same class Pn and any other class Pm,
|nbpuq X Pm| “ |nbpvq X Pm|

1. For colored graphs,
we additionally require that the color vector respects the
partition. We call the quantity | nbpvq X Pm| the degree
of Pn to Pm, degpPn, Pmq. For notational convenience,
we will introduce equitable partitions of factor graphs as
P “ tP1, . . . , Pp, Q1, . . . , Qq, D1, . . . , Ddu, where the P -
classes refer to the variable classes, the Q-classes to factor
classes and the D-classes to position classes.

For the purposes of our discussion, an equitable partition
of a linear program is an equitable partition of its factor
graph. The existence of an equitable partition of a linear
program implies the existence of certain doubly-stochastic

1The orbit partitions discussed in [1, 2] are a special kind of
equitable partitions.



matrices pΣ,Πq such that cTΠ “ cT , Σb “ b and ΣA “
AΠ [5].

Recall that a concave energy inference problem as defined
here is essentially a linear program (the MAP-LP) plus a
linear combination of local entropies in the objective. The
symmetries of the MAP-LP have already received atten-
tion [1, 17, 16], and it is understood that the MAP-LP pre-
serves the symmetries present in the model. We will use
this understanding as a starting point for our discussion of
concave energies. We briefly formalize the claim.

Lemma 1. Any equitable partition P of an MRFG induces
an equitable partition P 1 of the resulting MAP-LP.

Let us briefly sketch how this works. Suppose we are given
an equitable partition P of G. To obtain an equitable par-
tition P 1 on LpGq, we group together µip0q with µjp0q,
resp. µip1q with µjp1q if Xi is grouped with Xj in P . To
partition the joint state pseudomarginals, we use the fol-
lowing rule. Let θα and θβ be two factors grouped together
in P (α “ β is also allowed). Then, for all permutations
π : α Ñ β such that πpiq “ j only if ♦iα is grouped
together with ♦jβ in P , we group together µαpxq with
µβpπpxqq for every joint configuration x. This grouping of
the LP variables also induces a grouping of the constraints
and positions that completes the partition.

Due to lack of space, we will not prove this here. Instead,
we give an example of how model symmetry propagates to
MAP-LP symmetry. Fig. 2 shows an MRF G colored by its
CEP (a) and the resulting MAP-LP (b) (some constraints
and the position nodes have been omitted for clarity). In
Fig. 2c, we see the correspondence between the CEP of G
and the CEP of the MAP-LP as indicated by the colors.

3 EQUITABLE PARTITIONS OF
CONCAVE FREE ENERGIES

With the basics of lifted variational inference at hand, we
can now begin our main discussion. We proceed as follows.
We start off by defining an equitable partition of a concave
energy. Then, as the first main result of this section, we
show that any concave energy that admits an equitable par-
tition has a solution that respects that partition. This estab-
lishes that equitable partitions of concave energies are lift-
ing partitions. Next, we show that given an equitable parti-
tion of an MRF, concave energies that admit this partition
are guaranteed to exist. That is, if we want to do conver-
gent inference on a model with symmetries, we can always
find a suitable energy that does not break the symmetries.
Finally, we will look at some heuristics used for selecting
concave energies and examine their relationship to equi-
table partitions.

Definition 2. An equitable partition of a concave energy
pHc (as in Eq. 3) with c P CpGq is an equitable partition of
G such thatXi andXj are grouped together only if ci “ cj

and θα, θβ are grouped together only if cα “ cβ .

We will shortly show that equitable partitions of concave
energies preserve optimal solutions of the variational prob-
lem. Before we do so, however, we will formalize what we
consider to be the symmetries of pHc.

If we set aside the constraints and ignore semantics of
µ, pHc is just a linear combination of x log x terms, i.e.
pHcpxq “

ř

k ckxk log xk. Observe that if we permute any
two variables whose c’s are the same, we do not change
pHc. In other words, any permutation Π with Πc “ c is an
automorphism of pHc, i.e., pHcpΠxq “ pHcpxq. Moreover,
switching any pair of variables can be done independently
of other pairs. We now restate the above in formal terms.
If we introduce R “ tR1, . . . , Rru that partitions the vari-
ables into classes having equal c, then the following holds:

Observation 3. The group Γ “
Â

RPR S|R| is isomorphic
to a subgroup of AUTp pHq.

Here
Â

denotes the group product and Sn is the symmetric
group over n elements. Now, let us “switch on” the seman-
tics of the argument and interpret the automorphism group
of pHc in terms of pseudomarginals. We can see that the
following operations are automorphisms of pHc: we can ex-
change the pseudomarginals of any two variables with the
same c’s, e.g., pµip0q, µip1qq ÞÑ pµjp0q, µjp1qq); similarly,
we can exchange any two sets of factor beliefs; we could
also exchange states within a set of beliefs: µip0q ÞÑ µip1q,
or even exchange states across variables, µip0q ÞÑ µjp1q
(given that the c’s are compatible). All of these operations
can be done independently of each other. Of course, many
symmetries of pHc are not symmetries of Eq. 1, as they
are not symmetries of the constraints. For example, Eq. 1
would generally not admit, say the reordering of states of
a variable without reordering the states of its neighbors as
a symmetry, since marginalization constraints tie adjacent
nodes in the factor graph.

In summary, pHc is a highly symmetric object given that we
have equal c’s. Hence, what we really have to be careful
about are the symmetries of the constraints. However, as we
will discuss now, equitability takes care of the constraints
and we end up with lifting partitions for Eq. 1.

Theorem 4 (EPs of Concave Energies are Lifting Parti-
tions). Let G be an MRF and c P CpGq a vector of count-
ing numbers. If P is an equitable partition of pHc , then P 1
obtained from P via Lemma 1 is a lifting partition of Eq. 1.

Proof. To prove that P 1 is a lifting partition of Eq. 1, we
need to prove that Eq. 1 admits a solution, where equivalent
variables take on equal values. We will establish this in the
following way. Given any feasible vector µ of Eq. 1, we
will produce a vector µ1 by replacing each variable by the
average of its class. E.g., if the variable µipxq is in some
class P , then µ1ipxq “ 1{|P |

ř

jPP µjpxq. Thus averaged,



the vector µ1 respects P 1. Then, we need that a) µ1 is feasi-
ble as well and that b) F pµ1q ě F pµq. Having established
a) an b), the rest is simple: we take any optimal solution of
Eq. 1 and average over the classes. By a) we know the aver-
age is feasible. By b) we know that it will not decrease the
objective value. Since we started with somethin that was
already optimal, it must be that averaged vector is of equal
objective value, as improvement over the optimum is not
possible by definition. Thus we have found a new optimum
that respects the partition. It now only remains to verify that
a) and b) indeed hold.

Proof of a). The averaging operation over the partition
classes can be represented in a linear algebraic way, as mul-
tiplying µ with the doubly stochastic matrixX defined as:

Xij “

#

1{|C| if pµqi, pµqj are both in some C P P 1,
0 otherwise.

The brackets in the equation indicate that the indices above
are used in a generic sense (not bound to factors, variables
or particular states). The theory of equitable partitions of
LPs tells us that if P 1 is equitable, then µ being feasible
implies µ1 “ Xµ is feasible as well, as X is a fractional
automorphism of the LP [5].

Proof of b). The Birkhoff-von-Neumann Theorem [12] al-
lows one to decompose the doubly stochastic X as a con-
vex combination of permutation matrices

ř

i λiΠi. Note
that any of these permutation matrices will exchange only
variables that had been grouped together in P 1. This fol-
lows from the fact that the λ’s form a convex combination.
If Πk has a nonzero element, then

ř

k λkpΠkqij “ Xij

has to be strictly greater than 0 as well, as the convex com-
bination has at least one nonzero element. By definition c
respects P 1, hence all Π’s are automorphisms of pHc. More-
over, θ also respects P 1 due to our definition of equitable
partitions, hence the Π’s are automorphisms of θT as well.
Taken together, we establish that all Πi’s are automor-
phisms of F , F pµq “ F pΠiµq. With this in mind, the con-
cavity of F gives us the result: F pµ1q “ F p

ř

i λiΠiµq ě
ř

i λiF pΠiµq “ F pµq. l

Thus, we have established that equitable partitions of con-
cave energies are lifting partitions for the variational prob-
lem of interest. However, an important question that re-
mains is: do they actually exist? That is, if we want to do
inference, can we find counting numbers that permit lift-
ing at all? As we will show now, not only do such num-
bers exist, but also most heuristics presented in literature
for finding counting numbers will yield c that respect eq-
uitable partitions of G. Let us first show the existence of
liftable counting numbers.
Lemma 5 (Existence of liftable counting numbers). Let
P be an equitable partition of the MRF G. If CpGq is not
empty, then there exists a c-vector that respects P . In other
words, P is an equitable partition of pHc for at least one c.

(a)

LpG1q LpGq

LpG1q1 LpGq1

liftP 1

identical

Punlift

(b)

Figure 3: (a) Illustration of Lemma 5. (b) Commutative di-
agram underlying the “lifted inference by reparametriza-
tion” paradigm. (Best viewed in color)

Proof (sketch). Observe that the set of counting numbers
is defined by a linear program, as Eq. 4 consistes of linear
constraints. Thus, we can again rely on the fact that equi-
table partitions of linear programs act as lifting partitions,
given that we manage to translate P into an equitable par-
tition P 1 of CpGq. Let us show the translation in question.
We group together ci with cj , cii with cjj , and φi (the con-
straint generated by Xi) with φj in P 1 if Xi and Xj are
grouped together in P . Similarly, if P groups θα and θβ ,
we group cα with cβ , cαα with cββ , and φα (the constraint
generated by θα) with φβ . Finally, ciα and cjβ are grouped
together if ♦iα and ♦jβ are grouped together in P . Now let
us argue that P 1 is indeed equitable on CpGq. The main
idea is as follows: we will show that the factor graph of G
is isomorphic to a “skeleton” subgraph of the factor graph
of CpGq. As such, any equitable partition of G is also equi-
table on the skeleton of CpGq. Then, we will complete the
partition on the remaining elements of CpGq in a way that
preserves equitability.

To obtain the skeleton, we temporarily ignore the variables
ci, cii, cα, cαα. Then, the map M : G Ñ CpGq, which
maps the position node ♦αi to the LP variable ciα, the fac-
tor θα to the constraint of the factor and the variable Xi

to the constraint of the variable, is an isomorphism. This
follows directly from Eq. 4. An LP variable ciα appears in
the factor constraint of θα if and only if θα is connected to
position node ♦αi (in other words variable i participates in
factor θα). Moreover a variable ciα appears in the variable
constraint of Xi if and only if Xi is connected to position
node ♦αi. Thus, an equitable partition of G yields an eq-
uitable partition of the constraints and the variables ciα. If
we reintroduce now ci, cii, cα, cαα, we see that each ap-
pears in exactly one constraint, so they can be partitioned
in a way to preserve equitability. Fig. 3a provides an illus-
tration. Note that we have so far ignored the position nodes
in the FG of CpGq. It can be verified that they can be par-
titioned without breaking the equitability of the partition
obtained thus far. l

We have established that if G admits an equitable parti-



tion, then there will be at least one energy that admits the
same equitable partition. The question now is, how do we
compute the appropriate counting numbers? Naturally, as
in Thm 4, we can take any vector of counting numbers,
any equitable partition of G and simply average c over
the classes. However, as CpGq is a polyhedron, there are
infinitely many vectors of counting numbers and the use-
fulness of the resulting energies in terms of the approx-
imate inference problem will vary. In the following, we
show that several heuristics for picking counting numbers
naturally yield counting numbers that allow nice equitable
partitions of the energy. The heuristics that we will dis-
cuss first are the following two: (a) [6] following the prin-
ciple of insufficient reason one tries to make c’s as uni-
form as possible by minimizing either

ř

αpcα ´ 1q2 or
ř

α cα log cα over CpGq; (b) [14] finding the least-squares
projection of the c’s of the Bethe energy onto CpGq, i.e.
c˚ “ argmincPCpGq

ř

αpcα´1q2`
ř

ipci´|nbpXiq|`1q2.
Both of them lead to liftable energies.
Proposition 6 (Finding lifted counting numbers). Let P be
an EP of G and P 1 is an EP of CpGq obtained as in Thm. 5.
Then P 1 is a lifting partition of both (a) and (b).
Proof. The proof is identical to the proof of Thm. 4. As,
Lemma 5 already established, given any c P CpGq, we ob-
tain a new c1 P CpGq by assigning to any c1α or c1i the
average of c over the respective class. Now we need to
show that this averaging does not increase the respective
objective values. We argue in the same way as in Thm. 4.
For both cases in (a), the automorphism group consists of
the product of two symmetric groups - we can exchange
any two ci, cj and any two cα, cβ independently. Thus av-
eraging over P 1 is equivalent to averaging over automor-
phisms of the objectives, which by convexity does not in-
crease the value. For the case of (b), the automorphism
group is smaller. We are allowed to exchange any two
cα, cβ independently, but we can exchange ci, cj only if
|nbpXiq| “ | nbpXjq|. Recall however, that in any eq-
uitable partition, for any class Q, we group Xi and Xj

if degpXi, Qq “ degpXj , Qq. This implies |nbpXiq| “

|nbpXjq|. Thus, the averaging matrix X as in Thm. 4 will
have a non-zero value only if |nbpXiq| “ |nbpXjq|, and
the resulting Birkhoff-von-Neumann decomposition will
consist of automorphisms of the objective. l

In essence, this proposition tells us that optimal numbers
(w.r.t. (a) and (b)) can be found that turn any equitable par-
tition of G into an equitable partition of the energy. Could
this be the case for all heuristics? As it turns out, some
heuristics can impose restrictions on what partitions can be
EPs of their respective energies.

To see this, consider for example as a further option (c)
Tree-Reweighted BP (in pairwise models). We obtain c P
CpGq by setting cα to be the number of spanning trees pass-
ing through θα divided by the number of all spanning trees
in G. If we translate the result of Bui et al. [2] in the lan-

guage of the present paper, it states that the equitable parti-
tion of G coarser than its orbit partition may generally not
be turned into an equitable partition of the TRW energy.
However, for the orbit partition, they give an efficient algo-
rithm to produce the appropriate c.

Finally, one could also follow Meshi et al. [14] as
option (d): instead of approximating the numbers of
FBethe, we project FBethe itself onto the set of con-
cave energies FcPCpGq. More precisely, we take c˚ “

argmincPCpGq
ş

µPLpGq pFBethepµq ´ Fcpµqq
2
dµ . As a

matter of fact, it is even an open question whether FBethe

admits stationary points that respect2 any P . It should be
noted that if we want a coarser partition than what (c) or
(d) permit, we could still take the counting numbers and
average them over a coarser equitable partition of G. How-
ever, the question of whether this operation preserves the
quality of approximation remains open.

4 LIFTING AS REPARAMETRIZATION

One issue that arises with the above approach is that in cer-
tain cases, compression changes the structure of the opti-
mization problem. For example, given an equitable parti-
tion P “ tQ1, . . . , Qq, P1, . . . , Pp, D1, . . . , Ddu of G, the
compressed inference problem will take on the following
form: µ˚ “

argmax
µPLpGq1

E1pµq`
ÿ

PPP
|P |cPHP pµP q`

ÿ

QPP
|Q|cQHQpµQq ,

where

E1pµq “
ÿ

PPP
|P |θPµP `

ÿ

QPP
|Q|θQµQ and

LpGq1 “

$

’

’

’

’

&

’

’

’

’

%

µ ě 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

µ0
P ` µ

1
P “ 1

µ00
Q ` µ

01
D “ µ0

P

µ11
Q ` µ

01
D1 “ µ1

P

µ00
Q ` µ

01
D1 “ µ0

P 1

µ11
Q ` µ

01
D “ µ1

P 1

,

/

/

/

/

.

/

/

/

/

-

. (5)

Here, Q is the representative of a factor class, P and P 1 are
the representatives of its neighboring variable classes and
D andD1 are the representatives of the position classes that
connect variables in P and P 1 to factors inQ. Note that our
notation treats the beliefs of factor Q being in state 00 or
11 differently from the beliefs of factor Q being in state 01
or 01. This becomes important in the following situation: in
an equitable partition, it could happen that P “ P 1. That is,
for any ground factor in the classQ, both participating vari-
ables are in the same class of the lifting partition. For the
variational problem, this means that we need to unify the

2Works on lifted loopy belief propagation [8, 22, 10] do in-
deed show that BP admits such solutions. However, the question
of whether this is due to FBethe or an artifact of the way BP opti-
mizes it is unclear.



variables µ01
D1 and µ01

D , ending up with a peculiar-looking
set of constraints such as:

µ00
Q ` µ

01
D “ µ0

P and µ11
Q ` µ

01
D “ µ1

P .

This example illustrates why we cannot simply view the
lifted inference problem as a standard inference problem
on a smaller “proper” factor graph. We have a binary factor
that has the same variable in both positions (which is, un-
fortunately, not equivalent to a unary factor). Now, in terms
of message-passing, to send a message to P , Q would have
to first eliminate P – an operation which is not supported
by standard message-passing frameworks.

To circumvent the problem, at least for the case of T “ 0 in
Eq. 1, we can follow the “lifted inference as reparametriza-
tion” paradigm recently advocated by Mladenov et al. [16].
The main idea is based on the fact that equitable partitions
allow one to not only recover a solution of the ground vari-
ational problem from the lifted one, but also a solution of
the ground problem can be projected onto RP by averag-
ing the variables within each equivalence class. Thus, what
we do is the following: given an G and an equitable parti-
tion P , we find a smaller G1 and a partition P 1 such that
the variational problem of G lifted with P is identical to
the variational problem of G1 lifted with P 1. So, we solve
the smaller G1 with a ground solver, average over P 1 to ob-
tain a solution to the lifted problem of G1, transfer that to
the lifted variational problem ofG, since they are identical,
and then finally unlift according to P . The idea is illustrated
in Fig. 3. The work of [16] shows how to find G1 and P
and then reparametrize the factors of G1 such that its lifted
MAP-LPs are same the one of G. Our goal here is to show
that if in addition we reparametrize the c’s, their lifted con-
cave energies will also be the same. Thus, in essence, we
can make use of any ground concave energy solver that al-
lows manually setting c’s for lifted inference.

As we would like to avoid introducing again the technical
arguments of [16], we will introduce a notion of weak parti-
tion equivalence, which subsumes the equivalence in [16],
and build upon that. We will show that reparametrization
of pHc is possible among partition-equivalent pairs. Since
the pairs produced by the algorithm of [16] are partition-
equivalent, the result applies.

Definition 7. Let G and G1 be MRFs. We call G and G1

weakly partition-equivalent if they admit equitable par-
titions P “ tP1, . . . , Pp, Q1, . . . , Qq, D1, . . . , Ddu resp.
P 1 “ tP 11, . . . , P

1
p, Q

1
1, . . . , Q

1
q, D

1
1, . . . , D

1
du having the

same number of variable, factor and position classes.
Moreover, for any two classes X,Y P P , we have
degpX,Y q ‰ 0 if and only if degpX 1, Y 1q ‰ 0 (♠).

Note that the actual number of nodes in the class may very
well be different, we do not require |Q| “ |Q1|.

Lemma 8. If G and G1 are weakly partition equiv-
alent w.r.t. P and P 1, then degpQ,Dq ‰ 0 implies

|Q|
|Q1|

degpQ,Dq “ |D|
|D1|

degpQ1, D1q, resp. degpP,Dq ‰ 0

implies |P |
|P 1|

degpP,Dq “ |D|
|D1|

degpP 1, D1q.

Proof. For any equitable partition it will hold
that |Q|degpQ,Dq “ |D|degpD,Qq, resp.
|Q1|degpQ1, D1q “ |D1|degpD,Qq. Since D con-
sists of only position nodes, and every position node
can be connected to exactly one factor (and one vari-
able), degpD,Qq “ degpD1, Q1q “ 1. With this in
mind, we take the quotient of both equations and ob-
tain |Q| degpQ,Dq

|Q1| degpQ1,D1q
“

|D|
|D1|

. Multiplying both sides by
degpQ1, D1q yields the result. The reasoning for the
variable classes is identical. l

Now, suppose counting numbers for G which respect P
have been found, that is, for every θα in the class Q,
cα “ cQ and so on, as in Thm. 5. Then, we can construct
a vector of counting numbers for G1 by the following pro-
cedure: for every vertex in G1 (regardless of whether it is
a variable, factor, or position), we take the size of its class,
|X 1|, the size of the corresponding class in P , |X| and then
normalize the counting number cX (from G) by their ratio.
That is, c1k “ p|X|{|X

1|qcX .
Theorem 9. SupposeG andG1 are weakly partition equiv-
alent with respect to P and P 1 and c P CpGq respects P .
Then, the vector c1 having c1k “ cX1 “

|X|
|X1|

cX consists of
counting numbers for G1. I.e. c1 P CpG1q.
Proof. We have assumed c respects P . This allows us to
rewrite the conditions of Eq. 4 as

CQ “ CQQ `
ř

D degpQ,DqcD and,
CP “ CPP `

ř

D degpP,DqcD .

The above describes the lifted LP of CpGq after unification
of all equivalent variables. Now, observe that

CQ1 “
|Q|

|Q1|
CQ “

|Q|

|Q1|

«

CQQ `
ÿ

D

degpQ,DqcD

ff

“
|Q|

|Q1|
CQQ `

ÿ

D:degpQ,Dq‰0

|Q|

|Q1|
degpQ,DqcD

“ CQ1Q1 `
ÿ

D:degpQ,Dq‰0
degpQ1, D1q

|D|

|D1|
cD

“ CQ1Q1 `
ÿ

D1:degpQ1,D1q‰0
degpQ1, D1qcD1 .

Note, we were allowed to switch the index in the last line
due to p♠q. Similarly,

CP 1 “
|P |

|P 1|
CP “

|P |

|P 1|

«

CPP ´
ÿ

D

degpP,DqcD

ff

“
|P |

|P 1|
CPP ´

ÿ

D:degpP,Dq‰0

|P |

|P 1|
degpP,DqcD

“ CP 1P 1 ´
ÿ

D:degpP,Dq‰0
degpP 1, D1q

|D|

|D1|
cD

“ CP 1P 1 ´
ÿ

D1:degpP 1,D1q‰0
degpP 1, D1qcD1 .



W V pxq

´0.1 x ‰ y ^
`

V pxq ô V pyq
˘

W x ‰ y ^ Frpx, yq

´0.8 Capxq

´12.4 Auxpx, yq

1.5 pSmpxq ñ Capxqq

6.2 px ‰ y ^ Auxpx, yq ^ Smokespxqq

6.2 px ‰ y ^ Auxpx, yq ^ Smokespyqq

6.2 px ‰ y ^ Auxpx, yq ^ Friendspx, yqq

´3.1 px ‰ y ^ pSmokespxq ^ Friendspx, yqq

´3.1 px ‰ y ^ pSmokespyq ^ Friendspx, yqq

W x ‰ y ^
`

Q1pxq ô  Q2pyq
˘

W x ‰ y ^
`

Q2pxq ô  Q3pyq
˘

W x ‰ y ^
`

Q3pxq ô  Q1pyq
˘

´W x ‰ y ^
`

Q1pxq ô Q2pyq
˘

´W x ‰ y ^
`

Q2pxq ô Q3pyq
˘

´W x ‰ y ^
`

Q3pxq ô Q1pyq
˘

Complete Graph Friends-Smokers Clique-Cycle

Table 1: The Markov Logic Network models used to illustrate our theoretical results. Details are given in the main text.

What this tells us is that c1 is a solution of CpG1q lifted ac-
cording to P 1. This implies that we can recover a vector
of ground counting numbers by assigning to c1k the corre-
sponding c1X . l

So now, given c obtained as above, let us examine the lifted
entropy of G1 with respect to P 1,

pH 1 “
ÿ

P 1PP 1
|P 1|cP 1HP 1 `

ÿ

Q1PP 1
|Q1|cQ1HQ1

“
ÿ

P 1PP 1
|P 1|

|P |

|P 1|
cPHP 1 `

ÿ

Q1PP 1
|Q1|

|Q|

|Q1|
cQHQ1

“
ÿ

PPP 1
|P |cPHP `

ÿ

Q1PP 1
|Q|cQHQ “ pH .

As we see, this is exactly the lifted entropy of G with re-
spect to P . To conclude the argument, we note that the al-
gorithm of [16] takes care that the linear E1p¨q part and
the constraints of the lifted variational problems are the
same. Thus, with the addition of the reparametrized c’s, we
achieve full equivalence of both lifted variational problems.

5 EMPIRICAL ILLUSTRATION

We will now illustrate our theoretical results by demon-
strating that the “lifting by reparametrization” paradigm
allows one to lift Schwing et al.’s distributed message-
passing algorithm3 for marginal inference [21] without any
overhead. As far as we know, this presents the first lifted
convergent variational marginal inference that can handle
problems efficiently by distributing and parallelizing the
inference computation and the memory requirements. The
convergence and optimality guarantees are preserved by
consistency messages, sent between the distributed cores,
that our lifted variant directly inherits from Schwing et
al.’s original version. Together with parallelizable lifting
approaches [11], this shows for the first time that each step
of the lifted inference pipeline is readily parallelizable.

The experimental protocol is inspired by [2] and uses three
of their test models in Markov Logic Network syntax, cf.
Tab. 1: complete graph, friends-smokers, and clique-cycle.

3http://alexander-schwing.de/projects.php

We focus on the repulsive case, i.e. the weight of interac-
tion clauses is set to a negative values. The parameter W
denotes the weight that will be varying across the exper-
iments. As Bui et al. [2] point out, in all models except
clique-cycle, W acts like the “local field” potential in an
Ising model; a positive value of W means that variables
tend to be in the 1 state, whereas a negative value favors the
0 state. The complete graph model is an Ising model over
the complete graph over n nodes (the domain size); all pa-
rameters are the same. The weight of the interaction clause
is repulsive with ´0.1. The friends-smokers is a pairwise
version of the one negated one used by Bui et al., where we
also used a repulsive interaction between smokers: Here the
domain size is the number of people. Finally, the clique-
cycle model encodes a model with 3 cliques, each consist-
ing of n nodes (the domain size), and 3 bipartite graphs
between them. For more details we refer to [2].

Since we reparametrize an existing variational approach,
we will not report on the accuracy of the marginals and the
quality of the objective as they have been investigated al-
ready in the corresponding literature. Rather, we perform
a “within model” comparison of the objectives achieved,
the size of the models, and the running times for inference
since they are what our theoretical results are about. Specif-
ically, we evaluated the lifted and the ground version on
several instances of the three test models, varying the pa-
rameter W and the domain size. We assume no evidence
has been observed, which results in a large amount of sym-
metries. As Bui et al. [2] argue this is a sensible setting
since performing marginal inference in relational proba-
bilistic models can be very useful for maximum-likelihood
parameter estimation.

The experimental results are summarized in Fig. 4. As one
can see the lifted inference can be orders of magnitude
faster than its ground version. We also ran a single-core
lifted loopy belief propagation. However, due to its lack of
convergence, it is difficult to have a meaningful comparison
of running times. Nevertheless, we observed cases where it
did not converge but actually started to oscillate.

http://alexander-schwing.de/projects.php
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(a) Complete Graph MLN.
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(b) Clique-Cycle MLN.
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(c) Friends-smokers MLN.

Figure 4: Experimental results on the test models from Tab. 1. Each row shows from left to right the objective for different
weights, the size (number of nodes and factors) in log-space and the running time in seconds in log-space for ground (red)
versus lifted (black). As one case see, lifted variational marginal inference can be orders of magnitude faster than it ground
version without sacrificing the objective. (best viewed in color)

6 CONCLUSIONS

We have established a “lifted inference by reparametriza-
tion” paradigm for variational marginal inference. More
precisely, we have introduced the notion of equitable par-
titions of concave free energies and shown how to use
them to reparameterize the corresponding variational op-
timization problems. In turn, a large class of existing
variational marginal inference algorithms can directly be
made aware of symmetries without modifications. We illus-
trated this by lifting Schwing et al.’s distributed message-
passing algorithm for marginal inference, resulting in the
first lifted, distributed, convergent message passing algo-
rithms for marginal inference. Moreover, the paradigm of
reparametrization allows us to address the observation of
Bui et al. [2] about their Frank-Wolfe TRW solver running
slower than BP. At least in the case where no extra tight-
ening is required, one can just compute the TRW count-
ing numbers with lifted Kruskal, reparametrize and apply a
generic convergent message-passing algorithm.

Our work provides several avenues for future work. For in-
stance, one should explore what other constraints we can
posed on counting numbers to enforce exactness while we
can still optimize over the set in a lifted fashion. Since the
dimensionality reduction changes the geometry of the vari-
ational optimization problem, one should also investigate
its interaction with the solvers. It is interesting to explore
features of relational languages to speed up lifted varia-
tional marginal inference even more. One of the most in-
teresting open question raised by our work is whether non-
trivial reparametrizations of FBethe and of energies in gen-
eral exists and are exploitable for speeding up optimiza-
tion, at least in an approximate sense. An affirmative an-
swer would have deep implications not only for probabilis-
tic inference but for many tasks in computer vision, ma-
chine learning, and AI in general.
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