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Abstract

While much work has explored probabilistic
graphical models for independent data, less at-
tention has been paid to time series. The goal
in this setting is to determine conditional inde-
pendence relations between entire time series,
which for stationary series, are encoded by zeros
in the inverse spectral density matrix. We take a
Bayesian approach to structure learning, placing
priors on (i) the graph structure and (ii) spectral
matrices given the graph. We leverage a Whittle
likelihood approximation and define a conjugate
prior—the hyper complex inverse Wishart—on
the complex-valued and graph-constrained spec-
tral matrices. Due to conjugacy, we can ana-
lytically marginalize the spectral matrices and
obtain a closed-form marginal likelihood of the
time series given a graph. Importantly, our an-
alytic marginal likelihood allows us to avoid in-
ference of the complex spectral matrices them-
selves and places us back into the framework of
standard (Bayesian) structure learning. In partic-
ular, combining this marginal likelihood with our
graph prior leads to efficient inference of the time
series graph itself, which we base on a stochastic
search procedure, though any standard approach
can be straightforwardly modified to our time se-
ries case. We demonstrate our methods on ana-
lyzing stock data and neuroimaging data of brain
activity during various auditory tasks.

1 INTRODUCTION

Probabilistic graphical models (PGMs)—which compactly
encode a set of conditional independence statements—have
become a defacto tool for defining probabilistic models
over large sets of random variables. When faced with time
series, dynamic Bayesian networks (DBNs) are commonly
deployed and specify sparse between- and within-time de-

pendencies, often encoded by a template model replicated
across time to straightforwardly model the growing set of
random variables [1]. Learning template models requires
specifying the set of dependency lags to be considered
[2, 3]. In many applications, one instead aims to infer
conditional independence between entire data streams ac-
counting for interactions at all possible lags, represented by
a time series graphical model (TGM). For example, imag-
ine recording brain activity from multiple regions of the
brain over time. Inference of a TGM in this setting would
provide insight into the functional connectivity of differ-
ent brain regions, an object of substantial scientific interest
[4, 5]. TGMs have also been applied to intensive care mon-
itoring [6] and financial time series [7].

The pioneering work of Dahlhaus [8] introduced the con-
cept of undirected graphical models for stationary time se-
ries. The key insight was to transform the series to the fre-
quency domain and express the graph relationships in the
resulting spectral representation. For jointly Gaussian sta-
tionary time series, Dahlhaus [8] showed that conditional
independencies between time series are encoded by zeros
in the inverse spectral density matrices. This result is the
frequency-domain analog to Gaussian graphical modeling
in the i.i.d. (non-time-series) setting, where zeros in the
inverse covariance matrix, or precision matrix, encode the
conditional independencies between observed dimensions
[9]. Dahlhaus’ insight was first exploited to perform inde-
pendent hypothesis tests of conditional independence be-
tween each pair of time series [8], with more recent work
correcting for multiple comparisons [10, 11].

A likelihood-based approach leveraging the Whittle ap-
proximation [12] has also been introduced [13]. The Whit-
tle approximation casts the likelihood in the frequency do-
main with terms depending on the spectral density matri-
ces critical to TGM structure learning, and independently
so across frequencies. One approach scores graphs using
AIC [13]. A recent penalized likelihood variant [14] places
a joint graphical lasso [15] across frequencies to enforce a
common zero pattern in the spectral density matrices. A
penalized likelihood approach restricted to finite vector au-



toregressive processes has also been considered [7].

We instead consider a Bayesian approach to TGM structure
learning, with all the benefits garnered from the Bayesian
paradigm, including modeling within a generative frame-
work where information from multiple sources can inte-
grated and combined with available prior knowledge. For
example, neural data are notoriously noisy, and robust in-
ferences often rely on integrating time series across mul-
tiple trials and individuals or recording platforms (e.g.,
EEG/MEG). Our approach also leverages the Whittle like-
lihood. We then introduce a novel hyper Markov law [16],
the hyper complex inverse Wishart distribution, that serves
as a conjugate prior for the spectral density matrices whose
inverses have a zero pattern specified by a graph. For
decomposable graphs, this formulation leads to a closed-
form expression for the marginal likelihood of a multivari-
ate time series given a graph. By placing a prior on graph
structures, we achieve a fully Bayesian approach to TGM
structure learning for stationary time series. For our graph
prior, we consider a multiplicity correcting prior [17]. Our
analytic expression for the marginal likelihood is critical to
the practicality of our approach since we can avoid infer-
ence of the large set of high-dimensional, complex spec-
tral density matrices. In particular, for a length T series of
dimension p, there are T p × p spectral matrices to con-
sider. In the i.i.d. setting, inference of just a single p × p
graph-constrained covariance matrix is challenging; in this
setting, inference of the T p× p matrices is prohibitive.

Hyper Markov laws based on the hyper inverse Wishart are
a popular tool for Bayesian graphical model selection in
the i.i.d. setting [18, 19]. Indeed, many powerful Bayesian
structure learning algorithms based on this framework have
been developed, both for decomposable [20, 21] and non-
decomposable [22, 23] graphs. By framing TGM structure
learning in this common framework, we are able to apply
existing state-of-the-art inference machinery for standard
structure learning to the time series case. In this paper we
use the feature-inclusion stochastic search (FINCS) proce-
dure [20] for inference in decomposable models; however,
many other MCMC and search schemes may be used. Im-
portantly, future computational advances in Bayesian in-
ference for i.i.d. graphical models may be easily extended
using our framework to the time series case.

We test our methods on data simulated from vector autore-
gressive models with randomly generated TGMs. Our ap-
proach reaches almost perfect TGM recovery as the length
of the time series or number of independent replicates in-
creases. We then demonstrate the utility of our methods on
a global stock indices dataset and MEG neuroimaging data
of auditory attention switching tasks. In both cases we find
meaningful, intuitive structure in the data.

Our paper is organized as follows. We provide background
on graphical models and stationary time series in Sec. 2.

Our proposed TGM method is in Sec. 3, first introduced in
the context of multiple independent realizations and then
adapted to perform efficient inference of the TGM from
only a single realization. In Sec. 5, we discuss how existing
Bayesian structure learning methods may be modified to fit
our formulation. Simulated results are in Sec. 6, with our
stock and MEG analyses in Secs. 7 and 8, respectively.

2 BACKGROUND

2.1 Graphs

Let G = (V,E) be an undirected graph with vertex set
V = {1, . . . , p} and edge set E, where E ⊂ {(i, j) ∈
V × V : i 6= j}. Nodes i and j are adjacent, or neighbors,
if (i, j) ∈ E. A complete graph is one having (i, j) ∈ E for
every i, j ∈ V and complete subgraphs C ⊂ V are termed
cliques. A triple of subgraphs (A,S,B) where V = A∪B
and S = A ∩ B with S complete is called a decomposi-
tion if every path from a node in A to a node in B must
pass through S, the separator. Recursively decomposing
A and B in this fashion results in the prime components
of a graph. If the prime components are complete then the
graph is decomposable. We let the sets C = {C1, . . . , CK}
and S = {S2, . . . , SK} each denote the prime components
and their separators, respectively, generated by the decom-
position. For simplicity, we restrict our attention to decom-
posable graphs but stress that our formulation is extensible
to the non-decomposable case (see Sec. 9).

2.2 Hyper Markov distributions

For a given set of of random variables X , with realization
x ∈ X , dimensionality p, and joint density p(x), an undi-
rected graphical modelG can be constructed by stating that
an edge (i, j) /∈ E if Xi and Xj are conditionally indepen-
dent given the remaining variables, i.e. Xj ⊥⊥ Xi|XZij

where Zij = V \ {i, j}. If the graph is decomposable, the
joint density decomposes over cliques and separators:

p(x) =

∏
C∈C p(xC)∏
S∈S p(xS)

(1)

where p(xA) for A ⊂ V denotes the marginal distribution
of the set of variables xA.

A hyper Markov law [16] is a distribution over probabil-
ity measures that is concentrated on distributions that obey
the Markov properties specified by G. Examples include
the hyper Wishart and hyper Dirichlet distribution [16, 18].
Such distributions have proven pivotal in Bayesian graph-
ical modeling by serving as conjugate priors for the graph
parameters conditioned on the graph structure G. For ex-
ample, in Gaussian graphical models (GGMs), the hyper
inverse Wishart distribution provides a conjugate prior for
covariance matrices that obey a zero pattern in the pre-
cision, as specified by G. By integrating over the hyper



Markov distribution, one can obtain the marginal likeli-
hood of the data conditioned on the structure G alone.

2.3 Stationary time series
Let X(t) = (X1(t), ..., Xp(t))

T ∈ Rp for t ∈ Z be a
multivariate Gaussian stationary time series such that:

E(X(t)) = µ ∀t ∈ Z (2)
Cov(X(t), X(t+ h)) = Γ(h) ∀t, h ∈ Z. (3)

A time series probabilistic graphical model (TGM), G =
(V,E), may be constructed by letting (i, j) /∈ E denote
that the entire time seriesXi(:) andXj(:) are conditionally
independent given the remaining collection of time series
XZij

where Zij = V \ {i, j}. For the Gaussian stationary
series we consider, one can show that conditional indepen-
dence holds between time series iff [8]

Cov(Xi(t), Xj(t+ h)|XZij ) = 0 ∀h ∈ Z. (4)

The spectral density matrix of a stationary time series is
defined as the Fourier transform of the lagged covariance
matrices, Γ(h) = Cov(X(t), X(t+ h)):

S(λ) =

∞∑
h=−∞

Γ(h)e−iλh (5)

for λ ∈ [0, 2π] and S(λ) ∈ Cp×p and Hermitian positive
definite. The marginal dependencies between time series
are captured by S(λ), and from Eq. (5), S(λ)ij = 0 for
all λ ∈ [0, 2π] iff Γ(h)ij = 0 for all h ∈ Z. Further-
more, conditional independence between Gaussian station-
ary time series holds iff

S(λ)−1
ij = 0 ∀λ ∈ [0, 2π], (6)

implying that inferring zeros in the inverse spectral den-
sity matrices across frequencies equates with inferring the
TGM structure [8]. More background on the spectral ap-
proach to time series is presented in the Supplement.

3 A BAYESIAN APPROACH

There are two standard approaches to Bayesian inference
in graphical models: (1) placing a prior that jointly spec-
ifies the graph structure and associated parameters or (2)
placing a prior on graph structures and then a prior on pa-
rameters given a graph; both rely on specifying a likelihood
model. We opt for the second approach and describe the
various components in this section. At a high level, our
methods combine existing Whittle likelihood based meth-
ods [13, 14] with the hyper Markov framework to Bayesian
graphical modeling [19, 18]. In the context of our TGMs,
we introduce a conjugate hyper complex inverse Wishart
prior on graph-constrained spectral density matrices. By
integrating out the spectral density matrices, we obtain a

marginal likelihood of the time series given the graph struc-
ture, G, allowing us to straightforwardly leverage state-of-
the-art computational methods for i.i.d. Bayesian structure
learning.

3.1 Whittle likelihood

Let X = [X(1), . . . , X(T )], with x(t) ∈ Rp a realiza-
tion of a p-dimensional stationary Gaussian time series ob-
served at T time points, and X1:N = {X1, . . . ,XN} be
the collection of N independent realizations. We move to
the frequency domain by transforming each Xi using a dis-
crete Fourier transform. Let dnk ∈ Cp denote the discrete
Fourier coefficient associated with the nth time series at
frequency λk = 2πk

T :

dnk =
1

T

T−1∑
t=0

xn(t)e−iλkt. (7)

The Whittle approximation [12] assumes the Fourier coef-
ficients are independent complex normal random variables
with mean zero and covariance given by the corresponding
spectral density matrix Sk = S(λk):

dnk ∼ Nc(0, Sk) k = 0, . . . , T − 1, (8)

such that the likelihood of X1:N is approximated as

p(X1:N |S0:T−1) ≈
N∏
n=1

T−1∏
k=0

1

πp|Sk|
e−d

∗
nkS

−1
k dnk , (9)

where 1
πp|S|e

−z∗S−1z is the density of a complex normal
distribution,Nc(0, S), with S ∈ Cp×p and Hermitian posi-
tive definite. See the Supplement. The Whittle approxima-
tion holds asymptotically with large T [24, 25, 12]. This
approximation has been used in the Bayesian context in
[26, 27]

Recall that conditional independencies are encoded in the
off diagonal elements of S−1

k . If time series Xi(t) and
Xj(t) are conditionally independent, then the Whittle ap-
proximation says that as T gets large the ith and jth ele-
ments of the Fourier coefficients dnk are conditional inde-
pendent across all frequencies. Thus, ifG is decomposable,
Eq. (9) can be rewritten as

p(X1:N |G,S0:(T−1)) ≈ (10)
T−1∏
k=0

∏
C∈C

1
πN|C||SkC |N

e−trPkCS
−1
kC∏

S∈S
1

πN|S||SkS |N
e−trPkSS

−1
kS

where

Pk =

N∑
n=1

dnkd
∗
nk (11)

is the aggregate periodogram over the N time series at fre-
quency 2πk

T . For A ⊂ V , SkA and PkA are the restriction
of both matrices to the elements in A and |A| denotes the
cardinality of the set A.



3.2 Hyper complex inverse Wishart prior on
graph-constrained spectral density matrices

We seek a prior for the spectral density matrices, Sk, whose
inverses each have zeros dictated by a graph G. Recall that
these Sk matrices are complex-valued and restricted to be
Hermitian positive definite. As discussed in Sec. 2.2, the
hyper inverse Wishart distribution serves as a prior for real-
valued, positive-definite matrices with pre-specified zeros
in the inverse, and is a conjugate prior for the covariance
of a zero-mean GGM. Motivated by the connection be-
tween GGMs and our TGMs, and the analogous structure
of our TGM-based Whittle likelihood of Eq. (10) to that
of a GGM with N i.i.d. observations, we propose a novel
hyper complex inverse Wishart prior with density function

p(Σ|δ,W,G) =∝ 1Σ∈M+(G)|Σ|−(δ+2p)e−trWΣ−1

(12)

for degrees of freedom δ > 0, scale matrix W ∈ Cp×p
positive definite and Hermitian, and graph G. We have
used an analogous parameterization to that of the hyper in-
verse Wishart [16]. Here, Σ ∈ M+(G) denotes that Σ is
in the set of all Hermitian positive-definite matrices with(
Σ−1

)
ij

= 0 for all (i, j) /∈ E. When G is decomposable,
the normalization constant is available and the density de-
composes over cliques and separators:

p(Σ|δ,W,G) =

∏
C∈C IWc(ΣC |δ,WC)∏
S∈S IWc(ΣC |δ,WC)

(13)

=

∏
C∈C B(WC , δ)|ΣC |−(δ+2|C|)e−trWCΣ−1

C∏
S∈S B(WS , δ)|ΣS |−(δ+2|S|)e−trWSΣ−1

S

,

(14)

where IWc denotes the complex inverse Wishart [25] de-
tailed in the Supplement with normalizer

B(W, δ) =
|W |δ+p

π
p(p−1)

2

∏p
j=1(δ + p− j)!

. (15)

We denote our proposed prior asHIWc(δ,W,G) and spec-
ify

Sk | G ∼ HIWc(δk,Wk, G) k = 0, . . . , T − 1. (16)

In the Supplement, we show that this prior specification is
conjugate to the TGM-based Whittle likelihood of Eq. (10).
Also note that the graph,G, is shared across all frequencies.

3.3 Marginal likelihood

Due to conjugacy of our proposed hyper complex inverse
Wishart prior, the marginal likelihood of the time series
X1:N given a decomposable graph G, integrating out the
spectral density matrices S0:T−1, has a closed form which
is derived in the Supplement and given by

p(X1:N |G) ≈ π−NTp
T−1∏
k=0

h(Wk, δk, G)

h(W ∗k , δ
∗
k, G)

. (17)

Here, δ∗k = δk +N , W ∗k = Wk + Pk, and

h(W, δ,G) =

∏
C∈C B(WC , δ)∏
S∈S B(WS , δ)

. (18)

From the definition of δ∗k, we see that N , the number of
time series, acts as the effective number of observations in
this case. For the i.i.d. GGM, N represents the number
of independent vector-valued observations; in our TGM,
N plays the same role, but represents the number of inde-
pendent time series observations. Likewise, as in standard
inverse Wishart based modeling of covariances for i.i.d.
Gaussian data, based on a set of N i.i.d. complex normal
observations of Fourier coefficients dnk with covariance Sk
(see Eq. (9)), we update the prior scale matrix Wk with the
outer product Pk =

∑N
n=1 dnkd

∗
nk, which is the aggregate

periodogram (see Eq. (11)).

Having an analytic marginal likelihood of the time series
given a PGM allows us to perform inference directly over
graphs, sidestepping any thorny issues with inference di-
rectly on the T p× p spectral density matrices themselves.
This is a critical feature of the practicality of our approach.

3.4 Fractional priors for model selection

Marginal likelihoods used for model comparison [28] are
notoriously sensitive to the choice of prior parameters, or
hyperparameters. In our case, the marginal likelihood in
Eq. (17) depends strongly on the hyper complex inverse
Wishart scale matrix, Wk. Since the scale and shape of the
spectral density matrices are not known a priori, and vary
dramatically across frequencies, we employ fractional pri-
ors [29] over each Sk. Fractional priors effectively hold out
some fraction of the data, and utilize that fraction to deter-
mine an adequate hyperparameter setting for each model.
The rest of the data are then used for model comparison.
Fractional priors have been deployed for graphical model
selection in i.i.d. graphs and have a number of desirable
properties such as information consistency and demon-
strated robustness [20]. In our case, under a fractional prior
with parameter g ∈ (0, 1), the fractional marginal likeli-
hood is

p(X1:N |g,G) = π−NTp
T−1∏
k=0

h(gPk, gN,G)

h(Pk, N,G)
. (19)

Here, we see that g controls the fraction of data used for
prior formulation versus model comparison. Importantly,
we now have just a single, scalar, and interpretable param-
eter g to tune. Default settings are suggested in [29, 20].

3.5 Graph prior

There are two common approaches in the literature to spec-
ifying a prior distribution on graphs. The first approach
places a uniform distribution on the space of all possible



graphs [18, 30, 31]. As noted in [32], this prior puts high
weight on graphs with a medium number of edges and sig-
nificantly less weight on graphs with small or many edges.
In response to this problem, it has been proposed to place
a prior directly on the size of the graph and then consider a
conditionally uniform prior on all graphs of the same size
[32, 33, 19]. We follow this later approach and place a bi-
nomial distribution on the number of edges, k:

p(G) ∝ rk(1− r)m−k, (20)

where r is the prior probability that each of m = p(p−1)
2

possible undirected edges (i, j) ∈ V ×V is included. Since
r is unknown, we further place a Beta(a, b) prior over r.
Integrating out r gives the marginal prior over graphs

p(G) ∝ β(a+ k, b+m− k)

β(a, b)
(21)

where β(., .) is the beta function. As explored in [20], this
is a multiplicity correcting prior [34] over graphs with the
desirable property of diminishing false positive edge dis-
coveries as extra unconnected nodes are added to the graph.

4 METHODS FOR SINGLE TIME
SERIES

In some applications of interest one observes only a sin-
gle multivariate time series, N = 1, from which the graph
must be inferred. Two challenges arise in this setting: (1)
the effective number of observations informing Eq. (17) is
just one and (2) the periodogram used in computing W ∗k
is noisy regardless of the length of the series, T . The pe-
riodogram is a notoriously poor estimator of the spectral
density, and when the spectral density itself is of primary
interest, a common frequentist method is to smooth the pe-
riodogram to obtain a consistent spectral density estimator
[14, 13, 8]. One could imagine using the smoothed pe-
riodogram as a plug-in estimator in Eq. (17), scaled by
the effective degrees of freedom (see the Supplement for
more details on this plug in estimator for our formula-
tion). An alternative variance-reduction technique is the
Bartlett method [35], that divides the length T series into
M shorter series of length T

M and averages the resulting
M periodograms, but at the cost of reduced resolution (i.e.,
number of considered frequencies). This approach mimics
the implicit smoothing that occurs when we compute the
periodogram based on N truly independent series each of
length T , as in Eq. (11).

In contrast to a plug-in estimator, a natural Bayesian ap-
proach enforces smoothing across frequencies via a prior
distribution over the set of spectral densities [26]. Previ-
ous approaches have coupled elements of a Cholesky de-
composition of each spectral density matrix across frequen-
cies, however this approach is unsuitable to our case since

1) it does not enforce sparsity in the inverse spectral den-
sity and 2) a prior of this form will remove the simple
marginal likelihood structure in Eq. (17) that we harness
for efficient inference. Motivated by our aims to both share
information across frequencies and maintain the form of
the marginal, we utilize a piecewise constant prior over
spectral densities given a graph, G. We partition the in-
terval [0, 2π] into M intervals w1 =

[
0, 2π

M

)
, . . . , wj =[

2π(j−1)
M , 2πj

M

)
, . . . , wM =

[
2π(M−1)

M , 2π
]

and then draw
a separate positive definite Hermitian matrix from a HIWc

distribution for each interval:

S̃j ∼ HIWc(δ,Wj , G) j = 1, . . . ,M. (22)

Our resulting spectral density is simply

S(λ) =

M∑
j=1

1λ∈wj
S̃j ∀λ ∈ [0, 2π]. (23)

Under this prior, the marginal likelihood for the single
(N = 1) time series becomes

p(X|G) ≈ π−Mp
M∏
j=1

h(Wj , δj , G)

h(W ∗j , δ
∗
j , G)

(24)

where δ∗j = δj +
∑T−1
k=0 1λk∈wj

and W ∗j = Wj +∑T−1
k=0 1λk∈wj

Pk. By setting M = b
√
T c, we obtain an

asymptotically approximate nonparametric prior distribu-
tion over continuous spectral density matrices: for T large
enough the prior puts positive support on spectral density
matrices arbitrarily close to any continuous spectral density
over [0, 2π]. Furthermore, under this setting as T →∞, the
number of Fourier frequencies, and thus number of samples∑T−1
k=0 1λk∈wj

, within each interval grows as
√
T .

5 INFERENCE

Bayesian structural learning algorithms for decomposable
graphs come in two flavors: MCMC samplers and stochas-
tic search procedures [20, 22]. By placing decomposable
graphical inference for time series in the same framework
as for the i.i.d. case via our analytic p(X1:N | G), we can
easily modify both types of existing methods for the time
series case.

Classical MCMC samplers for decomposable graphs sam-
ple from the posterior over graphs via Metropolis-Hastings
(MH) by proposing single edge addition and deletion
moves that keep the graph decomposable [18, 32]. While
it is possible to obtain any decomposable graph from any
other decomposable graph via a sequence of edge addi-
tions and deletions, the path may be hard to reach lead-
ing to prohibitive converge times for even a moderate num-
ber of vertices p. More recent graph samplers add more
global moves by either randomly generating new decom-
posable graphs [36] or by generating from a Markov chain



over a junction tree representation of the graph [21]. To
compute the MH acceptance ratio, these samplers rely on
computing ratios of present and proposed marginal likeli-
hoods. For simple edge additions and deletions, this ratio
simplifies into a function of only the cliques and separators
that change between moves. For our case, the ratio expands
into a product over frequencies of the same affected cliques
and separators, allowing simple modifications to the exist-
ing implementations of these samplers to handle TGMs.

All current MCMC samplers struggle to scale to even mod-
erate numbers of nodes. In contexts where point estimates
suffice, we can instead consider stochastic search proce-
dures. We utilize a modification of the efficient feature-
inclusion stochastic search (FINCS) [20] for inference in
our TGMs. FINCS interleaves three moves: 1) single edge
addition and deletion moves for local changes to the graph,
2) global sampling moves where edges are added inde-
pendently to an empty graph and the final graph is trian-
gulated to maintain decomposability, and 3) resampling
at step t a full graph from a list of past visited models,
{G1, G2, . . . , Gt−1}, in proportion to their posterior prob-
abilities. In steps 1) and 2), to enforce exploration of high
probability regions, edge additions that tend to continually
improve the model probability are preferentially selected
in proportion to a current heuristic estimate of the posterior
edge probability

q̂ij(t) =

∑t
k=1 1{i,j}∈Et

p(X1:N |Gt)p(Gt)∑t
k=1 p(X1:N |Gt)

, (25)

where Et is the current edge set. Edge deletions are per-
formed proportional to q̂−1

ij (t). As in MCMC samplers
[18, 32], the junction tree representation of the graph can
be efficiently updated after each local move since the two
graphs only differ by a single clique and its corresponding
separators, allowing a quick computation of the marginal
likelihood of a proposed graph in Eq. (17). Importantly,
the FINCS algorithm depends on the data only through the
marginal likelihoods of the cliquesC—used to compute the
full graph marginal likelihood—which in our TGM case is
a product over T frequencies:

T−1∏
k=0

B(Wk,C , δ)

B(W ∗k,C , δ
∗)
. (26)

That is, our implementation simply modifies the original
FINCS definition of the clique marginal likelihood.

6 SIMULATIONS

To test our TGM methods, we consider simulated setups for
both N > 1 and N = 1 time series each generated from an
order-1 vector autoregressive process, denoted VAR(1), for
p = 20 dimensions. Specifically, we simulated data from
the model

x(t) = Ax(t− 1) + ε(t), (27)

where x(t) ∈ Rp, A ∈ Rp×p, and ε(t) ∼ N(0, Ip×p). The
inverse spectral density of a VAR(1) process is given by [7]

S(λ)−1 = I +ATA+ e−iλA+ eiλAT . (28)

Random sparse TGMs were generated by first restricting
A to be upper triangular. Following the simulated setup in
[7], we set the diagonal elements to a constantAii = .5 and
sample the upper diagonal elements as aij ∼ .5δij , where
δij ∼ Binomial(ρ) with ρ = .2 for all simulations. The
graph G was then determined by identifying the zeros in
S(λ)−1 using Eq. (28). ProposedAmatrices were accepted
when both the absolute value of all eigenvalues of A were
less than one, making the series stationary, and the graphG
determined by A was decomposable.

We note that since our formulation reduces to a standard
structure learning problem, our emphasis is less on assess-
ing performance with respect to p, which should follow
from whichever structure learning algorithm is selected;
instead, our focus is on N and T , which are specific to
the time series and spectral analysis. For example, in the
FINCS algorithm [20], it is quoted that the method can han-
dle graphs with up to roughly p = 100 nodes.

6.1 Multiple time series

To analyze how our TGM structure learning performance
varies with the number of time series replicates,N , we sim-
ulated data for N ∈ {20, 50, 100, 150, 200, 250, 300, 350}
and T ∈ {25, 50, 100500, 1000, 1500, 2000}. This pro-
cess was repeated 200 times for each combination of N
and T . Each time series is first decomposed into its dis-
crete Fourier components. We then ran 10,000 iterations
of the FINCS algorithm using the fractional marginal like-
lihood in Eq. (19) with g = 4

N , a default setting [29, 20].
Our graph prior followed the multiplicity correcting form
in Eq. (21) with a = b = 1. The graph visited with highest
posterior probability was then selected and true and false
positive rates were computed. Results are displayed in
Fig. 1. Across T , the true positive rate increases quickly
with the number of series, N , achieving an almost per-
fect true positive rate by about N = 150. We also see
that the rate of increase in the true positive rate increases
with the length of the series T , which relates to the num-
ber of considered Fourier frequencies. It is interesting to
note that for all T under consideration, the false positive
rate tends to start very low (≈ .005) for N = 20 replicates
then spike at N ∈ {50, 100} before declining again. This
occurs due to the fact that at low N , very few edges are
introduced at all, perhaps due to an Occam’s razor type ef-
fect of marginal likelihoods penalizing model complexity.
As N starts to increase, more edges are introduced, both
correct and incorrect, and as N further increases, the false
edges are pruned and true edges are retained, leading to a
decline in the false positive rate. Note that the false posi-
tive spike tends to be more pronounced for time series of
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Figure 1: Top: As a function of the number of time series N , and plotted for various values of their length T , (left) mean
true positive rate, (middle) median false positive rate, and (right) mean running time computed across the 200 replicates.
Standard error bars are small relative to the scale of the plots and are omitted for clarity. Bottom: Same plots as a function
of T for a single time series (N = 1), and plotted for various periodogram smoothing techniques.

smaller length, T ∈ {25, 50}. One would expect to see
significant improvements, especially for small N , by lever-
aging the piecewise constant prior of Sec. 4 and explored
in Sec. 6.2 where we show that we are able to learn graphs
from just N = 1 time series. However, we chose not to
include this prior in this analysis so as not to confound its
effect with our performance. Here, the noisy periodogram
is smoothed implicitly by averaging over N .

Finally, in Fig. 1 we see that runtime increases as a func-
tion of T due to the dependence on T in the marginal like-
lihood computation of Eq. (17), though significant cost re-
ductions can be achieved through parallelizations leverag-
ing the product form.

6.2 Single time series: comparison of methods

To assess the performance of our single-time-series meth-
ods outlined in Sec. 4, we simulated a time series with
T ∈ {500, 1000, 2500, 5000, 7500, 10000}. For the piece-
wise constant prior method, we use M = b

√
T c pieces.

We compare against the Bartlett time-series-splitting ap-
proach with the number of splits set to b

√
T c. We also ex-

amine a smoothed plug-in estimator of the spectral density
using a Daniell smoother outlined in the Supplement with
m = b

√
T

2 c for a total window size of 2b
√
T

2 c+1 ≈ b
√
T c.

For each method, the FINCS algorithm was run for 10,000
iterations and the highest scoring graph was selected and
used to compute true and false positive rates. This pro-
cess was repeated 200 times with results displayed in Fig. 1

with a replicate representative of our median performance
shown in Fig. 2. The true positive rate increases for all
three methods as a function of T , achieving a final value of
about .9 for both the plug-in and piecewise constant prior
methods and .79 for the Bartlett method at T = 10000.
All methods maintain a low false positive rate around .02.
Overall, the Bartlett method performs uniformly worse in
terms of both true and false positive performance, while the
piecewise prior method performs on par with the plug-in
method, but at a fraction of the computational cost. Further
experimental simulations are given in the Supplement.

7 GLOBAL STOCK INDICES
We explore the utility of our method in discovering con-
ditional independencies between countries inherent in the
global financial system. A similar experiment was con-
ducted in [7] using a penalized-likelihood approach to
learn TGMs, but restricted to finite-order VAR mod-
els with pre-specified order. (Recall that our method
only assumes Gaussian stationarity, which includes the
class of possibly infinite order VAR processes.) Using
www.globalfinancialdata.com, we acquired the
daily closing prices of 17 stock indices in US dollars for
various countries around the world (see the Supplement for
the full list) from June 3, 1997 to June 30, 1999. Missing
prices were backfilled and only days where all exchanges
traded were considered which resulted in time series of
length 542. Following standard practice when analyzing
stock prices, we converted the closing prices, pt, on day t
to log-returns according to
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Figure 2: Example evolution of error types for the piecewise prior method as a function of series length, T ∈
{1000, 2500, 5000, 10000} and N = 1, for a selected graph. Blue, red, black, and white entries indicate true positives,
false negatives, false positives, and true negatives, respectively. The graph was selected by choosing the graph out of 200
replications with median true positive rate at T = 2500.

rt = 100 log(pt/pt−1).

We compare the graphical models inferred under two set-
tings: (i) treating the log-returns as independent (as in [20])
and (ii) using our methods to learn a TGM treating the log-
returns as a time series. The best graphical models learned
in each scenario are depicted in Fig. 3.

For our TGM algorithm, we computed the periodogram for
the 17-dimensional time series, resulting in 542 complex-
valued matrices of dimension 17× 17. Since we only have
one realization of the time series, we smoothed the pe-
riodogram using the techniques and settings discussed in
Sec. 6.2. We then ran the FINCS algorithm for 100,000
iterations. We compare the resulting highest-probability
graph (see Fig. 3) to that learned treating the time series
as independent based on the model in [20], again using
100,000 iterations of the FINCS algorithm, but in its origi-
nally proposed form for non-temporal data.

In Figure 3, we see that in both cases we recover some geo-
graphical relationships between countries. However, the in-
dependent model returns a significantly denser graph than
that learned by our TGM approach. Since the independent
model is not taking the temporal nature of the data into
account, some edges are likely spurious due to random cor-
relations. The TGM, on the other hand, provides an inter-
pretable and intuitive structure with strong geographic con-
nections. For example, there is a distinct United Kingdom
/ eurozone cluster of Germany ‘DE’, Finland ‘FI’, Nether-
lands ‘NL’, Belgium ‘BE’, Switzerland ‘CH’, Austria ‘AT’,
Spain ‘ES’, Italy ‘IT’, Portugal ‘PT’, and the United King-
dom ‘UK’. Another distinct cluster includes the United
States ‘US’, Canada ‘CA’, Hong Kong ‘HK’ (whose cur-
rency is linked to the USD), and Australia ‘AU’ (whose
currency is correlated with the US S&P), with Japan ‘JP’
hanging off this cluster. One perhaps strange missing link
is between Ireland ‘IE’ and the UK, though the US and Ire-
land have a long history of economic connections possibly
explaining why Ireland is included in the separator between
these two distinct clusters.

In the Supplement, we include (i) a comparison of our

Figure 3: Graphical models with the highest posterior prob-
ability for the stock index data. Left: Treating the log-
returns as independent. Right: Using our TGM algorithm.
In both cases, we see regional connections, but our TGM
algorithm results in a sparser and more interpretable graph.

learned graph with that of Songsiri et. al. [7], and (ii) fur-
ther details on the stock data itself.

8 MAGNETOENCEPHALOGRAPHY
DATA

Next we learn TGMs to capture the structure of underlying
cortical dynamics from magnetoencephalography (MEG)
data collected from ten subjects who were asked to per-
form a task while maintaining focus on an audio stream
and then again while switching focus [37]. Our goal is to
discover differences in the underlying TGMs between the
non-switching and switching attention conditions. Such
differences provide further understanding into the neural
underpinnings of auditory selective selection, an important
constituent to communication.

The data were collected for each subject performing the ex-
periment in the switching (S) and non-switching (N) atten-
tion conditions. For both S and N conditions, each subject
performed the task under an auditory condition of high (U)
and low (D) pitch, and spatial conditions of left (L) and
right (R) attending. For each of the eight possible condi-
tions, MEG recordings were collected resulting in a 150-
dimensional time series of length 992 where each dimen-
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Figure 4: Learned TGMs for different MEG conditions. Each node on the periphery represents a brain region with loca-
tion indicating anatomical location. Top: Intersection of learned edges between switching and non-switching conditions.
Bottom: Black edges indicating those in the non-switching condition but not in the switching and red vice versa.

sion corresponds to a localized region of the brain. We
have between 17 and 30 trials for each subject, resulting in
about 200 replicate time series per condition.

Often with MEG data, many of the dimensions are domi-
nated by noise due to limited brain activity in that region.
We reduced the number of brain regions we studied from
150 to 50 by only considering those with largest variance.
In particular, for each trial we mean-centered all of the
time-series and computed the variance and retained the top
50 most volatile regions.

We computed the periodogram for each trial and averaged
across trials within each condition, resulting in eight peri-
odograms. We ran our spectral TGS version of the FINCS
algorithm on these periodograms for 100,000 iterations
with fractional prior parameter 4/Nc, whereNc is the num-
ber of trials for condition c ∈ {S, N} × {U, D, L, R}. We
also ran the algorithm for 1.7 million iterations and saw no
difference in the resulting graphs.

In Figure 4, we depict the intersections and differences be-
tween the learned graphs for each experimental condition.
We see in the top row that there are a lot of shared connec-
tions between the switching and non-switching conditions
for each auditory condition. In the bottom row, the differ-
ences between the switching and non-switching conditions
are depicted where red edges are those in the switching
condition but not the non-switching, and black edges are
the reverse. The difference plots show that there seems to
be substantial “rewiring” for many of the conditions with
many edges connecting frontal to back regions. Interest-
ingly, we again see consistencies in these rewirings across
conditions. Additionally, we reliably uncover local connec-
tions between adjacent brain regions across experimental
conditions. Such observations provide guidance for devel-
oping experiments and methods to discern the underlying
mechanisms that give rise to these different structures.

9 DISCUSSION
We introduced a Bayesian approach to graphical model
structure learning for time series. In particular, we propose
a prior—the hyper complex inverse Wishart distribution—
for the spectral density matrices in a Whittle likelihood ap-
proximation. For decomposable graphs, this prior is conju-
gate and leads to a closed-form expression of the marginal
likelihood of the time series given the graph, marginalizing
the spectral density matrices across frequencies. Being able
to integrate out this large collection of complex matrices—
one for each time point—is critical to developing a prac-
tical and scalable inference algorithm. For this, exploiting
the fact that our marginal likelihood is analogous to that for
i.i.d. Gaussian graphical models [19] but with a product
over the number of Fourier frequencies, allows us to de-
ploy straightforward modifications to existing MCMC and
stochastic search algorithms. Our simulations show that
when many time series are observed, our method recovers
the correct graph. When a single time series is observed,
we proposed a method to increase robustness of our graph
estimation using a piecewise constant prior. Our results on
the stock and MEG datasets demonstrated our ability to dis-
cover intuitive and interpretable structure in these datasets,
importantly leveraging the temporal dependencies.

Extensions to non-decomposable graphs are possible us-
ing the i.i.d. graph approaches in both [31] and [22].
A Laplace approximation to the marginal likelihood for
non-decomposable graphs is proposed in [22], which
we could similarly utilize to approximate the frequency-
specific marginal at each term in Equation (17). Paral-
lelizing the Laplace approximation computation across fre-
quencies would lead to a scalable method for inference in
non-decomposable time series graphs.
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