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Abstract

We are concerned with obtaining novel concen-
tration inequalities for the missing mass, i.e. the
total probability mass of the outcomes not ob-
served in the sample. We not only derive - for
the first time - distribution-free Bernstein-like
deviation bounds with sublinear exponents in de-
viation size for missing mass, but also improve
the results of McAllester and Ortiz (2003) and
Berend and Kontorovich (2013, 2012) for small
deviations which is the most interesting case in
learning theory. It is known that the majority of
standard inequalities cannot be directly used to
analyze heterogeneous sums i.e. sums whose
terms have large difference in magnitude. Our
generic and intuitive approach shows that the
heterogeneity issue introduced in McAllester and
Ortiz (2003) is resolvable at least in the case of
missing mass via regulating the terms using our
novel thresholding technique.

1 INTRODUCTION

Missing mass is the total probability associated to the
outcomes that have not been seen in the sample which is
one of the important quantities in machine learning and
statistics. It connects density estimates obtained from a
given sample to the population for discrete distributions:
the less the missing mass, the more useful the information
that can be extracted from the dataset. Roughly speaking,
the more the missing mass is the less we can discover about
the true unknown underlying distribution which would im-
ply the less we can statistically generalize to the whole
population. In other words, missing mass measures how
representative a given dataset is assuming that it has been
sampled according to the true distribution.

Often, one is interested in understanding the behaviour
of the missing mass as a random variable. One of the

important approaches in such studies involves bounding
the fluctuations of the random variable around a certain
quantity namely its mean. Concentration inequalities are
powerful tools for performing analysis of this type. Let X
be any non-negative real-valued random variable with finite
mean. The goal is to establish for any ε > 0, probability
bounds of the form

P(X − E[X] ≤ −ε) ≤ exp(−ηl(ε)),
P(X − E[X] ≥ ε) ≤ exp(−ηu(ε)), (1)

where ηl(ε) and ηu(ε) are some non-decreasing functions
of ε and where it is desirable to find the largest such func-
tions for variable X and for the ‘target’ interval of ε. These
bounds are commonly called lower and upper deviations
bounds respectively. In most practical scenarios, we are in
a non-asymptotic setting where we have access to a sam-
ple X1, ..., Xn and we would like to derive concentration
inequalities that explicitly describe dependence on sample
size n. Namely, we would like to obtain bounds of the form

P(X − E[X] ≤ −ε) ≤ exp(−ηl(ε, n)),

P(X − E[X] ≥ ε) ≤ exp(−ηu(ε, n)), (2)

where ηl(ε, n) and ηu(ε, n) are both non-decreasing func-
tions of ε and n. Many of such bounds are distribution-free
i.e. they hold irrespective of the underlying distribution.

McAllester and Schapire (2000) established concentration
inequalities for the missing mass for the first time. A
follow-up work by McAllester and Ortiz (2003) pointed out
inadequacy of standard inequalities, developed a thermo-
dynamical viewpoint for addressing this issue and sharp-
ened these bounds. Berend and Kontorovich (2013) fur-
ther refined the bounds via arguments similar to Kearns-
Saul inequality (Kearns and Saul (1998)) and logarith-
mic Sobolev inequality (Boucheron et al. (2013)). These
previous works, however, not only involve overly specific
approaches to concentration and handling heterogeneity
issue but also do not yield sharp bounds for small devia-
tions which is the most interesting case in learning theory.

In this paper, we shall derive distribution-free concentra-
tion inequalities for missing mass in a novel way. The



primary objective of our approach is to introduce a no-
tion of heterogeneity control which allows us to regulate
the magnitude of bins in histogram of the discrete distri-
bution being analyzed. This mechanism in turn enables us
to control the behaviour of central quantities such as the
variance or martingle differences of the random variable in
question. These are the main quantities that appear in stan-
dard concentration inequalities such as Bernstein, Bennett
and McDiarmid just to name a few. Consequently, instead
of discovering a new method for bounding fluctuations of
each random variable of interest, we will be able to directly
apply standard inequalities to obtain probabilistic bounds
on many discrete random variables including missing mass.

The rest of the paper is structured as follows. Section 2 con-
tains the background information and introduces the nota-
tions. Section 3 outlines motivations and the main con-
tributions. In Section 4, we explain negative dependence,
information monotonicity and develop a few fundamental
tools whereas Section 5 presents the proofs of our upper
and lower deviation bounds based on these tools. Finally,
Section 6 concludes the paper and compares our bounds
with existing results for small deviations.

2 PRELIMINARIES

In this section, we will provide definitions, notations and
and other background material.
Consider P : I → [0, 1] to be a fixed but unknown discrete
distribution on some finite or countable non-empty set I
with |I| = N . Let {wi : i ∈ I} be the probability (or
frequency) of drawing the i-th outcome. Moreover, sup-
pose that we observe an i.i.d. sample {Xj}nj=1 from this
distribution with n being the sample size. Now, missing
mass is defined as the total probability mass corresponding
to the outcomes that are not present in our sample. Namely,
missing mass is a random variable that can be expressed as:

Y :=
∑
i∈I

wiYi, (3)

where we define each {Yi : i ∈ I} to be a Bernoulli
variable that takes on 0 if the i-th outcome exists in the
sample and 1 otherwise. Namely, we have

Yi = 1[(X1 6=i)∧(X2 6=i)∧···∧(Xn 6=i)]. (4)

We assume that for all i ∈ I, wi > 0 and
∑
i∈I wi = 1.

Denote P (Yi = 1) = qi and P (Yi = 0) = 1 − qi and let
us suppose that Yis are independent: as we will see later in
this section, such an assumption will not impose a burden
on our proof structure and flow. Hence, we will have that
qi = E[Yi] = (1 − wi)

n ≤ e−nwi where qi ∈ (0, 1).
Namely, defining f : (1, n) → (e−n, 1

e ) ⊂ (0, 1) where
f(θ) = e−θ with θ ∈ Df and taking wi > θ

n amounts to
qi(wi) ≤ f(θ). This provides a basis for our ‘thresholding’
technique that we will employ in our proof.

Choosing the representation (3) for missing mass, one has

E[Y ]I =
∑
i∈I

wiqi =
∑
i∈I

wi(1− wi)n, (5)

V [Y ]I =
∑
i∈I

w2
i VAR [Yi], (6)

σ2
I :=

∑
i∈I

wiVAR [Yi], (7)

where we have introduced the weighted variance notation
σ2 and where each quantity is attached to a set over which
it is defined. Note that VAR [Yi] is the individual variance
corresponding to Yi which is defined as

VAR [Yi] = qi(1− qi) = (1− wi)n
(
1− (1− wi)n

)
. (8)

One can define the above quantities not just over the set I
but on some (proper) subset of it that may depend on or be
described by some variable(s) of interest. For instance, in
our proofs the variable θ may be responsible for choosing
Iθ ⊆ I over which the above quantities will be evaluated.
For lower deviation and upper deviation, we find it conve-
nient to refer to the associated set by L and U respectively.
Likewise, we will use subscripts l and u to refer to ob-
jects that characterize lower deviation and upper deviation
respectively. Also, we use the notation Y ij = Yi, ..., Yj
to refer to sequence of variables whose index starts at i-th
variable and ends at j-th variable. Finally, other notation or
definitions may be introduced within the body of the proof
when required.

We will encounter Lambert W -function - also known as
product logarithm function - in this paper which describes
the inverse relation of f(x) = xex and which cannot be
expressed in terms of elementary functions. This func-
tion is double-valued when x ∈ R. However, it becomes
invertible in restricted domain. The lower branch of it is
denoted by W−1(.), which is the only branch that will
prove beneficial in this paper. The reader is advised to refer
to Corless et al. (1996) for a detailed treatment.

Throughout the paper, we shall use the convention that
capital letters refer to random variables whereas lower case
letters correspond to realizations thereof.

We will utilize Bernstein’s inequality in our derivation.
Suitable representations of this result are outlined below
without the proof.

Theorem. [Bernstein] Let Z1, ..., ZN be independent
zero-mean random variables such that one has |Zi| ≤ α
almost surely for all i. Then, using Bernstein’s inequality
(Bernstein (1924)) one obtains for all ε > 0:

P(

N∑
i=1

Zi > ε) ≤ exp
(
− ε2

2(V + 1
3αε)

)
, (9)

where V =
∑N
i=1 E[Zi

2].



Now, consider the sample mean Z̄ = n−1
∑n
i=1 Zi

and let σ̄2 be the sample variance, namely
σ̄2 := n−1

∑n
i=1 VAR [Zi] = n−1

∑n
i=1 E[Zi

2]. So,
using (9) with n · ε in the role of ε, we get

P(Z̄ > ε) ≤ exp
(
− nε2

2(σ̄2 + 1
3αε)

)
. (10)

If Z1, ..., Zn are, moreover, not just independent but also
identically distributed, then σ̄2 is equal to σ2 i.e. the
variance of each Zi. The latter presentation makes explicit:
(1) the exponential decay with n; (2) the fact that for σ̄2 ≤ ε
we get a tail probability with exponent of order nε rather
than nε2 (Lugosi (2003); Boucheron et al. (2013)) which
has the potential to yield stronger bounds for small ε.

3 MOTIVATIONS AND MAIN RESULTS

In this section, we motivate this work by pointing out the
heterogeneity challenge and how we approach it. Our
bounds also improve the functional form of the exponent,
which is of independent significance. In the final part of
this section, we summarize our main results.

3.1 The Challenge and the Remedy

McAllester and Ortiz (2003) point out that for highly
heterogeneous sums of the form (3), the standard form of
Bernstein’s inequality (9) does not lead to concentration in-
equalities of form (10): at least for the upper deviation of
the missing mass, (9) does not imply any non-trivial bounds
of the form (2). The reason is basically the fact that the wi
can vary wildly: some can be of order O(1/n), other may
be constants independent of n. For similar reasons, other
standard inequalities such as Bennett, Angluin-Valiant and
Hoeffding cannot be used to get bounds on the missing
mass of the form (2) either (McAllester and Ortiz (2003)).

Having pointed out the deficiency of these standard in-
equalities, McAllester and Ortiz (2003) succeed in giving
bounds of the form (2) on the missing mass, for a func-
tion η(ε, n) ∝ nε2, both with a direct argument and us-
ing the Kearns-Saul inequality (Kearns and Saul (1998)).
Recently, the constants appearing in the bounds were
refined by Berend and Kontorovich (2013). The bounds
proven by McAllester and Ortiz (2003) and Berend and
Kontorovich (2013) are qualitatively similar to Hoeffding
bounds for i.i.d. random variables: they do not improve the
functional form from nε2 to nε for small variances.

This leaves open the question whether it is also possi-
ble to derive bounds which are more reminiscent of the
Bernstein bound for i.i.d. random variables (10) which
does exploit variance. In this paper, we show that the
answer is a qualified yes: we give bounds that depend on
weighted variance σ2 defined in (7) rather than sample
variance σ̄2 as in (10) which is tight exactly in the

important case when σ2 is small, and in which the
denominator in (10) is specified by a factor depending on
ε; in the special case of the missing mass, this factor turns
out to be logarithmic in ε and a free parameter γ as it will
become clear later.

We derive - using Bernstein’s inequality - novel bounds
on missing mass that take into account explicit variance
information with more accurate scaling and demonstrate
their superiority for small deviations.

3.2 Main Results

Consider the following functions

γε = −2W−1

(
− ε

2
√
e

)
, (11)

c(ε) =
3(γε − 1)

5γ2
ε

. (12)

Let Y denote the missing mass, n the sample size and ε the
deviation size.

Theorem 1. For any 0 < ε < 1 and any n ≥ dγεe − 1, we
obtain the following upper deviation bound

P(Y − E[Y ] ≥ ε) ≤ e−c(ε)·nε. (13)

Theorem 2. For any 0 < ε < 1 and any n ≥ dγεe − 1, we
obtain the following lower deviation bound

P(Y − E[Y ] ≤ −ε) ≤ e−c(ε)·nε. (14)

Corollary 1. For any 0 < ε < 1 and any n ≥ dγεe − 1,
using union bound we obtain the following deviation bound

P(|Y − E[Y ]| ≥ ε) ≤ 2 e−c(ε)·nε. (15)

The proof of the above theorems is provided in Section 5.
However, let us develop a few tools in Section 4 which will
be used later in our proofs.

4 NEGATIVE DEPENDENCE AND
INFORMATION MONOTONICITY

Probabilistic analysis of most random variables and specif-
ically the derivation of the majority of probabilistic bounds
rely on independence assumption between variables which
offers considerable simplification and convenience. Many
random variables including the missing mass, however,
consist of random components that are not independent.

Fortunately, even in cases where independence does not
hold, one can still use some standard tools and methods
provided variables are dependent in specific ways. The
following notions of dependence are among the common
ways that prove useful in these settings: negative
association and negative regression.



4.1 Negative Dependence and Chernoff’s Exponential
Moment Method

Our proof involves variables with a specific type of
dependence known as negative association. One can
infer concentration of sums of negatively associated ran-
dom variables from the concentration of sums of their
independent copies in certain situations. In exponential
moment method, this property allows us to treat such
variables as independent in the context of probability
inequalities as we shall elaborate later in this section.

In the sequel, we present negative association and
regression and supply tools that will be essential in proofs.

Negative Association: Any real-valued random variables
X1 and X2 are negatively associated if

E[X1X2] ≤ E[X1] · E[X2]. (16)

More generally, a set of random variables X1, ..., Xm are
negatively associated if for any disjoint subsets A and B of
the index set {1, ...,m}, we have

E[XiXj ] ≤ E[Xi] · E[Xj ] for i ∈ A, j ∈ B. (17)

Stochastic Domination: Assume that X and Y are real-
valued random variables. Then, X is said to stochastically
dominate Y if for all a in the range of X and Y we have

P (X ≥ a) ≥ P (Y ≥ a). (18)

We use the notation X � Y to reflect (18) in short.

Stochastic Monotonicity: A random variable Y is
stochastically non-decreasing in random variable X if

x1 ≤ x2 =⇒ P (Y |X = x1) ≤ P (Y |X = x2). (19)

Similarly, Y is stochastically non-increasing in X if

x1 ≤ x2 =⇒ P (Y |X = x1) ≥ P (Y |X = x2). (20)

The notations (Y |X = x1) � (Y |X = x2) and
(Y |X = x1) � (Y |X = x2) represent the above
definitions using the notion of stochastic domination. Also,
we will use shorthands Y ↑ X and Y ↓ X to refer to the
relations described by (19) and (20) respectively.

Negative Regression: Random variables X and Y have
negative regression dependence relation if X ↓ Y .

Dubhashi and Ranjan (1998) as well as Joag-Dev and
Proschan (1983) summarize numerous notable properties
of negative association and negative regression. Specifi-
cally, the former provides a proposition that indicates that
Hoeffding-Chernoff bounds apply to sums of negatively as-
sociated random variables. Further, McAllester and Ortiz
(2003) generalize these observations to essentially any con-
centration result derived based on the exponential moment

method by drawing a connection between deviation proba-
bility of a discrete random variable and Chernoff’s entropy
of a related distribution.

We provide a self-standing account by presenting the proof
for some of these existing results as well as developing
several generic tools that are applicable beyond missing
mass problem.
Lemma 1. [Binary Stochastic Monotonicity] Let Y be
a binary random variable (Bernoulli) and let X take on
values in a totally ordered set X . Then, one has

Y ↓ X =⇒ X ↓ Y. (21)

Proof. For any x, we have

P (Y = 1| X ≤ x) ≥ inf
a≤x

P (Y = 1| X = a)

≥ sup
a>x

P (Y = 1| X = a)

≥ P (Y = 1| X > x). (22)

The above argument implies that random variables Y
and 1X>x are negatively associated and since the
expression P (X > x| Y = 1) ≤ P (X > x| Y = 0)
holds for all x ∈ X , it follows that X ↓ Y .

Lemma 2. [Independent Binary Negative Regression]
Let X1, ..., Xm be negatively associated random variables
and Y1, ..., Ym be binary random variables (Bernoulli) such
that either Yi ↓ Xi or Yi ↑ Xi holds for all i ∈ {1, ...,m}.
Then Y1, ..., Ym are negatively associated.

Proof. For any disjoint subsets A and B of {1, ...,m},
taking i ∈ A and j ∈ B we have

E[YiYj ] = E
[
E[YiYj |X1, ..., Xm]

]
(23)

= E
[
E[Yi|Xi] · E[Yj |Xj ]

]
(24)

≤ E
[
E[Yi|Xi]

]
· E
[
E[Yj |Xj ]

]
(25)

= E[Yi] · E[Yj ]. (26)

Here, (24) holds since each Yi only depends on Xi.
Inequality (25) follows because Xi and Xj are negatively
associated and we have E[Yi|Xi] = P (Yi|Xi).

Lemma 3. [Chernoff] For any real-valued random vari-
able X with finite mean E[X] and for any x > 0, we have:

DP (X,x) ≤ exp(−S(X,x)), (27)
S(X,x) = sup

λ
{λx− ln(Z(X,λ))}, (28)

Z(X,λ) = E[eλX ]. (29)

The lemma follows from the observation that for λ ≥ 0, we
have the following

P (X ≥ x) = P (eλX ≥ eλx) ≤ inf
λ

E[eλX ]

eλx
. (30)

This approach is known as exponential moment method
(Chernoff (1952)) because of the inequality in (30).



Lemma 4. [Negative Association] In the exponential
moment method, concentration of sums of negatively
associated random variables can be deduced from the
concentration of sums of their independent copies.

Proof. Let X1, ..., Xm be any set of negatively
associated variables. Let X ′1, ..., X

′
m be independent

shadow variables, i.e., independent variables such that each
X ′i is distributed identically to Xi. Let X =

∑m
i Xi and

X ′ =
∑m
i X

′
i . For any set of negatively associated random

variables, one has S(X, ε) ≥ S(X ′, ε) since:

Z(X,λ) = E[eλX ] = E[

m∏
i

eλXi ]

≤
m∏
i

E[eλXi ] = E[eλX
′
] = Z(X ′, λ). (31)

The lemma is due to McAllester and Ortiz (2003) which
follows from definition of entropy function S given by (28).

This lemma is very helpful in the context of large deviation
bounds: it implies that one can treat negatively associated
variables as if they were independent (McAllester and Ortiz
(2003); Dubhashi and Ranjan (1998)).

Lemma 5. [Balls and Bins] Let S be any sample
comprising n items drawn i.i.d. from a fixed distribution
on integers N = {1, ..., N} (bins). Define Ci to be the
number of times that integer i occurs in S. The random
variables C1, ..., CN are negatively associated.

Proof. Let f and g be non-decreasing and non-increasing
functions respectively. We have(

f(x)− f(y)
)(
g(x)− g(y)

)
≤ 0. (32)

Further, assume that X is a real-valued random variable
and Y is an independent shadow variable corresponding to
X . Exploiting (32), we obtain

E[f(X)g(X)] ≤ E[f(X)] · E[g(X)], (33)

which implies that f(X) and g(X) are negatively
associated. Inequality (33) is an instance of Chebychev’s
fundamental association inequality.

Now, suppose without loss of generality that N = 2. Take
X ∈ [0, n], and consider the following functions{

f(X) = X,
g(X) = n−X, (34)

where n = Ci + Cj is the total counts. Since f and
g are non-decreasing and non-increasing functions of X ,
choosing X = f(Ci) = Ci we have for all i, j ∈ N that

E[Ci · Cj ] ≤ E[Ci] · E[Cj ], (35)

which concludes the proof for N = 2. Now, tak-
ing f(Ci) = Ci and g(Ci) = n −

∑
j 6=i Cj where

n =
∑N
k=1 Ck, for N > 2 the same argument implies

that Ci and Cj are negatively associated for all i ∈ N and
j ∈ N \ i. That is to say, any increase in Ci will cause
a decrease in some or all of Cj variables with j 6= i and
vice versa. It is easy to verify that the same is true for any
disjoint subsets of the set {C1, ..., CN}.

Lemma 6. [Monotonicity] For any negatively
associated random variables X1, ..., Xm and any
non-decreasing functions f1, ..., fm, we have that
f1(X1), ..., fm(Xm) are negatively associated. The same
holds if the functions f1, ..., fm were non-increasing.

Remark: The proof is in the same spirit as that of associa-
tion inequality (33) and motivated by composition rules for
monotonic functions that one can repeatedly apply to (32).

Lemma 7. [Union] The union of independent sets of
negatively associated random variables yields a set of
negatively associated random variables.

Suppose that X and Y are independent vectors each of
which comprising a negatively associated set. Then, the
concatenated vector [X,Y ] is negatively associated.

Proof. Let [X1, X2] and [Y1, Y2] be some arbitrary
partitions of X and Y respectively and assume that f and
g are non-decreasing functions. Then, one has

E[f(X1, Y1) · g(X2, Y2)] =

E
[
E[f(X1, Y1) · g(X2, Y2) | Y1, Y2]

]
≤

E[E[f(X1, Y1) | Y1] · E[g(X2, Y2) | Y2]] ≤
E[E[f(X1, Y1) | Y1]] · E[E[g(X2, Y2) | Y2]] =

E[f(X1, Y1)] · E[g(X2, Y2)]. (36)

The first inequality is due to independence of [X1, X2]
from [Y1, Y2] which results in negative association being
preserved under conditioning and the second inequality
follows because [Y1, Y2] are negatively associated (Joag-
Dev and Proschan (1983)). The same holds if f and g were
non-increasing functions.

Lemma 8. [Splitting] Splitting an arbitrary subset of bins
of any fixed discrete distribution yields a set of negatively
associated random bins.

Proof. Let w = (w1, ..., wm) be a discrete distribution and
W = {W1, ...,Wm} be the associated set of random bins.
Assume that wi is split into k binsWS

i = {Wi1, ...,Wik}
such that wi =

∑k
j=1Wij . Then, by Lemma 5 members

of split setWS
i are negatively associated. Clearly, the same

holds for all 1 ≤ i ≤ m as well as any other subset of set
W . Moreover, for all 1 ≤ i ≤ m the setsWS

i andW \Wi

are negatively associated by Lemma 5 and Lemma 7.



Lemma 9. [Absorption] Absorbing any subset of bins of
a discrete distribution yields negatively associated bins.

Proof. Let w = (w1, ..., wN ) be a discrete distribution
and let W = {W1, ...,WN} be the associated set of
random bins. Assume without loss of generality that
WA = {WA

1 , ...,W
A
N−1} is the absorption-induced

set of random bins where wN is absorbed to produce
wA = (wA1 , ..., w

A
N−1) and where wAi = wi + wN

N−1
for i = 1, ..., N − 1. So, wN is discarded and we have∑N−1
i=1 WA

i = 1 − wN . The rest of the proof concerns
applying Lemma 5 to the absorb setWA. The same holds
if we absorb wN to a subset ofW \WN .

4.2 Negative Dependence and the Missing Mass

For missing mass, the variables Wi = Ci
n are negatively

associated owing to Lemma 5 and linearity of expectation.
Also, one has ∀i : Yi ↓ Wi. So, by Lemma 1 we infer that
∀i : Wi ↓ Yi. Now, Y1, ..., YN are negatively associated
because they are a set of independent binary variables with
negative regression dependence (Lemma 2). Thus, con-
centration variables Zi = wiYi − E[wiYi] := ζ(Yi) are
negatively associated by Lemma 6 since we have

ζ(Yi) =

{
−wiqi if Yi = 0,
wi(1− qi) if Yi = 1.

(37)

For all i, ζ is a non-decreasing function of Yi. Likewise,
concentration variables −Zi are negatively associated.

4.3 Information Monotonicity and Partitioning

Lemma 10. [Information Monotonicity] Let
p = (p1, ..., pN ) be a discrete distribution on
X = (x1, .., xN ) such that for 1 ≤ i ≤ N we have
P (X = xi) = pi. Suppose we partition X into m ≤ N
non-empty disjoint groups G1, ..., Gm, namely

X = ∪ Gi,
∀i 6= j : Gi ∩Gj = ∅. (38)

This is called coarse binning since it generates a new dis-
tribution with groups Gi whose dimensionality is less than
that of the original distribution. Note that once the distribu-
tion is transformed, considering any outcome xi from the
original distribution we will only have access to its group
membership information; for instance, we can observe that
it belongs to Gj but we will not be able to recover pi.

Let us denote the induced distribution over the partition
G = (G1, ..., Gm) by pG = (pG1 , ..., p

G
m). Clearly, we have

pGi = P (Gi) =
∑
j∈Gi

P (xj). (39)

Now, consider the f -divergence Df (pG|| qG) between
induced probability distributions pG and qG. Information

monotonicity states that information is lost as we partition
elements of p and q into groups to produce pG and qG

respectively. Namely, for any f -divergence one has

Df (pG|| qG) ≤ Df (p || q), (40)

which is due to Csiszár (Csiszár (1977, 2008); Amari
(2009)). This inequality is tight if and only if for any out-
come xi and partition Gj , we have p(xi|Gj) = q(xi|Gj).

Lemma 11. [Partitioning] In the exponential moment
method, one can establish a deviation bound for any dis-
crete random variable X by invoking Chernoff’s method
on the associated discrete partition random variable XG.

Formally, assume X and Xλ are discrete random variables
defined on the setX endowed with probability distributions
p and pλ respectively. Further, suppose that XG and XG

λ

are discrete variables on a partition set XG endowed with
pG and pGλ that are obtained from p and pλ by partitioning
using some partition G. Then, we have

∀x > 0 : DP (X,x) ≤ exp(−S(XG, x)). (41)

Proof. Let λ(x) be the optimal λ in (28). Then, we have

S(X,x) = xλ(x)− ln(Z(X,λ(x)))

= DKL(pλ(x)|| p)
≥ DKL(pGλ(x)|| p

G)

= S(XG, x), (42)

where we have introduced the λ-induced distribution

Pλ(X = x) =
eλx

Z(X,λ)
P (X = x). (43)

The inequality step in (42) follows from (40) and the
observation thatDKL is an instance of f -divergence where
f(v) = v ln(v) with v ≥ 0.

5 PROOF OF THE MAIN RESULTS

The central idea of the proof is to regulate the terms in
the sum given by (3) via controlling the magnitude of bins
of the distribution using operations that preserve negative
association. This mechanism will help defeat the hetero-
geneity issue leading to the failure of standard probability
inequalities described by McAllester and Ortiz (2003).

5.1 Proof of Theorem 1: Upper Deviation Bound

We consider the thresholds τ = θ
n and τ ′ = 2θ

n and reduce
the problem to one in which all bins that are larger than
τ are eliminated, where θ ∈ R will depend on the target
deviation size ε.

The reduction is performed by splitting the bins that are
larger than τ and then absorbing the bins that are smaller



than τ . This is followed by choosing a threshold that yields
the sharpest bound for the choice of ε. It turns out that the
optimal threshold will too be a function of ε.

Let Iτ ⊆ I denote the subset of bins that are at most
as large as τ , Iθ the subset of bins whose magnitude is
between τ and τ ′, Iτ ′ the subset of bins larger than τ ′

and I ′θ and I ′τ ′ the set of bins that we obtain after splitting
members of Iθ and Iτ ′ respectively.

Now, for each i ∈ I \Iτ = {Iθ ∪Iτ ′} and for some k ∈ N
that depends on i (but we suppress that notation below), we
will have that k ·τ ≤ wi < (k+1) ·τ . For all such i, we de-
fine extra independent Bernoulli random variables Yij with
j ∈ Ji := {1, . . . , k} and their associated bins wij . For
j ∈ {1, . . . , k − 1}, wij = τ and wik = wi − (k − 1) · τ .
In this way, all bins that are larger than τ are split up into
k bins, each of which is in-between τ and τ ′; more pre-
cisely, the first k − 1 are exactly τ and the last one may
be larger. Therefore, we consider the split random variable
Y ′ =

∑
i∈Iτ wiYi +

∑
i∈{I′

τ′∪I
′
θ}
∑
j∈Ji wijYij and the

set U ′ = {i| wi < τ ′} = {Iτ ∪ I ′θ ∪ I ′τ ′}. Furthermore,
we introduce the random variable Y ′′ =

∑
i∈U ′′ wiYi on

the absorption-induced set U ′′ = {i| τ ≤ wi < τ ′}.
The set U ′′ is generated from U ′ as follows: we take the
largest element j ∈ U ′ with wj < τ , update wl using
wl ← wl +

wj
|U ′|−1 for {l ∈ U ′ : l 6= j, wl < τ} and

discard wj . Repeating this procedure gives a set of bins
whose sizes are in-between τ and τ ′ plus a single bin of size
smaller than τ ; absorbing the latter into one of the members
of the former with size τ yields U ′′.

Now, by choosing θ such that f(θ) = e−θ = ε
γ and

θ = f−1( εγ ) = ln(γε ) for any 0 < ε < 1 and eε < γ < enε
as generic domain for γ, we derive the upper deviation
bound for missing mass as follows

P(Y − E[Y ] ≥ ε) ≤ (44)
P(Y ′ − E[Y ] ≥ ε) = (45)
P(Y ′ − E[Y ′] + (E[Y ′]− E[Y ]) ≥ ε) ≤ (46)
P(Y ′ − E[Y ′] + f(θ) ≥ ε) = (47)

P
(
Y ′ − E[Y ′] ≥ (

γ − 1

γ
)ε
)

= (48)

exp

− (γ−1
γ )

2
ε2

2(VU ′′ + αu
3 · (

γ−1
γ ) · ε)

 ≤ (49)

exp

− (γ−1
γ )

2
ε2

2( θn · ε+ 2θ
3n · (

γ−1
γ ) · ε)

 ≤ (50)

inf
γ

{
exp

(
−3nε(γ − 1)2

10γ2 ln(γε )

)}
= (51)

e−c(ε)·nε. (52)

Clearly, we will have that τ∗ = θ∗

n where θ∗ = ln(γεε ).

Inequality (45) follows because the splitting procedure can-
not decrease deviation probability of missing mass.

Formally, assume without loss of generality that I \ Iτ
has only one element corresponding to Y1, J1 = {1, 2}
and k1 = 1 i.e. w1 is split into two parts. Then,
deviation probability of Y can be thought of as the total
probability mass associated to independent Bernoulli
variables Y1, ..., YN whose weighted sum is bounded
below by some tail t > 0. Hence, we have

P(Y ≥ t) =
∑

Y 1N ; Y≥t

P (Y1, ..., YN )

=
∑

Y 1N ; Y̊≥t

R(Y1) ·
N∏
i=2

R(Yi)

+
∑

Y 1N ; Y̊ <t; Y≥t

R(Y1) ·
N∏
i=2

R(Yi)

=
∑

Y 1N ; Y̊≥t

R(Y1) ·
N∏
i=2

R(Yi)

+
∑

Y 1N ; Y̊ <t; Y≥t, Y1=1

R(Y1) ·
N∏
i=2

R(Yi)

=
∑

Y 2N ; Y̊≥t

N∏
i=2

R(Yi)

+
∑

Y 2N ; Y̊ <t; Y≥t

q1 ·
N∏
i=2

R(Yi), (53)

where Y̊ =
∑
i≥2 wiYi and R(Yi) = qi if Yi = 1 and

R(Yi) = 1 − qi otherwise. Likewise, one can express the
upper deviation probability of Y ′ as follows

P(Y ′ ≥ t) =
∑

Y1N ; Y̊≥t

R(Y1) ·
N∏
i=2

R(Yi)

+
∑

Y11,Y12,Y 2N ; Y̊ <t; Y ′≥t

(
R(Y11) ·R(Y12)

) N∏
i=2

R(Yi)

=
∑

Y2N ; Y̊≥t

N∏
i=2

R(Yi)

+
∑

Y11,Y12,Y 2N ; Y̊ <t; Y ′≥t

(
R(Y11) ·R(Y12)

) N∏
i=2

R(Yi)

≥
∑

Y 2N ; Y̊≥t

N∏
i=2

R(Yi)

+
∑

Y 2N ; Y̊ <t; Y ′≥t

(q11 · q12)

N∏
i=2

R(Yi), (54)



where R(Yij) = qij if Yij = 1 and R(Yij) = 1 − qij
otherwise. Thus, combining (53) and (54) we have

P(Y ′ ≥ t)− P(Y ≥ t) ≥∑
Y 2N ; Y̊ <t; Y ′≥t; Y≥t

(q11 · q12 − q1)

N∏
i=2

R(Yi) =

∑
Y 2N ; Y̊ <t; Y ′≥t

(q11 · q12 − q1)

N∏
i=2

R(Yi). (55)

To complete the proof for (45), we require the expression
for the difference between deviation probabilities in (55) to
be non-negative for all t > 0 which holds if q1 ≤ q11 · q12.
For the missing mass, this condition holds. Without loss of
generality, assume that wi is split into two terms; namely,
we have wi = wij + wij′ . Then, we can check the above
condition as follows

qi = (1− wi)n ≤ (1− wij)n · (1− wij′)n

=
(

1− (wij + wij′)︸ ︷︷ ︸
wi

+wij · wij′︸ ︷︷ ︸
≥0

)n
. (56)

One can verify using induction that (56) holds also for
cases where the split operation produces more than two
terms. Now, choosing tail size t = ε+ EY implies (45).

Inequality (47) follows because the gap between the expec-
tations will be negligible. Denoting E[Y ′i ] = q′i, we have

q′i =

 qi if i ∈ Iτ ,
qij if i ∈ {I ′τ ′ ∪ I ′θ},
0 otherwise.

(57)

Namely, we can write

gu(θ) = E[Y ′]− E[Y ] =
∑
i∈I

wi(q
′
i − qi)

=
∑
i∈Iτ

wiqi +
∑

i∈{I′
τ′∪I

′
θ}

∑
j∈Ji

wijqij −
∑
i∈I

wiqi

=
∑

i∈{I′
τ′∪I

′
θ}

∑
j∈Ji

wijqij −
∑

i∈{Iτ′∪Iθ}

wiqi

≤
∑

i∈{I′
τ′∪I

′
θ}

∑
j∈Ji

wijqij

≤
∑

i∈{I′
τ′∪I

′
θ}

∑
j∈Ji

wijf(θ) ≤ f(θ). (58)

The expression in (49) is Bernstein’s inequality applied
to the random variable Zu =

∑
i∈U ′′ Zi relying upon

Lemma 11. Here, the concentration variables are
Zi = wiYi − E[wiYi] with i ∈ U ′′ and we set αu = τ ′.

Let VU ′′ be variance proxy term V in Bernstein’s inequal-
ity as defined in (9) attached to U ′′. The functions f, g :
(0, 1)×N→ (0, 1) with f(x, n) = x(1−x)n(1−(1−x)n)

and g(x, n) = x2(1−x)n(1−(1−x)n) are non-increasing
with respect to x on ( 1

n+1 , 1) and ( 2
n+2 , 1) respectively. We

obtain for 1 < θ < n, an upperbound on VU ′′ as follows:

VU ′′ =
∑

i: wi∈U ′′
w2
i (1− wi)n

(
1− (1− wi)n

)
≤ τ ·

∑
i: wi∈U ′′

wi(1− wi)n
(

1− (1− wi)n
)

= τ · σ2
U ′′

≤ τ ·
∑

i: τ≤wi<τ ′;
∑
i wi=1

wi(1− wi)n

≤ |I(θ,n)|︸ ︷︷ ︸
≤nθ

·
( θ
n

)2 · (1− θ

n

)n
≤ θ

n
· e−θ < θ

n
· ε. (59)

In order to see why (52) holds, consider c(γ, ε) = ε(γ−1)2

γ2 ln( γε )

and let us examine the derivatives as follows

∂c(γ, ε)

∂γ
= −

ε2(γ − 1)(γ − 1− 2 ln (γε ))

γ3 ln2 (γε )
, (60)

∂2c(γ, ε)

∂γ2 =
ε2

γ4 ln3 (γε )

[
(6− 4γ) ln2 (

γ

ε
)+

(γ2 − 6γ + 5) ln (
γ

ε
) + 2(γ − 1)2

]
. (61)

Solving for the first derivative using (60), we obtain

γε = −2W−1

(
− ε

2
√
e

)
. (62)

Inspecting the second derivative given by (61), we can see
that the function c(γ, ε) is concave with respect to γ for
any γ > 2. Recall, moreover, that there are interrelated
restrictions on γ, ε and n in derivation of (51) and (52)
which are collectively expressed as

max{e · ε, 1, 2, γ(1)} < γ < en, n ≥ dγεe − 1. (63)

5.2 Proof of Theorem 2: Lower Deviation Bound

The proof for lower deviation bound proceeds in the same
spirit as section 5.1. The idea is again to reduce the problem
to one in which all bins that are larger than the threshold τ
are eliminated.

We split large bins and then absorb small bins to enable
us shrink the variance while controlling the magnitude of
terms (and consequently the key quantities α and V ) before
applying Bernstein’s inequality.

By choosing θ such that f(θ) = e−θ so that θ = ln(γε ), for
any 0 < ε < 1 with eε < γ < enε being generic domain



for γ we obtain a lower deviation bound as follows

P(Y − E[Y ] ≤ −ε) ≤ (64)
P(Y ′ − E[Y ] ≤ −ε) = (65)
P(Y ′ − E[Y ′] + (E[Y ′]− E[Y ]) ≤ −ε) ≤ (66)
P(Y ′ − E[Y ′]− f(θ) ≤ −ε) = (67)

P
(
Y ′ − E[Y ′] ≤ −(

γ − 1

γ
)ε
)
≤ (68)

≤ exp

− (γ−1
γ )

2
ε2

2(VL′′ + αl
3 · (

γ−1
γ ) · ε)

 ≤ (69)

≤ exp

− (γ−1
γ )

2
ε2

2( θn · ε+ 2θ
3n · (

γ−1
γ ) · ε)

 ≤ (70)

inf
γ

{
exp

(
− 3nε(γ − 1)2

10γ2 ln(γε )

)}
= (71)

e−c(ε)·nε, (72)

where c(ε) and τ∗ are as before and domain restrictions are
determined similar to (63).

The variables Y ′ and Y ′′, and the setsL′ andL′′ are defined
in the same fashion as Section 5.1.

The first inequality is proved in the same way as (45). Now,
we set E[Y ′i ] = q′i such that

q′i =

{
qi if wi < τ ′,
0 otherwise. (73)

Inequality (67) follows because the compensation gap will
remain small since we have

gl(θ) = E[Y ′]− E[Y ] =
∑
i∈I

wi(q
′
i − qi)

=
∑

i:wi<τ ′

wiqi −
∑
i∈I

wiqi = −
∑

i:wi≥τ ′
wiqi

≥ −
∑

i:wi≥τ ′
wif(θ) ≥ −f(θ). (74)

The expression given by (69) is Bernstein’s inequality
applied to random variable Zl =

∑
i∈L′′ Zi where we have

defined Zi = wi(µ−wiYi)−E[wi(µ−wiYi)] with µ being
the upper bound on the value of the wiYi terms.

Further, we choose αl = τ ′. Observe that Zl = −Zu and
µ = αl. Finally, an upperbound on VL′′ can be determined
with arguments identical to that of VU ′′ .

The rest of the proof proceeds in an analogous manner to
the proof of upper deviation bound.

6 CONCLUSIONS

We proposed a new technique for establishing concentra-
tion inequalities and applied it to the missing mass using

Bernstein’s inequality. Along the way, we introduced a
collection of concepts and tools in the intersection of prob-
ability theory and information theory that have the potential
to be advantageous in more general settings.

Recall that Bernstein’s inequality hinges on establishing an
upperbound on Z(X,λ) given by (29) in a particular way.
Clearly, this choice is not unique and one can choose any
other upperbound (e.g. c.f. Lugosi (2003)) and apply the
same technique to derive potentially tight bounds achiev-
able within the framework of exponential moment method.

Our bounds sharpen the leading results for missing mass
in the case of small deviations. These inequalities hold
subject to the mild condition that the sample size is large
enough, namely n ≥ dγεe − 1.

We select the best known bounds in Berend and
Kontorovich (2013) for the comparison. Our lower devi-
ation and upper deviation bounds improve state-of-the-art
for any 0 < ε < 0.021 and any 0 < ε < 0.045 respectively.

Plugging in the definitions, we can see that the
compensation gap can be expressed as a function of ε and
show that the following holds

|g(ε)| ≤
√
e · exp

(
W−1(

−ε
2
√
e

)
)
, (75)

where we have dropped the subscript of gap g. Note that
the gap is negligible for small ε compared to large values
of ε for both (52) and (72). This observation supports the
fact that we obtained sharper bounds for small deviations.

Mathematical analysis of missing mass via concentration
inequalities has various important applications including
density estimation, generalization bounds and handling
missing data just to name a few. Needless to say that any
refinement in bounds or tools developed for the former may
directly contribute to advancement in those applications.
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