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Abstract

Reducing uncertainty is an important problem
in many applications such as risk and reliabi-
lity analysis, system design, etc. In this paper,
we study the problem of optimally querying ex-
perts to reduce interval uncertainty. Surprisingly,
this problem has received little attention in the
past, while similar issues in preference elicita-
tion or social choice theory have witnessed a ri-
sing interest. We propose and discuss some so-
lutions to determine optimal questions in a myo-
pic way (one-at-a-time), and study the computa-
tional aspects of these solutions both in general
and for some specific functions of practical in-
terest. Finally, we illustrate the application of the
approach in reliability analysis problems.

1 INTRODUCTION

When data on some quantity or model of interest is sparse
or non-existing, elicitation, i.e., the process of extracting
human judgement through questions, is often a valuable
and sometimes the unique source of additional knowledge.
There is a substantial literature dating back to the six-
ties on elicitation and is mainly related to probability en-
coding (Winkler, 1969; Spetzler and Stael von Holstein,
1975) and preference elicitation (Keeney et al., 1979). Eli-
citation is used in a broad range of fields including risk
assessment (Cooke, 1991), reliability analysis, preference
model elicitation (Viappiani and Kroer, 2013; Guerin et al.,
2013), etc. to support assessment and decision making.

A critical part of the elicitation is then how to choose the
questions to ask. Those need to be simple (i.e., do not re-
quire high cognitive effort) and in terms and format ex-
perts are familiar with. Furthermore, when the elicitation is
conducted to reach some objective, for instance bringing an
answer to a question, selecting the best alternative in a set,
or estimating some quantity with a desired level precision,
the process of information acquisition need to be optimal

for the elicitation to be effective and the least possible time
or effort consuming.

How to choose sequences of optimal questions, or even the
notion of optimal queries, has received surprisingly little
attention when the aim is to reduce our uncertainty over
some quantities. Indeed, the great majority of techniques
to do so prescribe generic questions, without considering
the consequences of answers on some final goal (Aspinall
and Cooke, 2013) (the work of Curtis and Wood (Curtis
and Wood, 2004), settled in a probabilistic context, is an
exception). This contrasts with other fields such as prefe-
rence elicitation of social choice theory, with works da-
ting back two decades ago (Boutilier et al., 1997; Wang
and Boutilier, 2003; Boutilier et al., 2006) and still thriving
today (Viappiani and Kroer, 2013; Benabbou et al., 2014;
Boutilier et al., 2013).

The goal of this paper is to explore similar ideas when the
goal is to reduce interval uncertainty by asking successive
simple questions to the experts. We want to develop que-
rying strategies that are adaptive and optimal, i.e., that se-
lect at each stage of the elicitation the best questions based
on the answers to the previous ones. In this paper, we focus
on so-called myopic (Wang and Boutilier, 2003; Chajewska
and Koller, 2000) strategies, where optimal questions are
selected one-at-a-time.

The remainder of the paper is organized as follows. In Sec-
tion 2, we formalize the sequential elicitation model for
the problem of interval uncertainty reduction in the general
case. Within this same section (Section 2.3), we describe
different query selection strategies, and analyse their com-
putational costs in the general case, which is an important
aspect to consider in adaptive procedures. Section 3 then
discusses the case of specific yet important (in practice)
type of functions, namely monotonic and multi linear func-
tions. In the last section, we illustrate how the approach can
be used in reliability analysis.



2 GENERAL FRAMEWORK

2.1 PROBLEM STATEMENT

Let Φ be a function mapping a set of n logically inde-
pendent inputs (x1, ..., xn), each of them being defined on
Xi, to an output y in Y :

Φ : X = ×i=1...nXi → Y

x = (x1, ..., xn) 7→ Φ(x) = y.

In this paper, we are interested in the situation where xi is
a precise but ill-known value, whose uncertainty is descri-
bed by an interval Xi =

[
Xi, Xi

]
⊂ R of the real line.

Such kind of uncertainty, where the true value is exact, is
sometimes called epistemic (by opposition to aleatory). A
natural way to quantify the amount of uncertainty in Xi is
by its width

UXi(xi) = UXi = Xi −Xi.

We also require the function Φ to be continuous, so that the
response y corresponding to the initial state of knowledge
on the inputs lies in the bounded interval :

Y = Φ(X) = [min
x∈X

Φ(x),max
x∈X

Φ(x)] = [Y , Y ]. (1)

Example 1. Consider the function Φ(x1, x2, x3) = x1x2−
x2x3 with X1 = X2 = X3 = [0, 1], then we have

Y = Φ(X1, X2, X3) = −1;Y = Φ(X1, X2, X3) = 1.

The problem we are considering is the following : we want
to reduce our uncertainty UY = Y − Y by asking ques-
tion to experts, to attain some objectives. For instance, we
may want to reduce the uncertainty under some threshold
UY ≤ s0 or simply reduce the most UY in a given num-
ber of questions. As expert elicitation is time-consuming
and cognitively demanding for the expert, and economi-
cally expensive for the decision maker, we want to ask as
few questions as possible, or to be the most effective pos-
sible on those questions we ask. In other words, we want
the querying strategy to be optimal. This is what we deve-
lop in the next sections.

2.2 QUERIES AND ANSWERS

In expert elicitation in general, and when the elicitation is
made of many successive questions, it is important to use
simple questions that not require high cognitive effort (for
understanding and answering) for the expert to be efficient
throughout the interview. Possible simple queries formats
include local bound queries (“xi ≤ α ?”), pairwise compa-
rison judgements (“xi ≤ xj” ?), etc. (Braziunas and Bouti-
lier, 2007).

In our method, we use questions of the type
“xi ≤ α?”, with α ∈ Xi. We denote such
a query Qαi and the set of possible queries
Q = {Qαi , i ∈ N = {1, 2, ..., n} , α ∈ Xi}.

In the particular case of local bound queries, the set of pos-
sible answers A is binary : A = {Y es,No}. We recall
that, for simplicity and for conciseness, we assume that the
expert is an oracle, so the “I don’t know” answer is not
considered here 1. Note that the ideas presented in the paper
could easily be applied to other sets of questions/answers
Q,A, yet binary questions are the simplest and the most
natural to ask to experts.

When a question Qαi is asked and answer A ∈ A is given,
Xj remains unchanged for every j 6= i, whileXi is updated
to Xi(Q

α
i , A) as follows :

Xi(Q
α
i , A) =

 Xi ∩ [−∞, α] if A = Y es

Xi ∩ [α,−∞] if A = No
(2)

which satisfies Xi(Q
α
i , A) ⊆ Xi and Xj(Q

α
i , A) = Xj

for every j 6= i. Consequently, the output uncertainty set is
updated from Y into Y (Qαi , A) :

Y (Qαi , A) = Φ (X−i ×Xi(Q
α
i , A)) , (3)

where X−i = ×j 6=iXj denotes the Cartesian product of
all unchanged intervals. As for any Q ∈ Q and A ∈ A
we have Y (Q,A) ⊆ Y by simple interval inclusion, the
following relation always holds :

UY ≥ UY (Q,A) (4)

therefore ensuring an uncertainty reduction.

Example 2. In Example 1, assume we ask the question
Q0.5

1 and receive the answer Y es, then

X1(Q0.5
1 , Y es) = [0, 0.5]

Y (Q0.5
1 , Y es) = Φ(X1, X2, X3) = 0.5.

2.3 QUERY SELECTION STRATEGIES

A query selection strategy corresponds to define and
choose optimal questions. There are two main ways to do
so : myopically, where questions are selected and asked one
at a time, successively, and sequentially, where the set of
successive questions is selected globally. Here, we retain
the myopic approach for the following reasons : it is often
simpler to solve, sometimes allowing for analytical exact
solutions, and does not require to specify the number of as-
ked questions in advance, a particularly interesting feature
in iterative and interactive querying process.

1. Should the expert return “I don’t know” to Qαi , then a
simple strategy is to remove Qαi (and possibly questions with si-
milar values of α) from the question set Q and then select the
optimal one among the remaining ones.



The selection process of the myopic approach consists in
solving the following optimization problem at each itera-
tion :

Q∗ = arg min
Q∈Q

UY (Q), (5)

where UY (Q) is the uncertainty reduction induced by query
Q. However, as the answer A that will be given to Q is
unknown, we face a typical problem of decision making
under uncertainty.

In our case, the decision is a couple (i, α) ∈ N × Xi, the
uncertain event is the answer to the question, and the out-
come we want to maximize is the uncertainty reduction in
the output Y . Re-writing the decision problem using nota-
tions of our query selection problem leads to the following
characterization of the optimal queries :

Q∗ = (i∗, α∗) = arg min
i∈N

min
α∈Xi

UY (Qαi )
, (6)

which is a two stage optimization problem. First, we deter-
mine the optimal local bound value for each input i, and
calculate the uncertainty reduction induced by that local
query. Then, we select the entity i∗ that leads to the highest
uncertainty reduction in y.

Algorithm : Iterative elicitation for uncertainty reduc-
tion
Inputs : Xi(i ∈ N), s0
while UY >= s0 do

for i in N do
Compute α∗ = arg minα∈Xi UY (Qαi )

Compute UY (Qα
∗
i )

end for
i∗ = arg mini∈N UY (Qα

∗
i )

Ask query : “xi∗ <= α∗?”
Obtain answer
Update Xi∗

Compute UY
end while

In the following, we describe the computations involved in
the first optimization step (the computation of UY (Qαi )

) for
a given i ∈ N for different decision criteria.

2.3.1 Maximin strategy

The maximin strategy corresponds to a pessimistic view,
where the value UY (Qαi )

corresponds to the answer that
yields the lowest uncertainty reduction :

UMm
Y (Qαi )

= maxA∈A UY (Qαi ,A)

α∗,Mm = arg minα∈Xi max(UY (Qαi ,No)
, UY (Qαi ,Y es)

)

We can show that solving the optimization problem to get
the optimizing α∗ is equivalent to finding the intersection

of the two functions UY (Qαi ,Y es)
, UY (Qαi ,No)

of α. The fol-
lowing propositions indicates that a general and efficient
method to find the solution is to use a dichotomy search on
the space [Xi, Xi]

Proposition 1. Functions UY (Qαi ,Y es)
and UY (Qαi ,No)

measuring the uncertainty level on Y induced by a positive
and a negative answer to Qαi and defined on Xi are
– increasing and decreasing in α, respectively, and
– intersect at least once at Mi ⊂ Xi (Mi is a single point

or an interval).
Proof. We have that

UY (Qαi ,Y es)
= max
X−i×[Xi,α]

Φ(x)− min
X−i×[Xi,α]

Φ(x) (7)

To show that UY (Qαi ,Y es)
is increasing in α, we need to

show that UY (Qαi ,Y es)
≤ UY (Qβi ,Y es)

for α ≤ β. This re-
sult follows from X−i × [Xi, α] ⊆ X−i × [Xi, β].

The same reasoning can be applied to

UY (Qαi ,No)
= max
X−i×[α,Xi]

Φ(x)− min
X−i×[α,Xi]

Φ(x) (8)

to show that UY (Qαi ,No)
is decreasing in α.

To demonstrate the second part of the proposition, simply
observe that :

max
α∈Xi

UY (Qαi ,Y es)
= U

Y (Q
Xi
i ,Y es)

= UY ,

max
α∈Xi

UY (Qαi ,No)
= U

Y (Q
Xi
i ,No)

= UY ,

where UY is the uncertainty before the question. As both
functions have the same maximum, are continuous (since
Φ is), and are respectively increasing and decreasing in α,
they have at least one point of intersection.

When Mi is an interval [M i,M i], we simply take the
middle point α∗,Mm = Mi+Mi/2. In some situations, it
may also happen that the intersection occurs on the bounds
ofXi for all i, which means that the proposed optimal ques-
tion is likely to be uninformative, unless the expert answer
reduces the interval [Xi, Xi] to a point, which is unlikely.
When such a scenario occurs, we use a different strategy
that defines optimality as the highest reduction of uncer-
tainty, no more on Y , but on Xi. This heuristic is equiva-
lent, whenXis are intervals, to choosing the largest interval
i∗ = arg maxi UXi and to pick the mid of this interval, i.e.,

α∗,Mm =
Xi∗+Xi∗

2 .

In Section 3, we will show that for specific functions, there
are more efficient ways than a naive dichotomic search to
determine α∗,Mm.

2.3.2 Maximax strategy

While the maximin strategy is pessimistic, the maximax
strategy is optimistic and takes as value UY (Qαi )

the ans-
wer that yields the highest uncertainty reduction :




UMM
Y (Qαi )

= minA∈A UY (Q,A)

α∗,MM = arg minα∈Xi min(UY (Qαi ,No)
, UY (Qαi ,Y es)

).

It is straightforward from Proposition 1 that the local bound
optimization step leads to an optimal value α∗,MM that
coincides either with the upper or lower bound of Xi. The
maximax strategy is therefore not interesting in our pro-
blem, as it will lead to questions that are most likely to
receive a useless answer. We will therefore not retain this
approach in this paper.

2.3.3 Hurwicz’ strategy

Hurwicz’s strategy evaluates the value of a question Q by
a convex combination between the maximin and maximax
strategies. It therefore allows to go from a pessimistic to an
optimistic point of view and reads :

U
H(p)
Y (Qαi )

= pUMM
Y (Q) + (1− p)UMm

Y (Q)

α∗,H(p) = arg minα∈Xi(pmin (UY (Qαi ,Y es)
, UY (Qαi ,No)

)+
(1− p) max (UY (Qαi ,Y es)

, UY (Qαi ,No)
)).

Here, p ∈ [0, 1] is an optimism coefficient, and we retrieve
the maximax and maximin strategies when p = 1 and p =
0, respectively. Note that we can use the fact that for any
α ≤ M i (α ≥ M i), we have UY (Qαi ,No)

>= UY (Qαi ,Y es)

(UY (Qαi ,No)
<= UY (Qαi ,Y es)

) to rewrite the above equa-
tions into :

L = minα∈[Xi,infMi](pUY (Qαi ,Y es)
+ (1− p)UY (Qαi ,No)

)
R = minα∈[supMi,Xi]

(pUY (Qαi ,No)
+ (1− p)UY (Qαi ,Y es)

)

α∗,H(p) = min(L,R).

2.3.4 Bayesian strategy

Up to now, we have not considered any a priori information
about the likelihood of answering Yes or No. However, this
can lead to consider very unlikely answers, such as answe-
ring Y es to QXii (as is the case in the maximax strategy).
One alternative is then the Bayesian strategy, where we as-
sume the existence of a probability distribution P over the
set of answers A, this probability modelling our subjec-
tive beliefs about the likelihood of getting the different ans-
wers. We then evaluate a queryQ by the expected reduction
EP (UY (Q,A)) of uncertainty on y induced by the possible
answers :

UBY (Qαi )
= EP (UY (Qαi ,A)) =

∑
A∈A P (A)UY (Qαi ,A)

α∗,B = arg minα∈Xi(P (Y es|Qαi )UY (Qαi ,Y es)
+

P (No|Qαi )UY (Qαi ,No
)).

When the available evidence suggests that a quantity xi lies
in an interval Xi, it is common to follow Laplace’s indif-
ference principle and quantify uncertainty by assuming a

uniform probability distribution over that set. Under this as-
sumption, the probability of the positive and negative ans-
wers to a question Qαi are proportional to the width of the
sub-interval of Xi they lead to :

P (Y es|Qαi ) = P (Xi ≤ xi ≤ α) =
α−Xi

Xi −Xi

and

P (No|Qαi ) = P (α ≤ xi ≤ Xi) =
Xi − α
Xi −Xi

.

These probabilities can then be modified according to the
information we have (for instance, if we have reasons to
think that the true value is closer to Xi).
Remark 1. Note that when UY (Qαi ,Y es)

= UY (Qαi ,No)
=

UY (Qαi )
, then EP (UY (Qαi ,A)) = UY (Qαi )

, whatever the va-
lues of P . This means, among other things, that the function
UBY (Qαi )

has value UB
Y (Qα

∗,Mm
i )

= UMm

Y (Qα
∗,Mm
i )

, since the

minimax is obtained at the intersection Mi of UY (Qαi ,Y es)

and UY (Qαi ,No)
.

This means that we have : minXi U
B
Y (Qαi )

= UB
Y (Qα

∗,B
i )

≤
UMm

Y (Qα
∗,Mm
i )

= minXi U
Mm
Y (Qαi )

, hence the expected uncer-

tainty reduction with a Bayesian strategy is at least as high
as the one obtained by the maximin strategy. However, in
contrast with this latter, the Bayesian strategy does not of-
fer guarantees about the uncertainty reduction, in the sense
that the actual reduction may be lower than the expected
one.

Also, while Proposition 1 means that α∗,Mm can be obtai-
ned by a dichotomic search, this cannot be done in general
for the Bayesian strategy, which therefore requires heavier
computations.
Example 3. Consider the function Φ(x1, x2, x3) = x1x2−
x2x3 + x2 with X1 = X3 = [0.1, 1] and X2 = [0, 1].
Figure 1 shows the various strategies for Qα2 . We can see
that the maximin, the Laplacian and Hurwicz’s strategies
recommend respectively α∗,Mm = 3/4, α∗,B = 1/2, and
α∗,H( 1

2 ) = 0. Another remark is that UY (Qα2 ,Y es)
and

UY (Qα2 ,No)
are both linear. We will see in the next section

that this is true for multi linear functions in general.

3 QUERYING ON SPECIFIC
FUNCTIONS

Here, we study what becomes of the previous strategies
when applying them to specific functions. Indeed, fin-
ding an optimal strategy requires computing UY (Qαi ,Y es)

,
UY (Qαi ,No)

and their intersections, which comes down to
finding bounds of Φ over various domains (see Eqs. (7)-
(8)). It is therefore important to identify those sub-cases
for which computations can be simplified. More precisely,
we look at monotonic functions and multi linear functions,
that are both of practical interest.
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UY (Qα2 ,Y es)

UY (Qα2 ,No)
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α∗,Mm

U
H(0.5)

Y (Qα2 )

α∗,B

FIGURE 1 – Optimal recommendations of different query
selection strategies.

3.1 MONOTONIC FUNCTIONS

Several application in diverse areas use monotonic func-
tions, such as reliability analysis (Marichal, 2014), multi-
criteria decision making (Grabisch and Labreuche, 2008),
etc.

When considering such functions, either increasing or de-
creasing in each variable xi, computations are greatly faci-
litated, as

UY = Φ(XI , XI)− Φ(XI , XI),

where I denotes the set of variables in which Φ is increa-
sing, and I its complement.

Moreover, when Φ is locally monotonic 2 with respect to
each argument i, its upper and lower bounds are reached
on the vertices of the hypercube ×i=1...nXi. Again, this
may allow to reduce the computations involved in the cal-
culation of UY .

3.2 MULTI LINEAR FUNCTIONS

A Multi-linear function over variables x1, . . . , xn is a po-
lynomial form that can be written as

Φ(x1, ..., xn) =
∑
A⊆N

dA
∏
i∈A

xi (9)

with dA ∈ R some real-valued coefficients. Such func-
tions play an important role in many AI applications.
As any pseudo-Boolean function can be rewritten in this
form (Hammer and Rudeanu, 1968), they concern all
problems where pseudo-Boolean functions have a role,
such as cooperative game theory (Owen, 1972), multi-
criteria decision-making (Grabisch and Labreuche, 2003),
combinatorial optimization (Yannakakis, 1991), reliability
theory (Bhattacharjya and Deleris, 2012; Marichal, 2014),
etc. Multi linear functions also play an important role in

2. φ is locally monotone in xi if, all other variables being
fixed, it is either decreasing or increasing in xi. Function φ of
Example 1 is locally monotone in x2, as it is either increasing or
decreasing in x2 once x1 and x3 are fixed.

inferences of Bayesian networks or related models (Dar-
wiche, 2003; de Campos and Cozman, 2004).

From a computational point of view, having Φ multi-linear
presents different advantages. First, as φ is locally mono-
tonic in each variable (fixing every variable values but one
in Eq. (9) gives a linear function, which is either increasing
or decreasing), we know that its upper and lower bounds
are reached on vertices of ×i=1...nXi. Second, provided
0 6∈ Xi, the maximin strategy will lead to a unique value
α∗,Mm, due to the fact that UY (Qαi ,Y es)

, UY (Qαi ,No)
will

be strictly increasing and decreasing, respectively (since
bounds of Eq. (9) will be strictly monotone functions).

3.3 MULTI LINEAR MONOTONIC FUNCTIONS

Combining monotonicity and multi linear properties pro-
vide very interesting properties to compute our optimal
strategies, and are still useful in several applications, such
as reliability analysis that we use as a case study in the
next section. The first property relates to the shape of
UY (Qαi ,Y es)

and UY (Qαi ,No)

Proposition 2. If Φ is a multi linear function monotonic
in each variable, then for every i ∈ N , UY (Qαi ,Y es)

and
UY (Qαi ,No)

are linear in α.

Proof. If Φ is monotonic in each variable, then in the
first term of Eq. (7), the maximum is reached on the up-
per bounds of each Xi, i.e., on Xj for all j ∈ N−i and
Xi = α, while the lower bound is reached on Xj for
all j ∈ N (independent of α). The function Φ being li-
near in xi, max Φ(x) is therefore linear in α, and so is
UY (Qαi ,Y es)

. The same reasoning applies to Eq. (8).

This has several consequences on the computations of stra-
tegies :
– The maximin strategy recommends a unique query

bound Mi in Xi, as UY (Qαi ,Y es)
and UY (Qαi ,No)

inter-
section will be a unique point ;

– Computing UY (Qαi ,Y es)
and UY (Qαi ,No)

will require
only three computations, as they are linear (requiring
each two evaluations) and as they have the same maxi-
mal value. Computing Mi then comes down to evaluate
the intersection point of two lines ;

– Hurwicz’s solution will be reached either at the end-
points of the interval Xi or will coincide with the maxi-
min solution. The result follows from the fact that the
convex combination of linear functions (UY (Qαi ,Y es)

and
UY (Qαi ,No)

) is also linear, and is therefore monotonic in
α.

Furthermore, we have the following property regarding the
Bayesian strategy :

Proposition 3. If Φ is a multi linear function monotonic
in each variable, the Bayesian strategy adopting a uniform
distribution over Xi has a unique minimum α in the inter-
ior of Xi



Proof. (sketch) Function UBY (Qαi )
is convex since it is the

sum of the product of two linear functions of α, there-
fore it is quadratic and convex. ln addition, it satisfies :
UB
Y (Q

Xi
i )

= UB
Y (Q

Xi
i )

.

Since it can not be a constant function (the scenario
UY (Qαi ,Y es)

= UY (Qαi ,No)
for every α ∈ Xi does not oc-

cur for multi linear functions), its global minimum exists,
is unique, and is reached inside the interval Xi.

4 APPLICATION IN RELIABILITY
ANALYSIS

When systems are complex or newly designed, full system
dependability data are often too expensive and/or difficult
to obtain, making it impossible to directly estimate quanti-
ties of interest. The common approach to improve the esti-
mation of such quantities is to focus on enhancing the state
of knowledge at the component-level, where information
is more likely to be available either via measurements or
expert elicitation.

In this section, we illustrate how our elicitation model can
be used to refine the state of knowledge at the component
level in order to estimate the reliability of a system. We
begin by recalling some basic elements related to systems
reliability and briefly describe the mathematical proper-
ties of the system function. Then, we describe and discuss
the results of the proposed elicitation procedure on simple
yet common system architectures, to finish by a real-world
example involving railway safety systems.

4.1 PRELIMINARIES ON RELIABILITY
ESTIMATION

Consider a network S with n components indexed in N =
{1, 2, ..., n}. We describe a static problem, i.e., we do not
refer to time explicitly when describing the system beha-
vior. Every component i is either operating or failing and
its state is represented by a boolean variable ei that asso-
ciates 0 and 1 to the failed, working state, respectively. The
system state is completely determined by the joint state
of its components through the structure function ΦS – a
boolean function. For the majority of systems, forming the
class of semi-coherent systems, the structure function sa-
tisfies these three conditions :
– Φs non-decreasing in each ei
– Φs(0, 0, ..., 0) = 0
– Φs(1, 1, ..., 1) = 1.
In reality, the state of component can not be determined
exactly, and the usual framework is to assume that is a ran-
dom variable. The probability that the component is func-
tioning is called the elementary reliability :

pi = Pr(ei = 1).

When the components are independent, i.e., when their
state variables are stochastically independent, the reliabi-
lity of the system :

R = Pr(Φs(e1, ...en) = 1),

can be determined from the reliability of its components
via the reliability function Φ :

R = Φ(p1, ..., pn), (10)

which is the multi linear extension of Φs (Marichal, 2014)
and so writes :

Φ(p1, ..., pn) =
∑
A⊆N

dA
∏
i∈A

pi

where coefficients dA are the Mobius transform of the mass
function associated with the structure function 3. In prac-
tice, the exact expression of the reliability function can
be directly generated using the inclusion-exclusion for-
mula (Lin et al., 1976) based on determining the minimal
path set (i.e., the minimal set of components that must be
in working state that guarantees the functioning of the sys-
tem) and cut sets (the minimal set of components such that
if all of them fail, the system is guaranteed to fail whatever
the value of the others components).

Therefore, when facing a new system with ill-known pro-
babilities, we have a multi linear function φ with interval-
valued variables pi, to which we can apply our previous
findings.

4.2 CLASSICAL STRUCTURES

We first consider a bridge structure with 5 non redundant
components. The reliability block diagram – a graphical
depiction of the functional relationship between compo-
nents – of this structure is given below :

C2

C5

C3

C4

C1

FIGURE 2 – Reliability block diagram of a series parallel
system.

3. The Mobius transform of the mass function associated to
Φs is given by :

dA =
∑
B⊆A

(−1)|A|−|B|Φs(B).



The system reliability is given by :

R = p1p2 + p4p5 + p1p3p5 + p2p3p4

−p1p2p3p4 − p1p2p3p5 − p1p2p4p5 − p1p3p4p5

−p2p3p4p5 + p1p2p3p4p5.

We assume the initial state of knowledge to be the follo-
wing : p1 ∈ P1 = [0.5, 0.92], p2 ∈ P2 = [0.2, 0.9],
p3 ∈ P3 = [0.5, 0.9], p4 ∈ P4 = [0.4, 0.8], and p5 ∈
P5 = [0.4, 0.85]. The system reliability ranges in the inter-
val [0.3, 0.97], so its initial uncertainty is 0.67.

We use the elicitation procedure to refine the state of know-
ledge over pi (i ∈ {1, ..., 5}) via a sequence of queries on
the elemental reliabilities. The objective is to reduce the
system reliability uncertainty up to 0.05 (i.e., s0 = 0.05),
after which we stop asking questions.

To evaluate the efficiency of our procedure, we compare its
performance to two basic strategies :

1. a random strategy that compares at each stage the re-
liability of component i, selected at random inN , with
some random α ∈ Pi. For the results to be significant,
the performance of the strategy at each iteration is ave-
raged over a high number (herein 1000) of runs.

2. a baseline strategy that asks at each stage about the
most uncertain component, and the query bound is
the midpoint of the largest interval (this strategy was
referred to as the “halve largest Gap Strategy” in
the context of preference elicitation (Boutilier et al.,
2006)) :

Q∗Baseline =

(
i∗,

Xi∗ +Xi∗

2

)
where :

i∗ = arg max
i∈N

UXi .
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FIGURE 3 – UR reduction using different selection strate-
gies.

We implemented the elicitation procedure described in Sec-
tion 2.3 assuming the true values to be the following :

p∗1 = 0.6, p∗2 = 0.7, p∗3 = 0.65, p∗4 = 0.7, p∗5 = 0.78.
Figure 3 shows the performance in terms of uncertainty re-
duction in R of our four strategies. The Bayesian slightly
outperforms the baseline and the maximin strategies, but
remains comparable to them, while all of them do much
better than the random elicitation. In general, it takes twice
the number of queries to the random strategy to reach the
results of the other strategies (e.g., to divide uncertainty by
half, it requires 10 questions for the random strategy, and
about 5 for the others).

However, the performances of the Bayesian, maximin and
baseline strategies highly depend on the initial situations.
Figure 4 compares our previous experiment with another
situation where the initial state of knowledge is very poor,
i.e., a situation of near ignorance where Pi = [0.1, 0.9] for
all i ∈ N . Results for both scenarios differentiated by the
color and the line style (blue continuous lines and black
dashed lines for the first and the second scenarios, respec-
tively). The most notable difference between the two sce-
narios concerns the maximin strategy. Indeed, its perfor-
mance in the second scenario significantly departs from the
non-random strategies (to which it was very close in the
first scenario). The maximin strategy is in this case proba-
bly too cautious, missing potentially good opportunities to
reduce the uncertainty.
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FIGURE 4 – Sensitivity of the performance of the selection
strategies to the initial state of knowledge.

The good results of the baseline strategy for the bridge sys-
tem are mainly due to the fact that every component is im-
portant in the system, hence gaining knowledge on any one
of them reduces uncertainty in similar ways. This is not
always true : consider a simple series parallel system com-
posed of four independent and non-identical components
(Fig. 5). The system reliability is :

R = p1p2p3p4+p1p4+p2p4+p3p4−p1p3p4−p2p3p4−p1p2p4.

Let the initial state of knowledge on the elementary reliabi-
lities be the following : p1 ∈ [0.01, 0.99], p2 ∈ [0.01, 0.99],
p3 ∈ [0.97, 0.99], p4 ∈ [0.7, 0.9], and the true values be :
p1 = 0.6, p2 = 0.7, p3 = 0.98, p4 = 0.8.
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FIGURE 5 – Reliability block diagram of a series parallel
system.

The results of the sequential elicitation procedure using the
baseline strategy can be visualized in Figure 6 which plots
the uncertainty on each component at every stage. A jump
in the curve of component i at stage k + 1 indicates that
the kth optimal query inquired about that component, and
its magnitude corresponds to the uncertainty reduction af-
ter the question has been answered. Note that up to the 6th

question, the strategy inquired about the reliability of com-
ponents 1 and 2, being the most uncertain.
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FIGURE 6 – Sequence of optimal components using the ba-
seline strategy.

However, reducing uncertainty on components 1 and 2 does
not reduce our global uncertainty, as shows Figure7. In this
case the baseline strategy performs actually very bad, not
only compared to the maximin strategy, but also to the ran-
dom up to the 6th query. This is due to the fact that the base-
line strategy does not consider the importance components
have on the overall system reliability.

4.3 REAL CASE SYSTEM

Up to now, we considered simple structures with distinct
(non-redundant) components. However, the majority of real
systems are complex and redundant, i.e., some of their
components are duplicated. Redundancy ensures a backup
in case of failure of one of the critical parts, and aims at
increasing the overall reliability of the system.

When a system has redundancies, its reliability function is
no longer multi linear, and depending on the redundancy
architecture (parallel, triple modular, etc.), it becomes po-
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FIGURE 7 – Maximin, random, and baseline strategies for
the case of series parallel system.

lynomial in the reliability of the redundant components,
while remaining linear in the others. We are concerned here
with the study of this type of systems/functions.

As a case study, we consider a real system used in the Euro-
pean railways traffic management system : the Radio Block
Center system (RBC), whose role is to collect data about
the position of trains and to provide movement authori-
sation (Flammini et al., 2006). Because of the relatively
recent exploitation of the system, sufficient data to estimate
the reliability of the RBC are lacking.

The RBC is composed of 5 different components, each of
them being redundant. The architecture of the RBC is pic-
tured in Figure 8, where the 2/3 symbol means that the
subsystem composed of components 5 works if and only if
at least 2 out of the three components work.
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FIGURE 8 – Reliability block diagram of the RBC.

The reliability function can be written as :

R = (1−(1−p1)3)(1−(1−p2)2)(1−(1−p3)2)(1−(1−p4)2)ptmr;

with

ptmr = (3p25)− 2(p35))(1− (1− p6)2).

We consider the case where some initial evidence sug-
gests that the reliability of the RBC components ranges in
[0.5, 1], and that the true values are : p1 = 0.83, p2 = 0.77,
p3 = 0.8, p4 = 0.55, p5 = 0.72, p6 = 0.78. Results of the
query strategy are plotted in Figure 9. Here, the maximin
strategy outperfoms the Bayesian one, which is consistent
with Remark 1. The baseline does not do well and signifi-
cant uncertainty reduction only occurs when asking about
component 5, which is indeed the most important in this
architecture.
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FIGURE 9 – Performance of the query strategies for the
RBC system.

The computations involved in the elicitation procedure for
this systems, and more complex systems in general, remain
tractable as they only require optimization of polynomials
and can still take advantage of the increasingness of func-
tion Φ. This makes our procedure of practical use in real-
time elicitation involving real experts – this will be the ob-
ject of a forthcoming work concerned with the estimation
of the RBC reliability using expert elicitation.

5 CONCLUSION

In this paper, we addressed the problem of optimal expert
elicitation when the goal is to reduce interval uncertainty.
We described different optimal querying strategies to deter-
mine the best question to ask at each stage of the procedure,
studied their computational costs, and illustrated their use
in a common estimation problem in reliability analysis.

For the particular problem of interval uncertainty reduc-
tion using local bound queries, the optimal elicitation ap-
proach proves to be effective and computationally tractable,
especially for the maximin approach. We also discussed
some cases, such as monotonic and multi linear functions,
for which these computations are even easier. In future
works, we plan to consider (1) more general uncertainty
models, such as belief functions (Shafer, 1976) or probabi-
lity sets (Augustin et al., 2014) which are particularly ap-
pealing to model, e.g. non-completely reliable experts (al-
lowing for instance to relax the assumption that the expert
is an oracle) and (2) other types of queries formats and ans-
wers, such as comparative assessments.

The strategies we described in this paper are myopic. Such
strategies offer natural advantages (any-time stop, compu-
tational easiness), yet may select a sequence of questions
that are globally sub-optimal, despite being locally optimal.
A natural extension of this work is then to address the se-
quential approach for selecting the optimal set of queries to
ask, and compare it with the myopic method. Clearly, this
includes dealing with a computationally challenging pro-

blem, given the multistage nature of the optimization task,
as well as some potential difficulties when choosing the va-
lues of strategies (e.g., the over-cautious nature of maxi-
min could lead to strategies with very low average perfor-
mances).
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