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Abstract

In recent years, there has been considerable
progress on fast randomized algorithms that ap-
proximate probabilistic inference with tight toler-
ance and confidence guarantees. The idea here is
to formulate inference as a counting task over an
annotated propositional theory, called weighted
model counting (WMC), which can be parti-
tioned into smaller tasks using universal hashing.
An inherent limitation of this approach, how-
ever, is that it only admits the inference of dis-
crete probability distributions. In this work, we
consider the problem of approximating inference
tasks for a probability distribution defined over
discrete and continuous random variables. Build-
ing on a notion called weighted model integra-
tion, which is a strict generalization of WMC and
is based on annotating Boolean and arithmetic
constraints, we show how probabilistic inference
in hybrid domains can be put within reach of
hashing-based WMC solvers. Empirical evalu-
ations demonstrate the applicability and promise
of the proposal.

1 INTRODUCTION

Weighted model counting (WMC) on a propositional
knowledge base is an effective and general approach to
probabilistic inference in a variety of formalisms, includ-
ing Bayesian and Markov Networks. It extends the model
counting task, or #SAT, which is to count the number of as-
signments (that is, models) that satisfy a given logical sen-
tence (Gomes et al., 2009). In WMC, one accords a weight
to every model, and computes the sum of the weights of
all models. The WMC formulation has recently emerged

∗This is a revised paper that corrects errors in the original im-
plementation and describes the experimental setup more clearly.
The changes only affect the experiments in Section 4.

as an assembly language for probabilistic reasoning, offer-
ing a basic formalism for encoding various inference prob-
lems. State-of-the-art reasoning algorithms for Bayesian
networks (Chavira and Darwiche, 2008), their relational
extensions (Chavira et al., 2006), factor graphs (Choi et al.,
2013), probabilistic programs (Fierens et al., 2013), and
probabilistic databases (Suciu et al., 2011) reduce their in-
ference problem to a WMC computation. The task has been
generalized to first-order knowledge bases as well (Van den
Broeck et al., 2011; Gogate and Domingos, 2011). Exact
WMC solvers are based on knowledge compilation (Dar-
wiche, 2004; Muise et al., 2012) or DPLL search with com-
ponent caching (Sang et al., 2005).

However, exact inference is #P-hard (Valiant, 1979), and
so, there is a growing interest in approximate model coun-
ters. Beginning with Stockmeyer (1983), who showed
that approximating model counting with a tolerance fac-
tor can be achieved in deterministic polynomial time us-
ing a ΣP

2 -oracle, a number of more recent results show how
random polynomial-time realizations are possible using an
NP-oracle (e.g., a SAT solver) (Jerrum et al., 1986; Karp et
al., 1989; Bellare et al., 2000; Gomes et al., 2006; Ermon
et al., 2013b, 2014; Chakraborty et al., 2013a,b). The cen-
tral idea here is the use of random parity constraints, in the
form of universal hash functions (Sipser, 1983), that par-
tition the model counting solution space in an inexpensive
manner. Most of the recent work in the area, moreover,
come with strong tolerance-confidence guarantees (intro-
duced later), and scale well by leveraging SAT technology.

The popularity of WMC can be explained as follows. Its
formulation elegantly decouples the logical or symbolic
representation from the statistical or numeric one, which
is encapsulated in the weight function. When building
solvers, this allows us to reason about logical equivalence
and reuse SAT solving technology (such as constraint prop-
agation and clause learning). WMC also makes it more
natural to reason about deterministic, hard constraints in
a probabilistic context. Nevertheless, WMC has a funda-
mental limitation: it is purely Boolean. This means that the
advantages mentioned above only apply to discrete proba-



bility distributions.

To counter this, in a companion paper (Belle et al., 2015),
we proposed the notion of weighted model integration
(WMI). It is based on satisfiability modulo theories (SMT),
which enable us to, for example, reason about the satisfi-
ability of linear constraints over the rationals. The WMI
task is defined on the models of an SMT theory ∆, con-
taining mixtures of Boolean and continuous variables. For
every assignment to the Boolean and continuous variables,
the WMI problem defines a weight. The total WMI is com-
puted by integrating these weights over the domain of so-
lutions of ∆, which is a mixed discrete-continuous space.
Consider, for example, the special case when ∆ has no
Boolean variables, and the weight of every model is 1.
Then, the WMI simplifies to computing the volume of the
polytope encoded in ∆. Overall, weighted SMT theories
admit a natural encoding of hybrid Markov and Bayesian
networks, analogous to the encodings of discrete graphical
networks using weighted propositional theories.

In this work, we consider the problem of approximating
inference tasks for a probability distribution defined over
discrete and continuous random variables. Formulated as
a WMI task, we address the question as to whether fast
hashing-based approximate WMC solvers can be leveraged
for hybrid domains. What we show is that an NP-oracle
can indeed effectively partition the model counting solu-
tion space of the more intricate mixed discrete-continuous
case using universal hashing. (Of course, volume compu-
tation is still necessary, but often over very small spaces.)
In this sense, hybrid domains can now be put within reach
of approximate WMC solvers. In particular, the hashing
approach that we consider here builds on the recent work
of Chakraborty et al. (2014) on approximate WMC, and
inherits their tolerance-confidence guarantees. In our em-
pirical evaluations, the approximate technique is shown
to be significantly faster than an exact WMI solver. We
then demonstrate the practical efficacy of the system on a
complex real-world dataset where we compute conditional
queries over intricate arithmetic constraints that would be
difficult (or impossible) to realize in existing formalisms.

Let us finally mention that current inference algorithms
for hybrid graphical models often make strong assump-
tions on the form of the potentials, such as Gaussian dis-
tributions (Lauritzen and Jensen, 2001), or approximate
using variational methods (Murphy, 1999; Lunn et al.,
2000), for which quality guarantees are difficult to obtain.
There is also a recent focus on piecewise-polynomial po-
tentials (Shenoy and West, 2011; Sanner and Abbasnejad,
2012; Wang et al., 2014), which are based on generaliza-
tions of techniques such as the join-tree algorithm. Such
piecewise-polynomials can also be represented in the WMI
context, but in a general framework allowing arbitrary
Boolean connectives and deterministic hard constraints.

2 PRELIMINARIES

We begin with probabilistic models, and then turn to the
necessary logical background, WMC and WMI.

2.1 PROBABILISTIC MODELS

Let B and X denote sets of Boolean and real-valued ran-
dom variables, that is, b ∈ B is assumed to take val-
ues from {0, 1} and x ∈ X takes values from R. We let
(b, x) = (b1, . . . , bm, x1, . . . , xn) be an element of the prob-
ability space {0, 1}m × Rn, which denotes a particular as-
signment to the random variables from their respective do-
mains. We let the joint probability density function be de-
noted by Pr. So Pr(b, x) determines the probability of the
assignment vector. When these random variables are de-
fined by a set of dependencies, as can be represented using
an undirected graphical model (that is, Markov network),
the density function is compactly factorized. See Koller
and Friedman (2009) for details.

2.2 LOGICAL BACKGROUND

Propositional satisfiability (SAT) is the problem of decid-
ing whether a logical formula over Boolean variables and
logical connectives can be satisfied by some truth value as-
signment of the Boolean variables. Given a formula φ and
assignment (or model or world) M, we write M |= φ to
denote satisfaction. We write l ∈ M to denote the literals
(that is, propositions or their negations) that are satisfied at
M. We often writeM(φ) to mean the set of models of φ.

A generalization to this decision problem is that of Satisfi-
ability Modulo Theories (SMT). In SMT, we are interested
in deciding the satisfiability of a (typically quantifier-free)
first-order formula with respect to some decidable back-
ground theory T , such as linear arithmetic over the ratio-
nals (LRA). Standard first-order models can be used to
formulate SMT; see Barrett et al. (2009) for details. More-
over various background theories, like LRA and linear
arithmetic over the integers (LIA), can be combined. In
this paper we are interested in a combination of LRA and
propositional logic, for which satisfaction is defined in an
obvious way.

Our formulation will also use the concepts of formula ab-
straction and refinement (Barrett et al., 2009). Here, first, a
bijection is established between ground first-order atoms
and a propositional vocabulary; abstraction proceeds by
replacing the atoms by propositions, and refinement re-
places the propositions with the atoms. In the sequel, we
refer to the propositional abstraction of an SMT formula
φ as φ− and the refinement of φ as φ+. For example, if
∆ = (x ≤ 4) ∧ (x ≤ 5), then ∆− = p ∧ q where (say) p
denotes x ≤ 4 and q denotes x ≤ 5; also, q+ = x ≤ 5.



2.3 WEIGHTED MODEL COUNTING

Weighted model counting (Chavira and Darwiche, 2008) is
an extension of model counting (Gomes et al., 2009). In
model counting, also known as #SAT, one counts the num-
ber of satisfying assignments of a propositional sentence.
In WMC, each assignment has an associated weight and
the task is to compute the sum of the weights of all satis-
fying assignments. WMC has applications in probabilistic
inference in discrete graphical models.

Definition 1: Given a formula ∆ in propositional logic
over literals L, and a weight function w : L → R, the
weighted model count (WMC) is defined as:

WMC(∆,w) =
∑
M|=∆

w(M)

where, w(M) is shorthand for
∏

l∈M w(l).

Intuitively, the weight of a formula is given in terms of the
total weight of its models; the weight of a model is defined
in terms of the literals true in that model.

We are often interested in computing the probability of a
query q given evidence e in a Boolean Markov network N,
for which we use:

PrN(q | e) =
WMC(q ∧ e ∧ ∆,w)

WMC(e ∧ ∆,w)

where ∆ encodes N and w encodes the potentials; see, for
example, Chavira and Darwiche (2008).

2.4 WEIGHTED MODEL INTEGRATION

As noted before, an inherent limitation of WMC is that it
only admits the inference of discrete probability distribu-
tions. To remedy this, in a companion paper (Belle et al.,
2015), we introduced the notion of weighted model inte-
gration as a strict generalization of WMC. The main idea
here is to take a logical theory with rational and Boolean
variables, that is, from a combination ofLRA and proposi-
tional logic, and annotate it with weights. As before, propo-
sitional assignments are denoted using M.

Definition 2: Suppose ∆ is an SMT theory over Boolean
and rational variables B and X, and literals L. Suppose w :
L → EXPR(X), where EXPR(X) are expressions over X.
Then the weighted model integral (WMI) is defined as:

WMI(∆,w) =
∑

M|=∆−

VOL(M,w)

where, VOL(M,w) =

∫
{l+:l∈M}

w(M) dX.

The main feature of the definition is how it casts the
weighted model counting problem over SMT in standard

propositional logic. The intuition is as follows. The WMI
of an SMT theory ∆ is defined in terms of the models of
its propositional abstraction ∆−. For each such model, we
compute its volume, that is, we integrate the weight values
of the literals that are true at the model. The interval of
the integral is obtained from the refinement of each literal.1

The mathematical expression for conditional probabilities
is as before.

The general idea with EXPR(X) is that the weight function
maps an expression e to its density function, which is usu-
ally another expression mentioning the variables in e. We
note that the input language for a WMI task is easily seen to
capture constraints involving discrete and continuous ran-
dom variables over arbitrary Boolean connectives.

To see WMI in action, consider a simple example:

Example 3: Suppose ∆ is the following formula:

p ∨ (0 ≤ x ≤ 10)

For weights, let w(p) = .1, w(¬p) = 2x, w(q) = 1 and
w(¬q) = 0, where q is the propositional abstraction of (0 ≤
x ≤ 10). Roughly, this can be seen to say that x is uniformly
distributed when p holds and otherwise it is characterized
by a triangular distribution in the interval [0, 10]. There are
three models of ∆−, for which we calculate VOL(·,w):

1. VOL({p,¬q} ,w) = 0 because w(¬q) = 0;

2. VOL({¬p, q} ,w) =
∫

0≤x≤10 2x dx =
[
x2

]10

0
= 100.

3. VOL({p, q} ,w) =
∫

0≤x≤10 .1 dx = [.1 · x]10
0 = 1.

Thus, WMI(∆,w) = 100 + 1 = 101.

Suppose that we are interested in the probability of the
query x ≤ 3 given that ¬p is observed. Suppose r is the
abstraction of x ≤ 3. First, WMI(∆∧¬p,w) corresponds to
the weight of a single interpretation, that of item 2, yielding
a value of 100. Next, WMI(∆ ∧ ¬p ∧ x ≤ 3,w) also corre-
sponds to the weight of a single interpretation {¬p, q, r}, an
extension to that in item 2. In this case:

VOL({¬p, q, r} ,w) =

∫
(0≤x≤10)∧(x≤3)

2x dx =
[
x2

]3

0
= 9.

1Although the interval is defined in terms of SMT literals, this
is meant to denote standard integrals in an obvious fashion:∫

x≤6
φdx �

∫ 6

−∞

φdx;
∫

x≥6
φdx �

∫ ∞

6
φdx;

∫
5≤x≤6

φdx �
∫ 6

5
φdx

Likewise, over connectives:∫
x≤6∧y≥5

φdxdy �
∫

x≤6

∫
y≥5

φdxdy.

When propositions appear as intervals, they are simply ignored.
See Belle et al. (2015) for the general definition.



Therefore, the conditional probability is 9/100 = .09. �

The correctness of WMI and that it is a strict generalization
of WMC are argued elsewhere (Belle et al., 2015).2

Let us conclude this section by remarking that although
the definition of WMI is very general, for most practical
purposes, we restrict densities to piecewise polynomials,
where w maps L to polynomials over X. Such piecewise
polynomials can approximate a wide variety of continu-
ous distributions, including Gaussians (Shenoy and West,
2011; Sanner and Abbasnejad, 2012). Moreover, Baldoni
et al. (2011) show that for a fixed number of variables, the
integration is efficient, even for polynomials of increasing
degree. Thus, smooth function approximations are possible
in practice, and come at a reasonable cost.

3 APPROXIMATING WMI

In this section, we identify how to approximate WMI(∆,w)
for an arbitrary ∆ and non-degenerate (see below) w with
strong theoretical guarantees by appealing to a SAT-oracle.

3.1 PROBLEM STATEMENT FOR WMC

To better understand the problem statement, let us begin
with the case of WMC:

Definition 4: Given a propositional formula ∆ and a
weight function w, an exact algorithm for WMC returns
WMC(∆,w). An approximate algorithm for WMC given
tolerance ε ∈ (0, 1] and confidence 1 − δ ∈ (0, 1], simply
called an (ε, δ)-algorithm, returns a value v such that

Pr
[
WMC(∆,w)

1 + ε
≤ v ≤ (1 + ε)WMC(∆,w)

]
≥ 1 − δ

Intuitively, when the weight of every model is 1, an exact
algorithm returns the size of the setM(∆) = {M | M |= ∆}

while an approximate one samples from that solution
space. Exact algorithms are #P-hard (Valiant, 1979) but for
the approximate case random polynomial time realizations
are known (Jerrum et al., 1986; Karp et al., 1989).3

2In an independent and recent effort, Chistikov et al. (2015)
also introduce the notion of approximate model counting for SMT
theories. The most significant difference between the proposals is
that they focus only on unweighted model counting. Moreover,
they define model counting as a measure on first-order models.
Our approach is a simpler one based on propositional abstractions,
which (as we will see) allows us to cast statements for WMI as
WMC in a direct way.

3The class of (ε, δ)-algorithms that we are after follows the ter-
minology of Karp et al. (1989). These can be contrasted to bound-
ing counters only parameterized by confidence probabilities, such
as (Kroc et al., 2011).

3.2 PROBLEM STATEMENT FOR WMI

To see how the above notions apply to our task, consider an
SMT theory ∆ and weight function w. We observe that

WMI(∆,w) = WMC(∆−, u)

where, for any model M of ∆−, u is a weight function such
that u(M) = VOL(M,w). More precisely, u is to be seen as
a weight function that does not factorize over literals and
directly maps interpretations to R. (This is without any loss
of generality.) Thus, our problem statement becomes:

Definition 5: An (ε, δ)-algorithm for a WMI problem
over ∆ and w is an (ε, δ)-algorithm for WMC over ∆−

and weight function u, where for any model M of ∆−,
u(M) = VOL(M,w).

The idea is that by treating the volumes of models as
weights over propositional interpretations, we can view
WMI simply in terms of WMC. Theoretical results can
then be imported for our purposes.

Given an (ε, δ)-algorithm for WMC, there are two caveats,
however. First, weights of interpretations need to be actu-
ally computed using integration during inference, but (usu-
ally) over a small number of literals and their polynomial
potentials true in a model. Second, such an algorithm sam-
ples feasible satisfying assignments for ∆−, but these need
not be T -consistent. For example, if p denotes x ≤ 3 and
q denotes x ≤ 5, then the interpretation {p,¬q} is not a
model in LRA on refinement. In the formal machinery,
the weight of this model is easily seen to be 0 (that is, the
interval of the integral will be an empty set), and so these
models can freely appear in the problem statement. In prac-
tice, these theory inconsistency models are rejected in the
WMC calculation, and once found, the algorithm can be
made to refine its search of feasible solutions by incorpo-
rating these models as blocked clauses.

3.3 APPROACH

In sum, what we are after is an (ε, δ)-algorithm for
WMC(∆,w) for a propositional theory ∆ and weight func-
tion w. Consider classical model counting, that is, where
the weight of every model is 1, which is #P-hard. Bellare et
al. (2000) were the first to show that satisfying assignments
can be generated uniformly in random polynomial-time us-
ing only an NP-oracle (e.g., a SAT solver), improving and
complementing earlier results (Jerrum et al., 1986; Karp et
al., 1989; Stockmeyer, 1983). Adapting these techniques
further, Chakraborty et al. (2013a,b) introduce a scalable
approximate model counter. See Gomes et al. (2006) and
Ermon et al. (2013b) for closely related proposals.



3.3.1 Counting by Hashing

The central idea in Bellare et al. (2000) and Chakraborty et
al. (2013b) is the use of universal hash functions (Sipser,
1983):

Definition 6 : A family of functions H =

{h | {0, 1}n → {0, 1}m} is called uniform, written h
R
←− H ,

if it holds that for any y ∈ {0, 1}n, the random variable h(y)
is uniformly distributed in {0, 1}m .

Definition 7 : A family of functions H =

{h | {0, 1}n → {0, 1}m} is called t-wise independent if it
holds that for any x1, . . . , xt ∈ {0, 1}m, any y1, . . . , yt ∈

{0, 1}n , and any h
R
←− H , we have:

Pr
[
h(y1) = x1 ∧ . . . ∧ h(yt) = xt

]
= 2−m·t

For the sake of clarity, we denote this family asH(n,m, t).

Now, suppose x ∈ {0, 1}m and h
R
←− H(n,m, t). Let h−1(x) =

{y ∈ {0, 1}n | h(y) = x} . Then, the idea is that for any propo-
sitional language over n variables, M(∆) ⊆ {0, 1}n and
x ∈ {0, 1}m , the set M(∆) ∩ h−1(x) partitions M(∆) into
a set of well-balanced cells, each one induced by a particu-
lar choice of h. Thus, by iterating over different samples of

h
R
←− H(n,m, t), we can perform a small number of compu-

tations on the cells and leverage that as an estimate for the
solution space as a whole.

The work of Chakraborty et al. (2013b) uses an effi-
cient family of hash functions, denotedHxor(n,m, 3) below.

Given h
R
←− H(n,m, 3) and y ∈ {0, 1}n , let h(y)[k] denote

the kth component of the vector obtained by applying h to
y, and y[k] denote the kth component of the string y. The
family of hash functions of interest is defined as

Hxor(n,m, 3) = {h | h(y)[i] = ai,0 ⊕ (
⊕n

l=1 ai,l · y[l]),
ai, j ∈ {0, 1}, 1 ≤ i ≤ m, 0 ≤ j ≤ n}

where ⊕ denotes the XOR operation. By choosing val-
ues of ai, j randomly and independently, we can effectively
choose a random hash function from the family. Gomes et
al. (2006) show that this family of hash functions is 3-wise
independent.

3.3.2 WMC by Hashing

As argued by Ermon et al. (2013a), the one major limitation
when applying approximate model counters for probabilis-
tic inference is that weights play an important role in deem-
ing which samples are interesting. Therefore, uniformly
sampling from M(φ) is not appealing, and would lead to
poor estimates of conditional probabilities. The approach
taken in Ermon et al. (2013a) is to reformulate the inference
task by an embedding for which uniform sampling suffices.

While this is an attractive option, it requires a factored rep-
resentation of the probability distribution and appeals to so-
lutions of optimization problems from a MPE query (that
is, finding the most likely state). In our setting, these re-
quirements are problematic. For one thing, note that even
if the original input problem uses a factored representation,
we only possess a WMC problem with a weight function
for interpretations that (possibly) lacks any structure. For
another, MPE queries will involve computing integrals (re-
call that weights are computed during inference) for a large
number of states, a task we would like to avoid unless nec-
essary.

Nonetheless, extending earlier results (Bellare et al., 2000;
Chakraborty et al., 2013b), Chakraborty et al. (2014)
(CFMSV henceforth) show how approximate model coun-
ters can be applied to weighted model counting problems
by means of a parameter called tilt.

Definition 8: Suppose ∆ is a propositional theory and w is
a weight function mappingM(∆) to strictly positive num-
bers. Let wmax = maxMw(M) and let wmin = minMw(M).
We define the tilt θ to be the ratio wmax/wmin.

For our purposes, we adapt the notion as follows:

Definition 9: Suppose ∆ is a SMT theory over literals
L and continuous variables X and w is a weight function
mappingL to EXPR(X). Let wmax = maxM VOL(M,w) and
let wmin = minM VOL(M,w). We define the tilt θ to be the
ratio wmax/wmin.

The idea is that in approximate model counting, the num-
ber of hash functions to sample (and thus, the number of
cells to construct ofM(∆)) is guided by the confidence pa-
rameter δ. In the approach of Chakraborty et al. (2014), the
tilt of a problem is used to additionally ensure that an ap-
propriate number of cells are constructed in the weighted
case. While the approach requires the modeler to provide
an upper bound on the tilt, the parameter is agnostic about
the form of the weight function, which is desirable in our
setting. Nonetheless, when the tilt is large (i.e., when the
weight of an interpretation is small relative to others), it
would mean that a large number of cells are constructed,
which may be inefficient, and alleviating this is an inter-
esting avenue for the future. In practice, the problems we
encountered had small tilts. (In our experimental evalua-
tions, an upper bound of 5 was provided for the tilt.)

3.4 ALGORITHM

Putting it all together, we present the pseudecode for WMI
computation. It can be seen as a simple reworking of
CFMSV to solve WMI.4 For the sake of completeness, we

4In that sentiment, we believe an important feature of our for-
mulation is that other WMC approaches can be adapted for WMI
along the same lines.



Algorithm 1 WeightMC(φ, u, ε, δ, θ)
1: wmax ← 1
2: pivot← 2 × de3/2

(
1 + 1

ε

)2
e

3: iter←
⌈
35 log2(3/δ)

⌉
4: for i : 1, . . . , iter do
5: (M, c,wmax)←WeightMCCore(φ, u, pivot, θ,wmax)
6: store (c,wmax) if M , ∅
7: end for
8: return the median of c × wmax for stored tuples

Algorithm 2 WeightMCCore(φ, u, pivot, θ,wmax)
1: i← 0; vol← 0; n← number of variables in φ
2: repeat
3: i← i + 1
4: Choose h

R
←− Hxor(n, i, 3)

5: Choose x
R
←− {0, 1}i

6: (M, vol,wmax)← BoundedWeightSAT(φ, (h(b1, . . . , bn) =
x), u, pivot, θ,wmax)

7: until (0 < vol/wmax ≤ pivot or i = n)
8: if (vol/wmax > pivot orM = ∅) then return (∅, vol,wmax)
9: else return (M, vol · 2i−1/wmax,wmax)

10: end if

present the essential components of the CFMSV algorithm,
called WeightMC. Interested readers are referred to that
work for full details. First, given an SMT theory ∆, weight
function w, tolerance ε, confidence δ and an upper bound
on the tilt θ, we compute:5

WMI(∆,w, ε, δ, θ) = WeightMC(∆−, u, ε, δ, θ)

where u is the weight function mapping interpretations to
numbers and is calculated using:

u(M) = VOL(M,w).

The WeightMC procedure is given in Algorithm 1. Basi-
cally, the given parameters δ and ε are used to determine the
number of times WeightMCCore is invoked and the num-
ber of cells to induce on M(∆−), respectively. What the
procedure returns is the median of the volume estimates,
obtained from WeightMCCore over these iterations. For
any given iteration, if no model is found, then the estimates
from WeightMCCore are ignored.

The procedure WeightMCCore applied to a propositional
formula φ, detailed in Algorithm 2, partitions models of
φ into cells. This is achieved by choosing 3-wise inde-
pendent hash functions, and adding random parity con-
straints. The resulting logical formula is conjoined with

5CFMSV’s WeightMC procedure also includes a parameter
called the independent support of a propositional theory φ over
variables B. The support of φ is B, and the independent sup-
port I ⊆ B uniquely determine the truth values of variables from
B − I. By choosing hash functions only on the independent sup-
port, rather than the full set of variables in B, significant perfor-
mance improvements can be gained. But since this is inessential
to understanding the conceptual ideas of the algorithm, we omit
further discussion on this matter.

Algorithm 3 BoundedWeightSAT(φ, χ, u, pivot, θ,wmax)
1: wmin ← wmax/θ; vol← 0;M = ∅; γ = φ ∧ χ
2: repeat
3: M ← SolveSAT(γ)
4: if M = UNSAT then
5: break
6: end if
7: cons← Consistent(T , {l+ | l ∈ M})
8: if cons = INCONSISTENT then
9: φ← AddBlockClause(φ,M)

10: else
11: M←M∪ M
12: γ ← AddBlockClause(γ,M)
13: Cache[M]← u(M) if Cache[M] = {}
14: vol← vol + Cache[M]
15: wmin ← min(wmin,Cache[M])
16: end if
17: until vol/(wmin · θ) > pivot
18: return (M, vol,wmin · θ)

φ, for which BoundedWeightSAT is invoked. The num-
ber of iterations of BoundedWeightSAT is bound by the
number of propositional variables in φ, or when the cur-
rent tilt exceeds an ε-based parameter. Among other
things, BoundedWeightSAT returns the models of φ con-
joined with a random parity constraint, and unless this is
empty, volume estimates in WeightMCCore are returned
to WeightMC. Both WeightMCCore and WeightMC are
minor adaptations of the procedures from CFMSV in the
following sense: in the CFMSV modules, the weights are
directly used; for example, line 7 in Algorithm 2 would ex-
plicitly refer to u(M) =

∑
M∈M u(M). In our setting, com-

puting u(M) involves integration which we would not want
to repeat for every iteration. Thus, weights of (sets of) mod-
els are themselves returned when required. It is easy to see
that the analysis of these procedures is unaffected by this
adaptation.

Finally, we turn to BoundedWeightSAT in Algorithm 3,
where a more significant adaptation of the CFMSV scheme
occurs. First, one would observe that, different from
CFMSV, the parity constraint χ is provided separate from
the input formula (for reasons justified below). Nonethe-
less, the procedure essentially performs a bounded version
of model counting on γ = φ∧ξ, as would CFMSV, where a
(θ, ε)-derived parameter determines this bound. As soon as
no model is found, the procedure exits with the current es-
timates. If a model M is found, however, unlike CFMSV,
we need to additionally ensure the refinement of this as-
signment is consistent w.r.t. the background theory T . If it
is not T -consistent, then we can prevent this model from
being considered for all iterations by adding it as a block
clause to our input propositional formula φ. (Recall also
that such a model would have zero volume, leading to an
infinite tilt if it were to be considered.) On the other hand, if
it is theory consistent, we compute its volume and then add
it as a block clause to γ. (This achieves the model counting
of γ.) In particular, we calculate u(M) = VOL(M,w) where



w is the actual weight function from the WMI problem, and
cache this result. So, integration is performed only once for
the model M. The procedure then returns the total volume
of the set of modelsM identified.

What is perhaps interesting to realize of this adaptation of
CFMSV is that it also does not affect the analysis of the
procedures. Note that, if the problem instance is a propo-
sitional theory, then ∆− = ∆, and line 7 of Algorithm 3
is trivially true because T is propositional logic. Conse-
quently, the test in line 8 is trivially false. More formally:

Proposition 10: Suppose φ is a propositional formula, u is
a weight function, ε, δ ∈ (0, 1], and θ is an upper bound on
the tilt. Then WeightMC(φ, u, ε, δ, θ) from CFMSV’s origi-
nal formulation returns c iff the current adaptation does.

This allows us, very easily, to leverage the strong guaran-
tees of CFMSV (our rewording):

Theorem 11: [CFMSV] Suppose φ, u, ε, δ, θ are as above.
Then WeightMC(φ, u, ε, δ, θ) is an (ε, δ)-algorithm for
WMC(φ, u).Given a SAT-oracle, it runs in time polynomial
in log2(1/δ), θ, |φ| and 1/ε relative to the oracle.

From which we obtain:

Corollary 12: Suppose ∆ is an SMT theory, w is a weight
function, and ε, δ, θ are as above. Suppose u is the derived
weight function for ∆−. Then, WeightMC(∆−, u, ε, δ, θ) is
an (ε, δ)-algorithm for WMI(∆,w). Suppose we are given
an oracle to the weight function u and a SAT-oracle.
Then, WeightMC(∆−, u, ε, δ, θ) runs in time polynomial in
log2(1/δ), θ, |∆−| and 1/ε relative to the oracles.

Thus, we can inherit existing results for this WMC solver
(and perhaps others). The oracle to u computes the vol-
umes ofT -consistent models. Each instance of VOL(M,w)
involves the following (Belle et al., 2015):

Proposition 13: Suppose ∆ is an SMT theory over continu-
ous variables X, M a model of ∆−, and w is as above. Let k
be the maximum degree of the polynomials in {w(l) | l ∈ M}.
Then VOL(M,w) integrates polynomials of degree k · |M|.

Basically, for any model M of ∆−, VOL(M,w) is formu-
lated as the integration of the polynomial potentials of the
literals true at M, which would be a product of |M| polyno-
mials, each of degree k. As mentioned earlier, Baldoni et
al. (2011) show that when the number of variables is fixed
(as determined by |X|), integration is efficient. In prac-
tice, moreover, when encoding factored representations and
piecewise polynomials, it is often the case that negated
atoms are assigned constant weights and so we encounter
polynomials of degree k · n where n � |M|. In essence,
what we usually encounter are a small number of polyno-
mial potentials corresponding to atoms that are true in the
model.
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Figure 1: scaling behavior

4 EMPIRICAL EVALUATIONS

In this section, we discuss results on a prototype imple-
mentation of the approximate inference system.6 In partic-
ular, the prototype builds on the approximate (unweighted)
model counting system of Chakraborty et al. (2013b), ex-
tended to handle weights along the lines of Chakraborty et
al. (2014).7 The resulting inference system uses Z3 SMT
solver v4.3.2 for testing satisfiability,8 and the LattE soft-
ware v1.6 for computing integrals.9 All experiments were
run using a system with a 2.83 GHz Intel Xeon processor
and 32GB RAM.

4.1 SCALING BEHAVIOR

To better understand the cost of continuous variables and
the benefits of approximate inference, we test scaling be-
havior using synthetic benchmarks. The intention here is
to necessitate a search for all models of a theory in an ex-
haustive manner. For simplicity, we consider theories that
are a conjunction of inequality constraints for continuous
variables and clauses of the form b1 ∨ . . .∨ bn, where bi are
Boolean variables. For WMI, such a theory enables Latte
computations for every model.

In our prior work (Belle et al., 2015), an exact WMI solver

6The initial version of this paper reported on experiments with
a prototype that contained some errors in the implementation of
the pivot bounds (lines 7-8 of Algorithm 2 and line 17 of Algo-
rithm 3). This revised section reports on a corrected prototype,
available at https://github.com/vaishakbelle/APPROXWMI, and a new run of
the experiments. We also remark that the propagation of theory-
inconsistent models and the caching of volumes (line 9 and lines
13-14 of Algorithm 3 respectively) are not implemented in the
prototypes.

7Chakraborty et al. (2014) have distributed their own imple-
mentation for approximate weighted model counting.

8
http://z3.codeplex.com

9
https://www.math.ucdavis.edu/∼latte



(a) at most 2 junctions

(b) at most 3 junctions

Figure 2: Strategic Road Network portions surrounding
motorway A6.

was implemented using a block-clause strategy: in each it-
eration, if a theory-consistent model is found, a clause over
the negations of the literals in the assignment is added as an
additional constraint, and in this way, all models are enu-
merated. Using the above benchmark weighted SMT theo-
ries, we plot the approximate WMI system against the exact
WMI implementation. (To assess the quality of the approx-
imate versus exact computation of the partition function,
we let the weight of every model be 1.) To further con-
trast this to the simpler setting of classical propositional
logic, we also ran experiments for exact WMC versus ap-
proximate WMC by providing the propositional abstrac-
tion of the theory as input. (Recall that by providing a
propositional theory with numeric weights, WMI reduces
to WMC.)

The experiments were run with ε = .8, δ = .2 and θ = 1
(because of the uniform weights). We observe in Figure
1 that while for smaller theories, Exact WMI and Exact
WMC are faster, this is no longer the case for theory files
with model counts greater than 215, that is, for theory files
with roughly 15 (or more) Boolean variables. Finally, we
remark that the answers computed by approximate WMI
equals the answers computed by exact WMI ±1, and like-
wise for WMC.

4.2 REAL-WORLD DATASET

To demonstrate the expressivity of WMI in a complex real-
world scenario, we consider the following novel appli-
cation involving conditional queries over arithmetic con-
straints. It uses a data series released by the UK govern-
ment that provides average journey time, speed and traffic
flow information on all motorways, known as the Strate-
gic Road Network, in England.10 Motorways are split into
junctions, and each information record refers to a specific
junction, day and time period. In the following we consider
the 2012 dataset, with over 7 million entries, and focus on
the surroundings of the A6 motorway. Figures 2a and 2b
show the portion of the network with at most two and three
junctions respectively from A6. We extract statistics on
journey time across each junction. For the sake of sim-
plicity, we model a junction’s journey time as a uniform
distribution between the observed minimum and maximum
travel time.

Consider a planning problem for a supply system for mo-
torway service stations. The operations center (located,
say, somewhere along A6) receives supply requests from
a number of stations, and needs to predict whether the de-
livery vehicle will be able to reach all stations and return
within a certain amount of time. Travel time between ev-
ery pair of stations, and between stations and the opera-
tions center, is computed in terms of shortest paths across
the network. We compute shortest paths for both minimum
and maximum travel times, so as to get a distribution for
the shortest path duration w.r.t. every pair of relevant points
(stations and operations center), which, as noted, is uni-
form between these two extremes. Given a certain route
between stations, the probability of completing it within
the desired time can be computed by integrating over travel
time distributions between consecutive stops. However, the
optimal route can not be fixed a-priori (as in standard TSP
problems), as the vehicle also performs deliveries between
stations and to the center, depending on the current needs.
These deliveries enforce various constraints on the allowed
routes. The overall probability is thus obtained by sum-
ming over all valid routes, given the known constraints.

Consider, for example, the case in which stations at A14,
A1304, A43, and A5199 need to be visited before returning
to the operations center. Figure 2a depicts this case, show-
ing the portion of the network with at most two junctions
away from A6. (The nodes to be visited are colored green.)
The probability of beginning from the operations center at
8 a.m. and completing the route by 9 a.m., considering all
possible paths, is:

Pr(T < 3600) = 0.765,

computed using the approximate WMI module, where T is
the overall time measured in seconds. Now suppose a con-

10
http://data.gov.uk/dataset/dft-eng-srn-routes-journey-times
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Figure 3: Probabilistic reasoning about the Strategic Road Network surrounding motorway A6. Figures 3a-3c plot cycle
lengths of 5 (dotted red), 6 (finely dotted blue) and 7 (solid green), relating constraints to time, problem size and volume
computations respectively.

straint says that station A14 should be reached only after
visiting A1304 (owing to a delivery request between these
two stations). The probability then needs to be updated
according to this evidence, which rules out part of the pos-
sible routes. Nonetheless, the probability of completing the
task is almost unchanged:

Pr(T < 3600 | tA14 > tA1304) = 0.770,

where the minor increase is due to some slightly subopti-
mal routes being disallowed. Suppose further an additional
constraint specifies that station A1304 should not be visited
before 8:30 a.m. (say, because the package to deliver will
not be available until then). This additional evidence brings
success probability down to:

Pr(T < 3600 | tA14 > tA1304 ∧ tA1304 ≥ 1800) = 0.557.

Finally, suppose a last constraint were to require the station
A5199 to be also visited after 8:30 a.m. (say, when a pack-
age to be delivered to the operations center will be made
available). This additional constraint makes it infeasible to
complete the route in the required time:

Pr(T < 3600 | tA14 > tA1304 ∧

tA1304 ≥ 1800 ∧ tA5199 ≥ 1800) = 0.

Note that for such carefully constructed small-size prob-
lems in the 2-neighborhood case, exact and approximate
procedures return the very same results in about the same
time. (The exact procedure, however, quickly becomes in-
feasible for increasing cycle lengths.)

Using this example (which is to be seen as a cycle of
length 5: A6−A14−A1304−A43−A5199−A6) as a tem-
plate we randomly generated a number of test problems
on the more complex 3-neighborhood setting, and plot an
overview of these experiments in Figure 3.11 These test
problems are diverse in their modeling power: ranging

11The nature of this application makes it challenging to deter-

from inequality constraints (e.g., tA5199 ≥ 1800) to ordering
constraints (e.g., A5199 after A1304), and Boolean combi-
nations thereof, often leading to more than 300 complex
SMT formulas. (Intuitively, if an SMT formula has n SMT
literals, these can possibly denote joint piecewise potentials
of n continuous random variables.) The figures depict the
behaviors for cycles of length 5, 6 and 7, ordered by con-
straints against the time taken, the problem size (which is
the number of complex SMT formulas in the theory), and
the number of calls of VOL(·, ·). Besides demonstrating the
scalability of approximate WMI in such a setting, one also
observes that while additional constraints increases the size
of the theory, and thus, the number of random variables
and volume computations, the time taken for conditional
queries does not necessarily increase because suboptimal
paths are eliminated (and so, marginalization is easier).

5 CONCLUSIONS

We introduced a novel way to leverage a fast hashing-based
approximate WMC methodology for inference with dis-
crete and continuous random variables. On the one hand,
SAT technology can now be exploited in challenging infer-
ence and learning tasks in hybrid domains. On the other,

mine the range of the weight function for unconstrained problems
and/or large cycle lengths. Our approach here is to begin with 2
constraints at least whilst assuming that we are given the wmax and
a tilt of 5. It is important to note that, if these assumptions do not
hold, the bounds of Corollary 12 do not apply. The results ob-
tained here must then be viewed as approximations without for-
mal guarantees (similar to, for example, the belief propagation
algorithm). An alternative approach that can recover the formal
guarantees while approximating the structure of the problem is as
follows: we cap the range of the weight function from above and
below in service of a small tilt. This has the effect of “flattening”
the density landscape, and may prevent the excessive number of
volume computations needed for large (≥ 7) cycle lengths. A
comprehensive investigation of such strategies is left for future
work.



strong tolerance-confidence guarantees can be inherited in
this more complex setting. WMI and weighted SMT theo-
ries allow a natural encoding of hybrid graphical networks
while also admitting the specification of arithmetic con-
straints in conditional queries, all of which are difficult to
realize in traditional representations. We demonstrated its
practical efficacy in a complex novel application, and we
believe, in general, the ideas of our approach would put
hybrid domains within the reach of other WMC solvers.
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Köppe, and Michèle Vergne. How to integrate a polynomial
over a simplex. Mathematics of Computation, 80(273):297–
325, 2011.

Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare
Tinelli. Satisfiability modulo theories. In Armin Biere, Marijn
J. H. Heule, Hans van Maaren, and Toby Walsh, editors, Hand-
book of Satisfiability, chapter 26, pages 825–885. IOS Press,
2009.

Mihir Bellare, Oded Goldreich, and Erez Petrank. Uniform gen-
eration of NP-witnesses using an NP-oracle. Information and
Computation, 163(2):510 – 526, 2000.

Vaishak Belle, Andrea Passerini, and Guy Van den Broeck. Prob-
abilistic inference in hybrid domains by weighted model inte-
gration. In IJCAI, 2015.

Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. A
scalable and nearly uniform generator of SAT witnesses. In
CAV, pages 608–623, 2013.

Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. A
scalable approximate model counter. In CP, pages 200–216,
2013.

Supratik Chakraborty, Daniel J Fremont, Kuldeep S Meel, San-
jit A Seshia, and Moshe Y Vardi. Distribution-aware sampling
and weighted model counting for SAT. AAAI, 2014.

Mark Chavira and Adnan Darwiche. On probabilistic inference
by weighted model counting. Artificial Intelligence, 172(6-
7):772–799, April 2008.

Mark Chavira, Adnan Darwiche, and Manfred Jaeger. Compiling
relational Bayesian networks for exact inference. International
Journal of Approximate Reasoning, 42(1-2):4–20, May 2006.

Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar. Ap-
proximate counting in SMT and value estimation for proba-
bilistic programs. In TACAS, volume 9035 of LNCS, pages
320–334. Springer Berlin Heidelberg, 2015.

Arthur Choi, Doga Kisa, and Adnan Darwiche. Compiling prob-
abilistic graphical models using sentential decision diagrams.

In Symbolic and Quantitative Approaches to Reasoning with
Uncertainty, pages 121–132. Springer, 2013.

Adnan Darwiche. New advances in compiling CNF to decom-
posable negation normal form. In Proceedings of ECAI, pages
328–332, 2004.

Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, and Bart Sel-
man. Embed and project: Discrete sampling with universal
hashing. In NIPS, pages 2085–2093, 2013.

Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, and Bart Sel-
man. Taming the curse of dimensionality: Discrete integration
by hashing and optimization. In ICML, pages 334–342, 2013.

Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, and Bart Sel-
man. Low-density parity constraints for hashing-based discrete
integration. In ICML, pages 271–279, 2014.

Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shte-
rionov, Bernd Gutmann, Ingo Thon, Gerda Janssens, and Luc
De Raedt. Inference and learning in probabilistic logic pro-
grams using weighted Boolean formulas. Theory and Practice
of Logic Programming, 2013.

Vibhav Gogate and Pedro Domingos. Probabilistic theorem prov-
ing. In UAI, pages 256–265, 2011.

Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Near-
uniform sampling of combinatorial spaces using XOR con-
straints. In NIPS, pages 481–488, 2006.

Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Model
counting. In Armin Biere, Marijn J. H. Heule, Hans van
Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
chapter 20. IOS Press, 2009.

Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. Random
generation of combinatorial structures from a uniform distribu-
tion. Theor. Comput. Sci., 43(2-3):169–188, 1986.

Richard M. Karp, Michael Luby, and Neal Madras. Monte-carlo
approximation algorithms for enumeration problems. J. Algo-
rithms, 10(3):429–448, 1989.

D. Koller and N. Friedman. Probabilistic graphical models: prin-
ciples and techniques. MIT press, 2009.

Lukas Kroc, Ashish Sabharwal, and Bart Selman. Leveraging
belief propagation, backtrack search, and statistics for model
counting. Annals OR, 184(1):209–231, 2011.

Steffen L Lauritzen and Frank Jensen. Stable local computation
with conditional gaussian distributions. Statistics and Comput-
ing, 11(2):191–203, 2001.

David J Lunn, Andrew Thomas, Nicky Best, and David Spiegel-
halter. Winbugs – a Bayesian modelling framework: con-
cepts, structure, and extensibility. Statistics and computing,
10(4):325–337, 2000.

Christian Muise, Sheila A McIlraith, J Christopher Beck, and
Eric I Hsu. Dsharp: fast d-DNNF compilation with sharpSAT.
In Advances in Artificial Intelligence, pages 356–361. Springer,
2012.

Kevin P Murphy. A variational approximation for Bayesian net-
works with discrete and continuous latent variables. In UAI,
pages 457–466, 1999.

Tian Sang, Paul Beame, and Henry A Kautz. Performing
Bayesian inference by weighted model counting. In AAAI, vol-
ume 5, pages 475–481, 2005.

Scott Sanner and Ehsan Abbasnejad. Symbolic variable elimina-
tion for discrete and continuous graphical models. In AAAI,
2012.



Prakash P Shenoy and James C West. Inference in hybrid
Bayesian networks using mixtures of polynomials. Inter-
national Journal of Approximate Reasoning, 52(5):641–657,
2011.

Michael Sipser. A complexity theoretic approach to randomness.
In STOC, pages 330–335. ACM, 1983.

Larry Stockmeyer. The complexity of approximate counting. In
STOC, pages 118–126, New York, NY, USA, 1983. ACM.

Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch.
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