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Abstract

We develop hierarchical Poisson matrix factor-
ization (HPF), a novel method for providing
users with high quality recommendations based
on implicit feedback, such as views, clicks, or
purchases. In contrast to existing recommen-
dation models, HPF has a number of desirable
properties. First, we show that HPF more accu-
rately captures the long-tailed user activity found
in most consumption data by explicitly consider-
ing the fact that users have finite attention bud-
gets. This leads to better estimates of users’ la-
tent preferences, and therefore superior recom-
mendations, compared to competing methods.
Second, HPF learns these latent factors by only
explicitly considering positive examples, elimi-
nating the often costly step of generating arti-
ficial negative examples when fitting to implicit
data. Third, HPF is more than just one method—
it is the simplest in a class of probabilistic models
with these properties, and can easily be extended
to include more complex structure and assump-
tions. We develop a variational algorithm for ap-
proximate posterior inference for HPF that scales
up to large data sets, and we demonstrate its per-
formance on a wide variety of real-world recom-
mendation problems—users rating movies, lis-
tening to songs, reading scientific papers, and
reading news articles.

1 INTRODUCTION

Recommendation systems are a vital component of the
modern Web. They help readers effectively navigate oth-
erwise unwieldy archives of information and help websites
direct users to items—movies, articles, songs, products—
that they will like. A recommendation system is built from
historical data about which items each user has consumed,
be it clicked, viewed, rated, or purchased. First, it uncovers

the behavioral patterns that characterize various types of
users and the kinds of items they tend to like. Then, it ex-
ploits these discovered patterns to recommend future items
to its users.

In this paper, we develop Hierarchical Poisson factoriza-
tion (HPF) for generating high-quality recommendations.
Our algorithms easily scale to massive data and outperform
several existing methods. We show HPF is tailored to real-
world properties of user behavior data: the heterogeneous
interests of users, the varied types of items, and a realistic
distribution of the finite resources that users have to con-
sume these items.

In more detail, HPF is a probabilistic model of users and
items. It associates each user with a latent vector of prefer-
ences, each item with a latent vector of attributes, and con-
strains both sets of vectors to be sparse and non-negative.
The model assumes that each cell of the observed behavior
matrix is drawn from a Poisson distribution—an exponen-
tial family distribution over non-negative integers—whose
parameter is a linear combination of the corresponding user
preferences and item attributes. The main computational
problem is posterior inference: given an observed matrix
of user behavior, we would like to discover the latent at-
tributes that describe the items and the latent preferences
of the users, which we can then use to make predictions
and recommendations.

This inferential computation is common to many vari-
ants of matrix factorization. We find, however, that HPF
enjoys significant quantitative advantages over classical
methods for a variety of implicit feedback data sets. Fig-
ure 4 shows that HPF performs better than competing
methods—including the industry standard of matrix factor-
ization with user and item biases (MF) fit using stochas-
tic gradient descent—for large data sets of Netflix users
watching movies, Last.FM users listening to music, scien-
tists reading papers, and New York Times readers clicking
on articles.

We review related work in detail in Section 4. We now dis-
cuss details of the Poisson factorization model, including
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Figure 1: The hierarchical Poisson factorization model.

its statistical properties and methods for scalable inference.

2 POISSON RECOMMENDATION

In this section we describe the Poisson factorization model
for recommendation, and discuss its statistical properties.

We are given data about users and items, where each user
has consumed and possibly rated a set of items. The obser-
vation yui is the rating that user u gave to item i, or zero if
no rating was given. In the “implicit” consumer data that
we consider here, yui equals one if user u consumed item i
and zero otherwise. User behavior data, such as purchases,
clicks, or views, are typically sparse. Most of the values of
the matrix y are zero.

We model these data with factorized Poisson distribu-
tions [4], where each item i is represented by a vector
of K latent attributes �i and each user u by a vector of
K latent preferences ✓u. The observations yui are mod-
eled with a Poisson distribution, parameterized by the in-
ner product of the user preferences and item attributes,
yui ⇠ Poisson(✓>

u �i). This is a variant of probabilistic
matrix factorization [33] but where each user and item’s
weights are positive [25] and where the Poisson replaces
the Gaussian. While a Bernoulli distribution may seem
more appropriate for modeling binary data, we demonstrate
in Section 2.1 that the additivity of independent Poissons
result in models that capture the marginal user, item distri-
butions well. 1

Beyond the basic data generating distribution, we place
Gamma priors on the latent attributes and latent prefer-
ences, which encourage the model towards sparse repre-
sentations of the users and items. Furthermore, we place
additional priors on the user and item-specific rate param-
eter of those Gammas, which controls the average size of
the representation. This hierarchical structure allows us to

1Our ongoing work considers censored Poisson distributions.
Our initial results indicate that it is computationally expensive but
does not give better performance.

capture the diversity of users, some tending to consume
more than others, and the diversity of items, some being
more popular than others. The literature on recommenda-
tion systems suggests that a good model must capture such
heterogeneity across users and items [23].

Putting this together, the generative process of the hierar-
chical Poisson factorization model (HPF), illustrated in the
graphical model in Figure 1, is as follows:

1. For each user u:
(a) Sample activity ⇠u ⇠ Gamma(a0, a0/b0

).
(b) For each component k, sample preference

✓uk ⇠ Gamma(a, ⇠u).

2. For each item i:
(a) Sample popularity ⌘i ⇠ Gamma(c0, c0/d0

).
(b) For each component k, sample attribute

�ik ⇠ Gamma(c, ⌘i).

3. For each user u and item i, sample rating

yui ⇠ Poisson(✓>
u �i).

This process describes the statistical assumptions behind
the model. We note that this contains, as a sub-class, a fac-
torization model with fixed rate parameters for all users and
items. We call this model Bayesian Poisson Factorization
(BPF).

The central computational problem is posterior inference,
which is akin to “reversing” the generative process. Given
a user behavior matrix, we want to estimate the conditional
distribution of the latent per-user and per-item structure,
p(✓1:N , �1:M | y), termed the posterior, which is the key to
recommendation. We estimate the posterior expectation of
each user’s preferences, each items attributes and, subse-
quently, form predictions about which unconsumed items
each user will like. We discuss posterior inference in Sec-
tion 2.2.

Once the posterior is fit, we use HPF to recommend items
to users by predicting which of the unconsumed items each
will like. We rank each user’s unconsumed items by their
posterior expected Poisson parameters,

scoreui = E[✓>
u �i | y]. (1)

This amounts to asking the model to rank by probability
which of the presently unconsumed items each user will
likely consume in the future.

2.1 Properties of HPF

With the modeling details in place, we highlight several
statistical properties of hierarchical Poisson factorization.
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Figure 2: A posterior predictive check of the distribution
of total ratings for the Netflix data set. The black squares
show the empirical count of the number of users who have
rated a given number of items, while the red and blue
curves show the simulated totals from fitted Poisson and
traditional matrix factorization models, respectively. The
Poisson marginal closely matches the empirical, with the
exception of users with very low activity, whereas classical
matrix factorization fits a large mean to account for skew
in the distribution and the missing ratings.

These properties provide advantages over classical Gaus-
sian matrix factorization. Specifically, by classical MF
we mean L2 regularized matrix factorization with bias
terms for users and items, fit using stochastic gradient de-
scent [23]. Without the bias terms, this corresponds to
maximum a-posteriori inference under Probabilistic Ma-
trix Factorization [33]. We generate negatives by randomly
sampling from missing ratings in the training set [7, 8, 29].

HPF captures sparse factors. As mentioned above, the
Gamma priors on preferences and attributes encourages
sparse representations of users and items. Specifically, by
setting the shape parameter to be small, most of the weights
will be close to zero and only a few will be large. This leads
to a simpler, more interpretable model.

HPF models the long-tail of users and items. One sta-
tistical characteristic of real-world user behavior data is the
distribution of user activity (i.e., how many items a user
consumed) and item popularity (i.e., how many users con-
sumed an item). These distributions tend to be long-tailed:
while most users consume a handful few items, a few “tail
users” consume thousands of items. A question we can ask
of a statistical model of user behavior data is how well it
captures these distributions. We found that HPF captures
them well, while classical matrix factorization does not.

To check this, we implemented a posterior predictive check
(PPC) [31, 10], a technique for model assessment from the
Bayesian statistics literature. The idea behind a PPC is to
simulate a complete data set from the posterior predictive
distribution—the distribution over data that the posterior

induces—and then compare the generated data set to the
true observations. A good model will produce data that
captures the important characteristics of the observed data.

We developed a PPC for matrix factorization algorithms on
user behavior data. First, we formed posterior estimates of
user preferences and item attributes for both classical MF
and HPF. Then, from these estimates, we simulated user
behavior by drawing values for each user and item. (For
classical matrix factorization, we truncated these values at
zero and rounded to one in order to generate a plausible
matrix.) Finally, we compared the matrix generated by the
posterior predictive distribution to the true observations.

Figure 2 illustrates our PPC for the Netflix data. In this fig-
ure, we illustrate three distributions over user activity: the
observed distribution (squares), the distribution from a data
set replicated by HPF (red line), and a distribution from
a data set replicated by Gaussian MF with generated neg-
atives using popularity-based sampling (blue line). HPF
captures the truth much more closely than Gaussian MF,
which overestimates the distribution of user activity. This
indicates that HPF better represents real data when mea-
sured by its ability to capture distributions of user activity.
In fact, this is encoded in its assumptions. We can rewrite
the Poisson observation model as a two stage process where
a user u first decides on a budget bu she has to spend on
items, and then spends this budget rating items that she is
interested in:

bu ⇠ Poisson(✓T
u

X

i

�i)

[yu1, · · · , yuM ] ⇠ Mult(bu,
✓T

u �i

✓T
u

P
i �i

).

This shows that learning a PF model for user-item ratings
is effectively the same as learning a budget for each user
while also learning how that budget is distributed across
items.

HPF downweights the effect of zeros. Another advan-
tage of HPF is that it implicitly down-weights the contri-
bution of the items that each user did not consume. With
an appropriate fit to user activity, the model has two ways
of explaining an unconsumed item: either the user is not
interested in it or she would be interested in if she the op-
portunity to consider it. In contrast, a user that consumes
an item must be interested in it. Thus, the model benefits
more from making latent factors for a consumed user/item
pair more similar compared to making them less similar for
an unconsumed user/item pair.

Classical MF is based on Gaussian likelihoods (i.e.,
squared loss), which gives equal weight to consumed and
unconsumed items. Consequently, when faced with a
sparse matrix and implicit feedback, i.e., binary consump-
tion data, matrix factorization places more total emphasis
on the unconsumed user/item pairs. (This too can be seen



to stem from classical MF’s overestimation of the distri-
bution of user activity.) To address this, researchers have
patched MF in complex ways, for example, by including
per-observation confidences [23] or considering all zeroes
to be hidden variables [29]. Poisson factorization naturally
solves this problem with a realistic model of user activity.

As an example, consider two similar science fiction
movies, “Star Wars” and “The Empire Strikes Back”, and
consider a user who has seen one of them. The Gaussian
model pays an equal penalty for making the user simi-
lar to these items as it does for making the user different
from them—with quadratic loss, seeing “Star Wars” is ev-
idence for liking science fiction, but not seeing “The Em-
pire Strikes Back” is evidence for disliking it. The Pois-
son model, however, will prefer to bring the user’s latent
weights closer to the movies’ weights because it favors
the information from the user watching “Star Wars”. Fur-
ther, because the movies are similar, this increases the Pois-
son model’s predictive score that a user who watches “Star
Wars” will also watch “The Empire Strikes Back”.

Fast inference with sparse matrices. Finally, the like-
lihood of the observed data under HPF depends only on
the consumed items, that is, the non-zero elements of the
user/item matrix y. This facilitates computation for the
kind of sparse matrices we observe in real-world data.

We can see this property from the form of the Poisson dis-
tribution. Given the latent preferences ✓u and latent at-
tributes �i, the Poisson distribution of the rating yui is

p(yui | ✓u, �i) =
�
✓>

u �i

�y
exp

�
�✓>

u �i

 
/yui! (2)

Recall the elementary fact that 0! = 1. With this, the log
probability of the complete matrix y can be written as

log p(y | ✓,�) =
P

{yui>0} yui log(✓>
u �i)� log yui!

� (

P
u ✓u)

>
(

P
i �i) .

This avoids the need for sub-sampling [7], approxima-
tion [17], or stochastic optimization [27] that complicate
other approaches.

2.2 INFERENCE WITH VARIATIONAL
METHODS

Using HPF for recommendation hinges on solving the pos-
terior inference problem. Given a set of observed ratings,
we would like to infer the user preferences and item at-
tributes that explain these ratings, and then use these in-
ferences to recommend new content to the users. In this
section we discuss the details and practical challenges of
posterior inference for HPF, and present a mean-field vari-
ational inference algorithm as a scalable approach. Our
algorithm easily accommodates data sets with millions of
users and hundreds of thousands of items on a single CPU.

Given a matrix of user behavior, we would like to compute
the posterior distribution of user preferences ✓uk, item at-
tributes �ik, user activity ⇠u and item popularity ⌘i. As
for many Bayesian models, however, the exact posterior is
computationally intractable. We show how to efficiently
approximate the posterior with mean-field variational in-
ference.

Variational inference is an optimization-based strategy for
approximating posterior distributions in complex proba-
bilistic models [21, 35]. Variational algorithms posit a fam-
ily of distributions over the hidden variables, indexed by
free “variational” parameters, and then find the member of
that family that is closest in Kullback-Liebler (KL) diver-
gence to the true posterior. (The form of the family is cho-
sen to make this optimization possible.) Thus, variational
inference turns the inference problem into an optimization
problem. Variational inference has previously been used
for large-scale recommendation [29].

We will describe a simple variational inference algorithm
for HPF. To do so, however, we first give an alternative
formulation of the model in which we add an additional
layer of latent variables. These auxiliary variables facilitate
derivation and description of the algorithm [11, 16].

For each user and item we add K latent variables zuik ⇠
Poisson(✓uk�ik), which are integers that sum to the
user/item value yui. A sum of Poisson random variables
is itself a Poisson with rate equal to the sum of the rates.
Thus, these new latent variables preserve the marginal dis-
tribution of the observation, yui ⇠ Poisson(✓>

u �i). These
variables can be thought of as the contribution from compo-
nent k to the total observation yui. Note that when yui = 0,
these auxiliary variables are not random—the posterior dis-
tribution of zui will place all its mass on the zero vector.
Consequently, our inference procedure need only consider
zui for those user/item pairs where yui > 0.

With these latent variables in place, we now describe the
algorithm. First, we posit the variational family over the
hidden variables. Then we show how to optimize its pa-
rameters to find an approximation to the posterior.

The latent variables in the model are user weights ✓uk, item
weights �ik, and user-item contributions zuik, which we
represent as a K-vector of counts zui. The mean-field fam-
ily considers these variables to be independent and each
governed by its own distribution,

q(�, ✓, ⇠, ⌘, z) =
Y

i,k

q(�ik |�ik)

Y

u,k

q(✓uk | �uk)

Y

u

q(⇠u |u)

Y

i

q(⌘i | ⌧i)

Y

u,i

q(zui |�ui).

Though the variables are independent, this is a flexible fam-
ily of distributions because each variable is governed by
its own free parameter. The variational factors for prefer-
ences ✓uk, attributes �ik, activity ⇠u, and popularity ⌘i are



For all users and items, initialize the user parameters
�u, rte

u and item parameters �i, ⌧ rte
i to the prior with

a small random offset. Set the user activity and item
popularity shape parameters:

shp
u = a0

+ Ka; ⌧ shp
i = c0

+ Kc

Repeat until convergence:

1. For each user/item such that yui > 0, update the
multinomial:

�ui / exp{ (�shp
uk )�log �rte

uk+ (�
shp
ik )�log �rte

ik}.

2. For each user, update the user weight and activity
parameters:

�shp
uk = a +

P
i yui�uik

�rte
uk =

shp
u

rte
u

+

P
i �shp

ik /�rte
ik

rte
u =

a0

b0 +
X

k

�shp
uk

�rte
uk

3. For each item, update the item weight and popu-
larity parameters:

�shp
ik = c +

P
u yui�uik

�rte
ik =

⌧ shp
i

⌧ rte
i

+

P
u �shp

uk /�rte
uk

⌧ rte
i =

c0

d0 +
X

k

�shp
ik

�rte
ik

Figure 3: Variational inference for Poisson factorization.
Each iteration only needs to consider the non-zero elements
of the user/item matrix.

all Gamma distributions, with freely set scale and rate vari-
ational parameters. The variational factor for zui is a free
multinomial, i.e., �ui is a K-vector that sums to one. This
form stems from zui being a bank of Poisson variables con-
ditional on a fixed sum yui, and the property that such con-
ditional Poissons are distributed as a multinomial [20, 5].

After specifying the family, we fit the variational param-
eters ⌫ = {�, �, , ⌧, �} to minimize the KL divergence
to the posterior, and then use the corresponding variational
distribution q(· | ⌫⇤

) as its proxy. The mean-field factoriza-
tion facilitates both optimizing the variational objective and
downstream computations with the approximate posterior,
such as the recommendation score of Equation 1.

We optimize the variational parameters with a coordinate
ascent algorithm, iteratively optimizing each parameter
while holding the others fixed. The algorithm is illustrated

in Figure 3. We denote shape with the superscript “shp”
and rate with the superscript “rte”. We provide a detailed
derivation in the Appendix.

Note that our algorithm is efficient on sparse matrices. In
step 1, we need only update variational multinomials for
the non-zero user/item observations yui. In steps 2 and
3, the sums over users and items need only to consider
non-zero observations. This efficiency is thanks the like-
lihood of the full matrix only depending on the non-zero
observations, as we discussed in the previous section. Both
HPF and BPF enjoy this property and have the same com-
putational overhead, but HPF allows for more flexibility
in modeling the variation in activity and popularity across
users and items, respectively.

We terminate the algorithm when the variational distribu-
tion converges. Convergence is measured by computing the
prediction accuracy on a validation set. Specifically, we ap-
proximate the probability that a user consumed an item us-
ing the variational approximations to posterior expectations
of ✓u and �i, and compute the average predictive log like-
lihood of the validation ratings. The HPF algorithm stops
when the change in log likelihood is less than 0.0001%.
We find that the algorithm is largely insensitive to small
changes in the hyper-parameters. To enforce sparsity, we
set the shape hyperparameters a0, a, c and c0 to provide ex-
ponentially shaped prior Gamma distributions—we fixed
each hyperparameter at 0.3. We set the hyperparameters b0

and d0 to 1, fixing the prior mean at 1.

3 EMPIRICAL STUDY

We evaluate the performance of the Hierarchical Poisson
factorization (HPF) algorithm on a variety of large-scale
user behavior data sets: users listening to music, users
watching movies, users reading scientific articles, and users
reading the newspaper. We find that HPF provides signif-
icantly better recommendations than competing methods.
We provide an exploratory analysis of preferences and at-
tributes on the New York Times data set in the appendix.2

Data Sets. We study the HPF algorithm in Figure 3 on
several data sets of user behavior:

• The Mendeley data set [19] of scientific articles is a
binary matrix of 80,000 users and 260,000 articles,
with 5 million observations. Each cell indicates the
presence or absence of an article in a user’s library.

• The Echo Nest music data set [2] is a matrix of 1 mil-
lion users and 385,000 songs, with 48 million obser-
vations. Each observation is the number of times a
user played a song.

2Our source code is available from
https://github.com/premgopalan/hgaprec



• The New York Times data set is a matrix of 1,615,675
users and 103,390 articles, with 80 million observa-
tions. Each observation is the number of times a user
viewed an article.

• The Netflix data set [23] contains 480,000 users and
17,770 movies, with 100 million observations. Each
observation is the rating (from 1 to 5 stars) that a user
provided for a movie.

The scale and diversity of these data sets enables a robust
evaluation of our algorithm. The Mendeley, Echo Nest, and
New York Times data are sparse compared to Netflix. For
example, we observe only 0.001% of all possible user-item
ratings in Mendeley, while 1% of the ratings are non-zero
in the Netflix data. This is partially a reflection of large
number of items relative to the number of users in these
data sets.

Furthermore, the intent signaled by an observed rating
varies significantly across these data sets. For instance,
the Netflix data set gives the most direct measure of stated
preferences for items, as users provide a star rating for
movies they have watched. In contrast, article click counts
in the New York Times data are a less clear measure of how
much a user likes a given article—most articles are read
only once, and a click through is only a weak indicator of
whether the article was fully read, let alone liked. Ratings
in the Echo Nest data presumably fall somewhere in be-
tween, as the number of times a user listens to a song likely
reveals some indirect information about their preferences.

As such, we treat each data set as a source of implicit feed-
back, where an observed positive rating indicates that a user
likes a particular item, but the rating value itself is ignored.
The Mendeley data are already of this simple binary form.
For the Echo Nest and New York Times data, we consider
any song play or article click as a positive rating, regard-
less of the play or click count. As in previous work, we
consider an implicit version of the Netflix data where only
4 and 5 star ratings are retained as observations [29].

Competing methods. We compare Poisson factorization
against an array of competing methods:

• NMF: Non-negative Matrix Factorization [25]. In
NMF, user preferences and item attributes are mod-
eled as non-negative vectors in a low-dimensional
space. These latent vectors are randomly initialized
and modified via an alternating multiplicative update
rule to minimize the Kullback-Leibler divergence be-
tween the actual and modeled rating matrices. We use
the GraphLab implementation of NMF [24] to scale to
our large data sets.

• LDA: Latent Dirichlet Allocation [3]. LDA is a
Bayesian probabilistic generative model where user

preferences are represented by a distribution over dif-
ferent topics, and each topic is represented by a dis-
tribution over items. Interest and topic distributions
are randomly initialized and updated using stochas-
tic variational inference [16] to approximate these in-
tractable posteriors. We used the default setting of the
hyperparameters in the Vowpal Wabbit package [37].

• MF: Probabilistic Matrix Factorization with user and
item biases. We use a variant of matrix factorization
popularized through the Netflix Prize [23], where a
linear predictor—comprised of a constant term, user
activity and item popularity biases, and a low-rank in-
teraction term—is fit to minimize the mean squared
error between the predicted and observed rating val-
ues, subject to L2 regularization to avoid overfit-
ting. Weights are randomly initialized and updated
via stochastic gradient descent using the Vowpal Wab-
bit package [37]. This corresponds to maximum a-
posteriori inference under Probabilistic Matrix Factor-
ization [33]. We selected hyperparameters using grid
search with a small validation set.

• CliMF: Collaborative Less-is-More filtering [34]
maximizes mean reciprocal rank to improve the top-n
predictive performance on binary relevance data sets.
We use the GraphLab implementation of CliMF [24]
to scale to our large data sets, and use the default pa-
rameter settings in the package.

We note that while HPF and LDA take only the non-zero
observed ratings as input, traditional matrix factorization
requires that we provide explicit zeros in the ratings matrix
as negative examples for the implicit feedback setting. In
practice, this amounts to either treating all missing ratings
as zeros (as in NMF) and down-weighting to balance the
relative importance of observed and missing ratings [17],
or generating negatives by randomly sampling from miss-
ing ratings in the training set [8, 7, 29]. We take the lat-
ter approach for computational convenience, employing a
popularity-based sampling scheme: we sample users by
activity—the number of items rated in the training set—
and items by popularity—the number of training ratings an
item received to generate negative examples.3

Finally, we note that a few candidate algorithms failed to
scale to our data sets. The fully Bayesian treatment of the
Probabilistic Matrix Factorization [32], uses a MCMC al-
gorithm for inference. The authors [32] report that a single
Gibbs iteration on the Netflix data set with 60 latent factors,
requires 30 minutes, and that they throw away the first 800
samples. This implies at least 16 days of training, while
the HPF variational inference algorithm converges within

3We also compared this to a uniform random sampling of neg-
ative examples, but found that the popularity-based sampling per-
formed better.
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Figure 4: Predictive performance on data sets. The top and bottom plots show normalized mean precision and mean recall
at 20 recommendations, respectively. While the relative performance of the competing methods varies across data sets,
HPF consistently outperforms each of them.

13 hours on the Netflix data. Another alternative, Bayesian
Personalized Ranking (BPR) [30, 8], optimizes a ranking-
based criteria using stochastic gradient descent. The al-
gorithm performs an expensive bootstrap sampling step at
each iteration to generate negative examples from the vast
set of unobserved. We found time and space constraints to
be prohibitive when attempting to use BPR with the data
sets considered here. Finally, the GraphChi implementa-
tion of CLiMF [24] failed with an error on the Netflix and
New York Times data sets.

Evaluation. Prior to training any models, we randomly se-
lect 20% of ratings in each data set to be used as a held-out
test set comprised of items that the user has consumed. Ad-
ditionally, we set aside 1% of the training ratings as a val-
idation set and use it to determine algorithm convergence
and to tune free parameters. We used the HPF settings de-
scribed in Section 2.2 across all data sets, and set the num-
ber of latent components K to 100.

During testing, we generate the top M recommendations
for each user as those items with the highest predictive
score under each method. For each user, we compute a
variant of precision-at-M that measures the fraction of rel-
evant items in the user’s top-M recommendations. So as
not to artificially deflate this measurement for lightly active
users who have consumed fewer than M items, we compute
normalized precision-at-M , which adjusts the denominator
to be at most the number of items the user has in the test
set. Likewise, we compute recall-at-M , which captures the
fraction of items in the test set present in the top M recom-
mendations.

Figure 4 shows the normalized mean precision at 20 rec-
ommendations for each method and data sets. We see that

HPF outperforms other methods on all data sets by a size-
able margin. Poisson factorization provides high-quality
recommendations—a relatively high fraction of items rec-
ommended by HPF are found to be relevant, and many rel-
evant items are recommended. While not shown in these
plots, the relative performance of methods within a data
set is consistent as we vary the number of recommenda-
tions shown to users. We also note that while Poisson fac-
torization dominates across all of these data sets, the rela-
tive quality of recommendations from competing methods
varies substantially from one data set to the next. For in-
stance, LDA performs quite well on the Echo Nest data, but
fails to beat classical matrix factorization for the implicit
Netflix data set.

We also study precision and recall as a function of user ac-
tivity to investigate how performance varies across users
of different types. In particular, Figure 5 shows the mean
difference in precision and recall to HPF, at 20 recommen-
dations, as we look at performance for users of varying ac-
tivity, measured by percentile. For example, the 10% mark
on the x-axis shows mean performance across the bottom
10% of users, who are least active; the 90% mark shows the
mean performance for all but the top 10% of most active
users. Here we see that Poisson factorization outperforms
other methods for users of all activity levels.

4 RELATED WORK

The roots of Poisson factorization come from nonnega-
tive matrix factorization [25], where the objective func-
tion is equivalent to a factorized Poisson likelihood. The
original NMF update equations have been shown to be an
expectation-maximization (EM) algorithm for maximum
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Figure 5: Predictive performance across users. The top and bottom plots show the mean difference in precision and recall
to HPF at 20 recommendations, respectively, by user activity.

likelihood estimation of a Poisson model [5].

Placing a Gamma prior on the user weights results in the
GaP model [4], which was developed as an alternative text
model to latent Dirichlet allocation (LDA) [3, 18]. The GaP
model is fit using the expectation-maximization algorithm
to obtain point estimates for user preferences and item at-
tributes. The Probabilistic Factor Model (PFM) [26] im-
proves upon GaP by placing a Gamma prior on the item
weights as well, and using multiplicative update rules to
infer an approximate maximum a posteriori estimate of the
latent factors. Our model uses a hierarchical prior struc-
ture of Gamma priors on both user and item weights, and
Gamma priors over the rate parameters from which these
weights are drawn. Furthermore, we approximate the full
posterior over all latent factors using a scalable variational
inference algorithm.

Independently of GaP and user behavior models, Poisson
factorization has been studied in the context of signal pro-
cessing for source separation [5, 15] and for detecting com-
munity structure in network data [1, 13]. This research in-
cludes variational approximations to the posterior, though
the issues and details around these data differ significantly
from user data we consider and our derivation in the sup-
plement (based on auxiliary variables) is more direct.

When modeling implicit feedback data sets, researchers
have proposed merging factorization techniques with
neighborhood models [22], weighting techniques to ad-
just the relative importance of positive examples [17], and
sampling-based approaches to create informative negative
examples [8, 7, 29]. In addition to the difficulty in appro-
priately weighting or sampling negative examples, there is
a known selection bias in provided ratings that causes fur-
ther complications [28]. HPF does not require such special

adjustments for negative examples and scales linearly in the
observed ratings.

Comparison to Gaussian MF. Many of the leading MF
methods are based on Gaussian likelihoods (i.e., squared
loss). When applied to explicit data, Gaussian models are
fit only to the observed ratings [23] and infer distributions
over user preferences. For each user, the items she did not
consume, i.e., the zero observations, are treated as miss-
ing. Gaussian models make up the state of the art in this
setting [32, 33, 23].

In implicit data sets of user consumption, there is a funda-
mental asymmetry that allows one to infer which items a
user consumed, and therefore liked, but not which items a
user did not like [17]. In this setting, Gaussian MF applied
to all observations gives equal weight to consumed and un-
consumed items. Consequently, when faced with a sparse
matrix and implicit feedback, matrix factorization places
more total emphasis on the unconsumed user/item pairs.

To address this limitation of Gaussian MF, researchers have
proposed two main approaches. The first approach, pro-
posed by [17], is to treat the unconsumed items with greater
uncertainty and increase confidence as the rating for an
item increases. This converts the raw observations into two
separate quantities with distinct interpretations: user pref-
erences and confidence levels. Hu et al. [17] present an
alternating least squares algorithm that considers all obser-
vations but whose per-iteration complexity is still linear in
the number of non-zero observations.

The second approach is to randomly synthesize negative
examples [7, 8, 29]. In this approach, unconsumed items
are subsampled for each user to balance out the consumed
items. As Dror et al. [7] note, it is unclear how to bal-



ance these two sets of items. Do we use an equal number
of consumed and consumed items, or do we use the full
set of unconsumed items [6, 17]? Further, the subsampling
of negative or unconsumed items is often expensive, and
can account for a substantial fraction of resources devoted
to model fitting. An issue that we found in Gaussian MF
with subsampled zeros, fit using SGD, is that it systemati-
cally overestimates the users’ budgets. We confirmed this
in Section 3 using a posterior predictive check [10]. Pois-
son factorization does not require synthesizing negative ex-
amples and is better able to capture distributions of users’
budgets.

Further, the HPF algorithm retains the linear-scaling of
Gaussian MF with downweighted zeros [17]. HPF algo-
rithms only need to iterate over the consumed items in the
observed matrix of user behavior. This follows from the
mathematical form of the Poisson distribution. In contrast,
the subsampling-based Gaussian MF methods [7, 8, 29]
must iterate over both positive and negative examples in the
implicit setting. This makes it difficult to take advantage of
data sparsity to scale to massive data sets.

Finally, unlike Gaussian MF which typically provides
dense latent representations of users and items, PF models
provide sparse latent representations. This property arises
from the PF log-likelihood which can be shown to mini-
mize the information (Kullback-Leibler) divergence under
NMF [5], and from the Gamma priors in the HPF model.

Recent extensions. Building on the HPF model and al-
gorithm we presented in a preprint, recent extensions have
been proposed. One extension is a combined model of ar-
ticle text and reader preferences [14]. This model takes ad-
vantage of the sparse, non-negative representations in PF,
which are useful in capturing different types of discrete
data, such as word counts and user ratings. Further, they ex-
ploit the additive properties of independent Poisson random
variables to capture dependencies between discrete data,
for example, the dependence of user ratings of an article on
its content. Another recent work proposes a Bayesian non-
parametric model [12] that adapts the dimensionality of the
latent representations, learning the preference patterns (and
their number) that best describe the users. Both models ex-
ploit the scalability of PF algorithms to study massive data
sets. These extensions testify to the modeling flexibility of
PF models.

5 DISCUSSION
We have demonstrated that Poisson factorization is an ef-
ficient and effective means of generating high quality rec-
ommendations across a variety of data sets ranging from
movie views to scientific article libraries. It significantly
outperforms a number of leading methods in modeling im-
plicit behavior data without the need for ad hoc modifica-
tions. Variational inference for HPF scales to massive data

and differs from traditional methods in its ability to cap-
ture the heterogeneity amongst users and items, accounting
for the wide range of activity and popularity amongst them,
respectively. The HPF algorithm is a robust, off-the-shelf
tool, providing high accuracy even with fixed hyperparam-
eter settings.

Finally, we emphasize that HPF is more than just one
method—it is the simplest in a class of probabilistic mod-
els with these properties, and has already been extended to
a combined model of article content and reader ratings [14],
and a Bayesian nonparametric model that adapts the dimen-
sionality of the latent representations [12].

A notable innovation in Gaussian MF is the algorithm
of [17] that explicitly downweights zeros using confidence
parameters. We presented the empirical study in this pa-
per comparing to the Gaussian MF with subsampled ze-
ros [23]. We attempted to compare to a GraphChi imple-
mentation [24] of [17], but it gave unexpectedly poor re-
sults. We found another implementation [36], and these
comparisons are ongoing work. Another piece of ongoing
work includes bringing the confidence-weighting of [17]
into HPF. This will allow downweighting of the zeros be-
yond that provided implicitly by Poisson factorization.
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