
Communication Efficient Coresets for Empirical Loss Minimization

Sashank J. Reddi
Machine Learning Department

Carnegie Mellon University
sjakkamr@cs.cmu.edu

Barnabás Póczos
Machine Learning Department

Carnegie Mellon University
bapoczos@cs.cmu.edu

Alex Smola
Machine Learning Department

Carnegie Mellon University
alex@smola.org

Abstract

In this paper, we study the problem of empirical
loss minimization with l2-regularization in dis-
tributed settings with significant communication
cost. Stochastic gradient descent (SGD) and its
variants are popular techniques for solving these
problems in large-scale applications. However,
the communication cost of these techniques is
usually high, thus leading to considerable per-
formance degradation. We introduce a novel ap-
proach to reduce the communication cost while
retaining good convergence properties. The key
to our approach is the construction of a small
summary of the data, called coreset, at each it-
eration and solve an easy optimization problem
based on the coreset. We present a general frame-
work for analyzing coreset-based optimization
and provide interesting insights into existing al-
gorithms from this perspective. We then propose
a new coreset construction and provide its con-
vergence analysis for a wide class of problems
that include logistic regression and support vec-
tor machines. Preliminary experiments show en-
couraging results for our algorithm on real-world
datasets.

1 INTRODUCTION

Empirical loss minimization is one of the most fundamental
principles in supervised learning. The key idea is to mini-
mize the loss on the training data subject to some regular-
ization on the model that is being learned. More formally,
given the training data P = {(x1, y1), . . . , (xn, yn)} from
a probability distribution on X ×Y , we are interested in the
following generic optimization problem:

min
w
f(w) ≡ λ

2
‖w‖2 +

1

n

n∑
i=1

`(xi, yi, w) (1)

Throughout this paper we assume that ` is convex. Further-
more, we assume that X = Rd and Y = R. Note that the
objective function above is strongly convex (a function f
is strongly convex with modulus λ if f(w) − λ

2 ‖w‖
2 is a

convex function). Problems conforming to Equation (1) in-
clude popular supervised learning algorithms like support
vector machines and regularized logistic regression. For
example, when xi ∈ Rd, yi ∈ {−1, 1} and `(xi, yi, w) =
log(1 + exp(−yiw>xi)) (logistic loss), the optimization
problem in Equation (1) corresponds to regularized logistic
regression. The loss function ` is not necessarily smooth
as in, for example, support vector machines (SVM) where
`(xi, yi, w) = max(0, 1− yiw>xi) (hinge loss).

Several algorithms have been proposed in the literature for
solving optimization problems of the aforementioned form.
We will briefly review a few key approaches in Section 2;
however, the algorithms are either largely synchronous or
communication intensive. For example, one of the popu-
lar approaches for solving such optimization problems is
stochastic subgradient descent. At each iteration of the al-
gorithm, a single training example is chosen at random and
used to determine the subgradient of the objective func-
tion. While such an approach reduces the computation
complexity at each iteration, the communication cost is
prohibitively expensive in distributed environment.

In this paper, we study the problem described in Equa-
tion (1) in the setting where the data is distributed across
nodes and hence, communication is expensive in compari-
son to the computation time. The main theme of this paper
is to reduce communication cost by constructing and opti-
mizing over a small summary of the training data — which
acts as a proxy for the entire data set. Such a summary of
the training points is called a coreset. While this methodol-
ogy has been successfully applied to data clustering prob-
lems like k-means and k-median (we refer the reader to
[4, 5] for a comprehensive survey), it remains largely unex-
plored for supervised learning and optimization problems.
The goal of this paper is to advance the frontier in this di-
rection. In light of the above, the primary contributions of
this paper are as follows:

• We describe a general framework for designing
coreset-based algorithms. This also provides insights
into existing algorithms from the coresets viewpoint.

• We propose a novel coreset-based algorithm with low
communication cost and provable guarantees on the
convergence to the optimal solution.

• We demonstrate the efficiency of the proposed algo-
rithm on a few real-world datasets. In particular, we
show that the proposed approach reduces the commu-
nication cost significantly.

Our paper is structured as follows. We begin with a discus-
sion on the related work in Section 2. In Section 3, we de-
scribe a general framework for the coreset-based method-
ology. We then propose a coreset-based algorithm in Sec-
tion 4 and provide its convergence analysis. We finally con-
clude by demonstrating the empirical performance of the
algorithm in Section 5.

2 RELATED WORK

As noted earlier, problem in Equation (1) arises frequently
in the machine learning and optimization literatures and
hence has been a subject of extensive research. Conse-
quently, we cannot hope to do full justice to all the related
work. We instead mention the key relevant works here and
refer the reader to the appropriate references for a more
thorough coverage.

First-order methods: In large-scale machine learning and
convex optimization applications, first-order methods are
popular due to their cheap iteration cost. The classic ap-
proach in first order methods is the gradient descent ap-
proach. For strongly convex functions f with L-lipschitz
gradient, gradient descent has linear convergence rate i.e.,
f(wt)−f(w∗) ≤ ε inO(log(1/ε)) iterations where wt and
w∗ are the tth iterate of gradient descent and the optimal so-
lution respectively [10]. The constants can be further im-
proved by the means of accelerating techniques [10]. On
the other hand, when ` is non-smooth, gradient descent
methods have sub-linear convergence rates.

While gradient descent methods have appealing conver-
gence properties, they have two major shortcomings: (1)
they require evaluation of n gradients at each iteration, typ-
ically leading to high computational cost, and (2) the com-
munication costs is also high. A popular modification of
this algorithm in large-scale settings is the stochastic gradi-
ent descent. While the computational cost per iteration de-
creases, the linear convergence property is lost. This is due
to the variance introduced by stochasticity of the approach.
Recently, there has been a surge in interest to address this
issue by incremental methods (see [13, 7]). By reducing the
variance, these approaches achieve low iteration complex-
ity while retaining the good convergence properties. How-

ever, all these approaches still do not address the other ma-
jor shortcoming — namely, high communication cost.

Active Set & Cutting plane Methods: Our approach is
also related to the classic active set and cutting plane meth-
ods used in the optimization and the machine learning liter-
atures [11]. The basic idea is to find a working set of con-
straints, i.e., those inequality constraints of the optimiza-
tion problem that are either fulfilled with equality or are
otherwise important to the optimization problem. These
methods are particularly popular in the SVM literature.
Scheinberg et al. [12] and Joachims et al. [6] provide more
details on these approaches. However, these approaches
are inherently sequential and not communication friendly.
Moreover, it is observed that these approaches are typically
outperformed by subgradient methods [14]. While the ba-
sic theme of these methods is similar to that of ours inso-
far that we compute a similar summary of the training data
at each iteration, the key distinction is the approach and
methodology used in constructing the summary. Moreover,
our approach is much more general and can be applied to a
wide range of loss functions.

Coresets: Our approach is closely related to the paradigm
of coresets used in the theory literature [2, 4, 5]. The basic
idea of coresets is to extract a small amount of relevant in-
formation from the given data and work on this extracted
data. Coresets have been proposed on a variety of data
clustering problems such as k-means, k-medians, and pro-
jective clustering. This approach is particularly important
for NP-hard problems like k-means. For example, core-
sets of size O(k/ε4) and independent of n (number of the
data points) have been proposed for the k-means problem
[2, 4]. If k is small, such an approach makes it possible to
find optimal solution of k-means simply by an exhaustive
search. Furthermore, coresets can seamlessly handle dis-
tributed and streaming settings and hence, are suitable to
large-scale real-world applications. We refer the reader to
the excellent (but outdated) survey on coresets [1] for more
details. Recently, a unifying coreset framework has been
proposed for data clustering problems [4], which provides a
more comprehensive treatment; interested readers may also
refer to the references therein. While there has been some
progress in borrowing ideas from coresets in the context of
SVMs [15], this intersection remains largely unexplored.

Distributed Methods: Owing to large-scale machine
learning applications, there has been a recent surge of in-
terest in distributed training of models. The basic idea
is to solve subproblems in parallel, followed by averag-
ing at each iteration. For example, [17, 9] propose an al-
gorithm with a trade-off between computation and com-
munication costs. The Alternating Direction Method of
Multipliers (ADMM) [3] and its variants are also popu-
lar approaches that fall in this category. However, these
strategies are either synchronous and communication un-
friendly since no communication occurs during the compu-

tation phase. Mini-batch approaches have received consid-
erable attention recently. We refer the reader to [8] and ref-
erences therein for a more thorough analysis of mini-batch
approaches based on stochastic gradient descent.

3 A GENERAL FRAMEWORK

We describe our general methodology in this section. Be-
fore delving into the details of the framework, we introduce
a few definitions and notations in order to simplify our ex-
position. We denote the objective function in Equation (1)
by f(w;P). Recall that P is the training set. The optimal
solution of Equation (1) is denoted by w∗ i.e.,

w∗ = argmin
w

f(w;P) ≡ λ

2
‖w‖2 +

1

n

n∑
i=1

`(xi, yi, w).

We use R∗ to denote ‖w∗ − w0‖, the distance of optimal
solution from the initial point. Next, we define the key in-
gredient in our approach.
Definition 1. (Coreset) For given functions f and g, we
call a set C an ε-coreset of P on a set Ω if |g(w;C) −
f(w;P)| ≤ ε for all w ∈ Ω.

Note that the above definition is slightly different from the
one typically used in the coreset literature (see [4]) in two
ways: (i) the set C is not necessarily a subset of P . In par-
ticular, when the function is of the form described in Equa-
tion 1, typically, coresets are constructed for the specific
function of g being the weighted sum of loss and coreset
C being a subset of P . However, this is not necessarily
the case here. (ii) the coreset is restricted to the domain
w ∈ Ω. Another noteworthy point is that while coresets
are classically defined as a multiplicative approximation,
we use the notion of additive approximation. All these re-
laxations allow us to view other related algorithms through
the lens of coresets. The key desirable property of a coreset
is that the cardinality of the set C is small, which will help
us reduce the overall communication complexity of the al-
gorithm. For brevity, we drop C and P from the notations
g(w;C) and f(w;P) respectively whenever C and P are
clear from the context.

With this background we are ready to state our algorithm.
At each iteration of the algorithm, the key component of
our framework is to compute a new coreset-based on the
current solution and solve the optimization problem based
on that coreset. The pseudocode is given as Algorithm 1.

First, we note that algorithm is still abstract because it does
not specify details about the function gt−1(w;Ct−1, wt−1)
and coreset Ct−1. Furthermore, feasible region of the sub-
problem Ω(wt−1, Rt−1) at each iteration is unspecified.
These details depend on the specific coreset construction
and hence, are explained during the description of the core-
set. We now state a general result on performance of Algo-
rithm 1 based on some important properties of the coreset.

Algorithm 1 Generic Iterative Coreset Algorithm
INPUT: Initial w0, coefficients {γ1, . . . , γT }

1: for t = 1 to T do
2: Compute the coreset Ct−1 with the corresponding

function gt−1(w;Ct−1, wt−1)
3: Solve the following subproblem

wt = argmin
w∈Ω(wt−1,Rt−1)

gt−1(w;Ct−1, wt−1)

4: Rt = γt ·Rt−1

5: end for

For ease of analysis, throughout the paper, we assume that
γt is chosen in such a way that Rt = ‖wt−w∗‖. The anal-
ysis for the case where Rt is an upper bound on ‖wt−w∗‖
is similar.

Theorem 1. Suppose we have the following conditions on
the function gt−1 for 1 ≤ t ≤ T :

1. gt−1 is an upper bound on f and is strongly convex
with modulus λ′t−1, for some λ′t−1 > 0.

2. The feasible region Ω(wt−1, Rt−1) is convex and con-
tains the optimal solution w∗.

3. Ct−1 is an ∆t−1-coreset of P on Ω(wt−1, Rt−1) with
respect to functions gt−1 and f . More precisely, we
need gt−1(w;Ct−1, wt−1) ≤ f(w;P) + ∆t−1 for all
w ∈ Ω(wt−1, Rt−1).

Then for the iterates {wt}Tt=1 of Algorithm 1 we have,

Rt = ‖wt − w∗‖ ≤

√
2∆t−1

λ+ λ′t−1

.

Proof. We have the following inequalities:

gt−1(w∗) ≤ f(w∗) + ∆t−1,

gt−1(wt) + 〈∂gt−1(wt), w∗ − wt〉

+
λ′t−1

2
·‖wt − w∗‖2 ≤ gt−1(w∗)

The first inequality follows from condition 3 of the the-
orem. The second inequality follows from the fact that
gt−1 is strongly convex with modulus λ′t−1 (condition 1).
Adding the above two inequalities we get

gt−1(wt) + 〈∂gt−1(wt), w∗ − wt〉 (2)

+
λ′t−1

2
·‖wt − w∗‖2 ≤ f(w∗) + ∆t−1.

Because f is strongly convex with modulus λ, we have

f(w∗) + 〈∂f(w∗), wt − w∗〉+
λ

2
· ‖wt − w∗‖2 ≤ f(wt).

Combining it with the fact that gt−1 is an upper bound on
function f (condition 1), we have

f(w∗) + 〈∂f(w∗), wt − w∗〉 (3)

+
λ

2
·‖wt − w∗‖2 ≤ gt−1(wt).

Adding Equations (2) and (3), we get the following.

〈∂gt−1(wt), w∗ − wt〉+ 〈∂f(w∗), wt − w∗〉 (4)

+
(λ+ λ′t−1)

2
· ‖wt − w∗‖2 ≤ ∆t−1

To complete the proof we need the following intermediate
result.

Lemma 1. Suppose gt−1 satisfies the conditions in Theo-
rem 1, then for iterates wt, for 1 ≤ t ≤ T , of Algorithm 1
we have

〈∂gt−1(wt), w∗ − wt〉 ≥ 0 (5)
〈∂f(w∗), wt − w∗〉 ≥ 0 (6)

Proof. We prove the inequality in Equation (5). The in-
equality in Equation (6) can be proved in a similar manner.
Let A = Ω(wt−1, Rt−1) and IA : Rd → R+ be the indica-
tor function corresponding to A i.e.,

IA(w) =

{
0 if w ∈ A
+∞ if w /∈ A

Recall that the wt is the optimal solution of the following:

wt = argmin
w∈A

gt−1(w).

From the optimality condition of wt, we have ∂gt−1(wt) +
∂IA(wt) = 0. Therefore, we have

〈∂gt−1(wt), w∗ − wt〉 = 〈−∂IA(wt), w∗ − wt〉 (7)

Since A is convex (condition 2 of Theorem 1), the subgra-
dient will be the normal cone of A. Using the fact that
w∗, wt ∈ A (condition 2 of Theorem (1)) and from the def-
inition of the normal cone, we have

〈−∂IA(wt), w∗ − wt〉 ≥ 0.

Using the above inequality in Equation (7), we get the re-
quired result.

Using the inequalities from Lemma 1 in Equation (4) it is
easy to see that the result follows.

The above result gives an upper bound on the distance of
the iterate wt in Algorithm 1 from the optimal solution w∗.
Note that the bound depends on ∆t−1 which in turn typi-
cally depends on the optimality of wt−1. It is easy to see
that convergence to the optimal solution is possible as long

as limt→∞∆t = 0. It is also worth noting that result does
not assume anything on the size of the coreset Ct. How-
ever, as we shall see, the communication and computation
complexity of the algorithm will critically depend on |Ct|
at each iteration.

Before discussing our algorithm based on this framework,
we consider a popular instantiation of this framework —
gradient descent. For this discussion, we assume that the
loss function ` is differentiable and has L-lipschitz gradi-
ent i.e., ‖∂`(xi, yi, w)−∂`(xi, yi, w′)‖ ≤ L‖w−w′‖. This
smoothness condition on the gradient gives us the follow-
ing useful result.

Lemma 2. [10] For any function h : Rd → R with L-
Lipschitz continuous gradient ∂h, we have

h(x) ≤ h(y) + 〈∂h(y), x− y〉+ L

2
‖x− y‖2, ∀x, y ∈ Rd.

The update for gradient descent is the following:

wt+1 = wt − γ∂f(w;P), (8)

where γ is the learning rate and is typically set to 1/L.
Such an update can be obtained by minimizing the upper
bound on f in Lemma 2. We briefly explain how gradient
descent like method fits our framework. We choose the
coreset1 Ct = ∂f(wt;P) and the function gt as follows:

gt(w;Ct, wt) = f(wt;P) + 〈∂f(wt), w − wt〉

+
L+ λ

2
· ‖w − wt‖2 (9)

First note that the function gt is an upper bound of f and
is strongly convex with modulus L + λ. This can be ob-
tained from Lemma 2. Hence, gt satisfies condition 1 of
Theorem 1. Next, we set Ω(wt, Rt) = B(wt, Rt) where
B(w,R) represents a ball of radius R centered around w.
Since this is convex and Rt = ‖wt − w∗‖, it is easy to see
that condition 2 of Theorem 1 holds.

Finally, gt−1 is an ∆t−1-coreset with ∆t−1 ≤ LR2
t−1/2.

This can be obtained by a straightforward reasoning based
on the Taylor expansion of f and Lemma 2. Thus all the
conditions of Theorem 1 hold. Hence, using Theorem 1 we
obtain the following corollary.

Corollary 1. The iterateswt of gradient descent algorithm
like algorithm (minimizing upper bound in Equation 9 sub-
ject to the constraint on w ∈ Ω(wt, Rt)) satisfy

Rt = ‖wt − w∗‖ ≤

√
2LR2

t−1

2(L+ 2λ)
= Rt−1

√
1

(1 + 2λ
L)

.

1Recall that the coreset could be any summary of the data, and
not necessarily one of its subsets.

In general, dropping the constraint that w ∈ Ω, recovers
the gradient descent algorithm. The above corollary repro-
duces the well-known linear convergence rate for gradient
descent [10]. Note the dependence of the convergence rate
on the condition number L/λ. While the result does not
lead to any new convergence rates, it provides an interest-
ing insight that gradient descent can be viewed as solving
an optimization problem on a coreset based on the gradi-
ents at each iteration. However, it is important to note
that the communication cost is still high when the condi-
tion number is large since the gradient needs to be com-
municated at each iteration. Hence, gradient descent is not
suitable for settings of our interest — that is, distributed
settings where communication is expensive.

A natural question that arises is whether we can construct
more interesting coresets than the gradients of the function.
We provide an affirmative answer to this question in the
next few sections.

4 CORESET ALGORITHM

In this section, we propose a new coreset-based algorithm.
Before discussing the details of the coreset contribution, it
is worth mentioning two additional assumptions; however,
we should emphasize that the first assumption is only for
the ease of exposition.

1. The loss function ` is of the form `(xi, yi, w) =
`(yiw

>xi). Note the slight abuse of notation in the
usage of `. In what follows, the quantity yiw>xi is
referred to as margin.

2. ` is L-lipschitz continuous i.e., |`(yiw>xi) −
`(yiw

′>xi)| ≤ L|yiw>xi − yiw′>xi|.

Loss functions that satisfy the above properties include
popular choices such as logistic loss (used in logistic re-
gression) and hinge loss (used in SVM). The significance
of these assumptions will become clear as we proceed. We
also need the following definitions for our discussion.

Definition 2. (Cover) We call a set of points S as ε-cover
of a set of points Q if for all q ∈ Q there exists a point
s ∈ S such that ‖s− q‖ ≤ ε.

Let N(x) for a point x in the cover denote the set of points
in Q that are closer to x than any other point in the cover
S. With slight abuse of notation, let ε(Q) = [S, β], where
S is an ε-cover of Q, and β is the vector of cardinalities of
the sets {N(x)|x ∈ S}. Note that ‖β‖1 = |Q|.

The key insight to our coreset construction of the algorithm
is that typically at each iteration there exist only a few im-
portant data points that are critical from the optimization
perspective. For example, consider an iterative algorithm
for SVMs. Intuitively, at each iteration, the points that are

close to the margin are crucial in comparison to those away
from it. Furthermore, due to the piecewise linear nature
of the hinge loss, the points far away from the margin can
be represented by a linear function precisely. Hence, it is
possible to obtain a good summary of the data through few
points near the margin and a linear function. With this in-
tuition, we now present our coreset construction.

We define the set P ′ = {x′i}ni=1 where x′i = yixi. Our
coreset construction consists of two primary steps:

Step 1: Identify points whose loss can be approximated by
a linear function and construct a single linear function as a
coreset for these points. Generally, these are points where
gradient approximation is good. We denote such a function
by LINEARAPPROX. The description of this function will
depend on `.

Step 2: Construct a cover or equivalent functional approx-
imation for the rest of the points in the set P ′. Since ` is
assumed to be lipschitz, such a cover also provides approx-
imation guarantees on the empirical loss on P ′.

It should be emphasized that while we use the concept
of cover for simplicity, a similar analysis can be carried
out for clustering based algorithms. In fact, as we will
see later, all our experiments are based on clustering. At
each iteration, we use disjoint sets Gt and Et to denote the
points concerned with these two steps respectively. Note
that Gt ∪ Et = P ′. We use lt ∈ Rd to denote the lin-
ear approximation of loss for points in Gt. Our coreset is
Ct = (It, βt, lt) where [It, βt] = εt(Et) and function gt in
Algorithm 1 is as follows.2

gt(w;Ct) =
λ

2
‖w‖2 +

1

n

(∑
xe∈It

βet `(w
>xe) + w>lt

)
+ ht

(10)

where ht = (2LR∗|Et|ε + |Gt|δ + c)/n for some δ > 0
and constant c. The pseudocode, based on the above key
steps, is given as Algorithm 2. The size of the coreset Ct
depends on the cardinality of set Et.

For simplicity, we assume that w0 = 0 for our analysis.
In this case, we have R∗ = ‖w∗‖. One of the key com-
ponents of Algorithm 2 is the function LINEARAPPROX.
As mentioned earlier, in general, this function depends on
the loss function `. We choose Ω(w0, R0) = B(w0, R0)
and Ω(wt, Rt) = Ω(wt−1, Rt−1) ∩ B(wt, Rt) for t ∈
[1, . . . , T − 1]. Recall that we assume the coefficients
{γ1, . . . , γT } are chosen in a way such that Rt = ‖wt −
w∗‖. We prove the following result for Algorithm 2. The
proof of Theorem 2 relies on result of the generic coreset
algorithm, Theorem 1.

Theorem 2. Suppose gt is as defined in Equation (10) and

2Hereinafter we include the parameter wt in the coreset de-
scription Ct.

Algorithm 2 Iterative Coreset Algorithm
INPUT: Initial w0, coefficients {γ1, . . . , γT } and
{ε1, . . . , εT }

1: for t = 1 to T do
2: [Gt−1, lt−1] = LINEARAPPROX(P ′, wt−1, Rt−1)
3: [It−1, βt−1] = εt−1(P ′\Gt−1)
4: Coreset Ct−1 = (It−1, βt−1, lt−1)
5: Solve the following subproblem

wt = argmin
w∈Ω(wt−1,Rt−1)

gt−1(w;Ct−1)

6: Rt = γt ·Rt−1

7: end for

LINEARAPPROX satisfies the following condition:

max
w∈B(wt,Rt)

∣∣∣∣∣∣
∑
xg∈Gt

`(w>xg)− [w>lt + c]

∣∣∣∣∣∣ ≤ |Gt|δ (11)

where [Gt, lt] = LINEARAPPROX(P ′, wt) and c ∈ Rd and
for all t ∈ {0, . . . , T − 1}, then we have

Rt+1 = ‖wt+1 − w∗‖ ≤
√

2LR∗|Et|εt + |Gt|δ
λn

.

Proof. We first observe that gt (in Equation (10)) is
strongly convex with modulus λ. Moreover, gt is an up-
per bound on f due to the following relation:

1

n

(∑
xe∈It

βe
t `(w

>xe) + w>lt

)
+ ht

=
1

n

(∑
xe∈It

βe
t `(w

>xe) + w>lt + 2LR∗|Et|εt + |Gt|δ + c

)

≥ 1

n

∑
xe∈It

βe
t `(w

>xe) + 2LR∗|Et|εt +
∑

xg∈Gt

`(w>xg)

≥ 1

n

 ∑
xp∈Et

`(w>xp) +
∑

xg∈Gt

`(w>xg)

 =
1

n

∑
x∈P ′

`(w>x)

The first inequality follows from the definition of
ht. The second step follows from the condition on
LINEARAPPROX in the theorem statement. The third step
follows from the fact that ` is L-lipschitz continuous and
‖βt‖1 = |Et|. Combining the above with regularization
term proves the fact that gt is an upper bound on f .

It is easy to see that the feasible region B(wt, Rt) is convex
and contains the optimal solution w∗. To obtain an upper

bound on the function gt, we observe the following:

1

n

(∑
xe∈It

βe
t `(w

>xe) + w>lt

)
+ ht

≤ 1

n

(∑
xe∈It

βe
t `(w

>xe) + 2LR∗|Et|εt

+
∑

xg∈Gt

`(w>xg) + 2|Gt|δ

)

=
1

n

(∑
x∈P ′

`(w>x) + 4LR∗|Et|εt + 2|Gt|δ

)

The first and second inequalities follow from the condition
of the theorem statement and the lipschitz continuous na-
ture of the loss function `.

Therefore, Ct with the corresponding function gt is an ∆t-
coreset where ∆t ≤ (4LR∗|Et|εt + 2|Gt|δ)/n. The above
reasoning shows that the function gt satisfies all the condi-
tions of Theorem 1. Applying Theorem 1 on the function
gt, we get the required result.

It can be observed that the conditions εT → 0 and δ → 0
as T →∞ ensure convergence of the algorithm to the opti-
mal solution. In general, we can guarantee that our solution
is arbitrary close to the optimal solution by choosing δ and
εt appropriately. Furthermore, we can ensure linear con-
vergence of our algorithm by decreasing εt by a constant
factor at each iteration.

It is also important to study the coreset size and the design
choice of εt and δ since they determine the communication
cost of our algorithm. Let δ = 2LR∗min{ε1, . . . , εT }. For
this value of δ, we observe the following:

1. The size of the coreset depends on the cardinality of
Gt. In general, larger the cardinality of Gt, smaller
is the size of the coreset. Furthermore, as a gen-
eral rule of thumb, if ` is asymptotically linear i.e.,
lim|m|→∞ |`(m)− (cm+ d)| = 0 for some constants
c, d, the performance of our algorithm will depend on
the rate of asymptotic linearity.

2. We typically require εt+1 ≤ εt for all t ∈ {0, . . . , T −
1}. With such a choice, if |Gt| does not decrease, size
of the coreset may increase. However, observe thatRt
decreases. Thus, typically more points satisfy Equa-
tion (11), and the cardinality of Gt usually decreases.

3. Suppose a subset of P ′ satisfies Equation (11) at itera-
tion t then it will always satisfy the condition in future
iterations. This is due to the fact that feasible region
shrinks at each iteration. Hence, size of the coreset is
always non-increasing.

While the above remarks provide informal reasoning for
the size of the coreset, it does not provide a formal analysis.

In order to gain a better understanding, we discuss the im-
plementation of this algorithm and provide a more formal
analysis in the case of logistic regression and SVMs. To
this end, let us first discuss the function LINEARAPPROX
for specific cases.

LINEARAPPROX for differentiable loss functions: The
linear approximation in the differentiable case can be ob-
tained through the first-order Taylor expansion of the loss
function. More formally, we have

`(w>xk) = `(w>t xk) + ∂`(w>t xk)(w>xk − w>t xk)

+
∂2`(z)

2
(w>xk − w>t xk)2

for some z = w̃>t x where ‖w̃t − wt‖ ≤ Rt since
our feasible region satisfies ‖w − wt‖ ≤ Rt. The key
step is to bound the term ∂2l(z). This bound will de-
pend on the structure of the loss function. We now de-
rive these bounds for logistic regression. We want the
following to ensure that the condition in Theorem 2 with
lt =

∑
xk∈Gt

∂`(w>t xk)xk and c =
∑
xk∈Gt

[`(w>t xk) −
∂`(w>t xk)w>t xk]:

∂2l(z)

2
(w>xk − w>t xk)2 ≤ δ

for all xk ∈ Gt. The above statement is true when

∂2l(z)

2
R2
t ‖xk‖2 ≤ δ (12)

This can be obtained by a straightforward application of the
Cauchy-Schwartz inequality. The final step is to derive an
upper bound on ∂2l(z). For logistic loss we have

∂2l(z) =
1

(1 + exp(−z))(1 + exp(z))
.

Without loss of generality, we can assume z > 0. Then we
have ∂2l(z) ≤ 1/(1 + exp(z)). Using the above inequality
it is easy to see that Equation (12) is satisfied if

R2
t ‖xk‖2

2(1 + exp(z))
≤ δ.

We observe that

R2
t ‖xk‖2

2(1 + exp(z))
=

R2
t ‖xk‖2

2(1 + exp(w>t xk + z − w>t xk))

≤ R2
t ‖xk‖2

2(1 + exp(w>t xk) exp(−Rt‖xk‖))

This follows from the fact that z = w̃>t x where ‖w̃t −
wt‖ ≤ Rt. Hence, for logistic regression, the goal of
LINEARAPPROX is to identify all points satisfying

Vt(xk) =
R2
t ‖xk‖2

2(1 + exp(w>t xk) exp(−Rt‖xk‖)
≤ δ

and place these points in the set Gt. The linear function to
be used for approximation is obtained from the first-order
Taylor expansion. The pseudocode for LINEARAPPROX in
case of logistic regression is given in Algorithm 3.

Algorithm 3 LINEARAPPROX for Logistic Regression
INPUT: P ′, wt, Rt

1: Gt = {xk ∈ P ′ | Vt(xk) ≤ δ}
2: lt = −

∑
xk∈Gt

xk

(1+exp(w>t xk))

Furthermore, we can also obtain a relationship between the
margin of xk with respect to the optimal solution and the
iteration at which the point xk moves to the set Gt. We
note the following:

R2
t ‖xk‖2

2(1 + exp(z))
=

R2
t ‖xk‖2

2(1 + exp(w>∗ xk + z − w>∗ xk))

≤ R2
t ‖xk‖2

2(1 + exp(M∗k) exp(−2Rt‖xk‖)

≤ R2
t ‖xk‖2 exp(2Rt‖xk‖)

2 exp(M∗k)
≤ exp(3Rt‖xk‖)

2 exp(M∗k)

where M∗k = |w>∗ xk|. The first step follows from triangle
inequality and the fact that z = w̃>t x where ‖w̃t − wt‖ ≤
Rt and ‖w̃∗ − wt‖ ≤ Rt. The final step follows from the
fact that x2 ≤ exp(x) for x ≥ 0. Therefore, from above
inequality it is easy to see that Equation (12) is satisfied
when the following holds

Rt ≤ max

{ √
δ

‖xk‖
,
M∗k + log(2δ)

3‖xk‖

}
. (13)

LINEARAPPROX for SVM

For SVM, the implementation of LINEARAPPROX is pretty
straightforward. Due to the piecewise linear nature of the
hinge loss, the condition in Equation (10) is satisfied with
δ = 0 if w>xk is greater than 1 (or less than 1) for the
whole feasible region ‖w − wt‖ ≤ Rt. This is satisfied
when

Rt ≤
|1− w>t xk|
‖xk‖

The pseudocode for LINEARAPPROX in case of SVM is
given in Algorithm 4.

Algorithm 4 LINEARAPPROX for SVM
INPUT: P ′, wt, Rt

1: Gt = {xk ∈ P ′ |Rt ≤ |1− w>t xk|/‖xk‖}
2: lt = −

∑
xk∈Gt

I(w>t xk < 1)xk

Similarly to the case of logistic regression, we analyze how
the margin of xk affects when it get included in the set Gt.
For this, note the following:

1− w>t xk = 1− w>∗ xk − (wt − w∗)>xk

Effective passes through Dataset
0 10 20

O
bj

ec
tiv

e
- O

pt
im

al

0

0.2

0.4

0.6
SVRG
SGD
Coreset

Communication Cost
0 1 2 3

O
bj

ec
tiv

e
- O

pt
im

al

0

0.2

0.4

0.6
SVRG
SGD
Coreset

Effective passes through Dataset
0 10 20

Te
st

 E
rro

r R
at

e

0

0.2

0.4

0.6

0.8

1
SVRG
SGD
Coreset

Effective passes through Dataset
0 10 20 30

O
bj

ec
tiv

e
- O

pt
im

al

0

0.1

0.2

0.3

0.4

0.5
SVRG
SGD
Coreset

Communication Cost
0 1 2 3

O
bj

ec
tiv

e
- O

pt
im

al

0

0.1

0.2

0.3

0.4

0.5
SVRG
SGD
Coreset

Effective passes through Dataset
0 10 20 30

Te
st

 E
rro

r R
at

e

0

0.2

0.4

0.6
SVRG
SGD
Coreset

Figure 1: l2-regularized logistic regression on ijcnn1 (top) and cod-rna (bottom) datasets. We compare our algorithm with
mini-batch SVRG and SGD. Training loss residual is shown with respect to passes through the dataset and communication
cost (left and central columns). Test error with respect to the passes through the dataset is shown in the right column.

Again, the above quantity will not change sign when w>xk
is greater than 1 (or less than 1) for the whole feasible re-
gion ‖w − wt‖ ≤ Rt. Based on the expression above, this
is satisfied when

‖wt − w∗‖‖xk‖ ≤ |1− w>∗ xk| = M∗k

It is obtained by application of the Cauchy-Schwartz in-
equality. Note the difference in the definition of M∗k in
comparison to logistic regression. Hence, condition in
Equation (10) will be satisfied when

Rt ≤
M∗k
‖xk‖

(14)

Let us make a final remark before proceeding to the ex-
perimental section. It should be emphasized that based on
Equations (13) and (14), the cardinality of Gt critically
depends on the margin of the training points. If the mar-
gin of the training points is large, then the coreset size is
small and consequently the communication and computa-
tion costs are low. Hence, our algorithm is naturally adap-
tive to the hardness of the optimization problem.

5 EXPERIMENTS

We present our empirical results in this section. To evaluate
the performance of our algorithm, we focus on the task of
regularized logistic regression. Recall that Equation (1) in
this case is of the following form:

min
w
f(w) ≡ λ

2
‖w‖2 +

1

n

n∑
i=1

log(1 + exp(−yiw>xi)).

In our Matlab implementation, we measure simulated com-
munication costs. We use the following datasets.

Dataset # examples # features
ijcnn1 49,990 22
cod-rna 59,535 8
w8a 64,700 300
covertype 581,012 54

All these datasets can be accessed from the LIBSVM web-
site.3 Similarly to [7], each dataset is scaled to [−1, 1]. We
split each dataset in 3:1 ratio for training and testing pur-
poses respectively.

The regularization parameter λ in Equation (1) is 1/n. Re-
call that n is the size of the training set. This results in
a high condition number and consequently increases the
difficulty of the problem [10]. All the experiments were
conducted for 10 random seeds and results are reported by
averaging over these 10 runs.

We use PROXSVRG [16] for solving the subproblems of
Algorithm 2 at each iteration. SVRG is an incremental
first-order method that can be used for solving optimiza-
tion problems conforming to Equation (1). The origin is
used as the initial point for the for all our experiments. The
number of “inner iterations” in the PROXSVRG algorithm
is set to the recommended value of m = 2n. The step size
parameter for each dataset is chosen so as to give the fastest
convergence for PROXSVRG.

For our experiments, we choose T = 20 and γ1 = γ2 =
· · · = γT = γ in Algorithm 2 where γ is chosen such
that upper bound on RT is 0.01. Such a choice is rea-

3http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

Effective passes through Dataset
0 10 20 30

O
bj

ec
tiv

e
- O

pt
im

al

0

0.2

0.4

0.6
SVRG
SGD
Coreset

Communication Cost
0 1 2 3

O
bj

ec
tiv

e
- O

pt
im

al

0

0.2

0.4

0.6
SVRG
SGD
Coreset

Effective passes through Dataset
0 10 20 30

Te
st

 E
rro

r R
at

e

0

0.2

0.4

0.6

0.8

1
SVRG
SGD
Coreset

Effective passes through Dataset
0 10 20 30

O
bj

ec
tiv

e
- O

pt
im

al

0

0.05

0.1

0.15

0.2
SVRG
SGD
Coreset

Communication Cost
0 1 2

O
bj

ec
tiv

e
- O

pt
im

al
0

0.05

0.1

0.15

0.2
SVRG
SGD
Coreset

Effective passes through Dataset
0 10 20 30

Te
st

 E
rro

r R
at

e

0

0.05

0.1

0.15

0.2

0.25
SVRG
SGD
Coreset

Figure 2: l2-regularized logistic regression on more datasets w8a (top) and covertype (bottom). Similar to the previous
case, we compare our algorithm with mini-batch SVRG and SGD.

sonable in the case of linearly convergent algorithms —
which is the scenario we anticipate for our algorithm. As
mentioned earlier, we use a clustering based algorithm in-
stead of the cover. The main rationale behind such a choice
is the availability of coresets for data clustering problems.
As a heuristic, we directly use k-means coresets for Algo-
rithm 2. The sensitivity based coreset for k-means is used
in all our experiments. We refer interested reader to [4, 5]
for more details of the coreset. We set the coreset size to
be 500 for ijcnn1 and cod-rna datasets. This value is set
to 1000 and 3000 for w8a and covertype datasets respec-
tively. Note that these coreset sizes are much smaller in
comparison to the training data.

We compare our algorithm with SVRG [7] and SGD. A
mini-batch version of these methods is used in order to re-
duce the communication cost of these approaches. We use
a mini-batch size b = 10 in all our experiments. The num-
ber of inner iterations in SVRG is m =

⌈
2n
b

⌉
in all our

experiments in order to limit the total inner iterations to the
recommended 2n iterations. For SGD, we use the learning
rate of α/

√
t where α is the step size used for the all the

algorithms for that dataset.

We report the training loss residual i.e., objective value in
Equation (1) achieved by the algorithms minus the optimal
objective value (obtained by running gradient descent for
a very long time) and the test error rate of the algorithms
with respect to the number of effective passes through the
dataset . This includes the cost for calculating the gradi-
ents and the coresets. This provides information about the
computation complexity of the algorithm. To measure the
communication cost of the algorithm, we use the ratio of
the number of d dimensional vectors communicated to the
size of the training data.

Figures 1 and 2 show the performance of the algorithms on
the aforementioned datasets. We have several observations
from these empirical results. First, we observe that SVRG
outperforms SGD in terms of all the metrics of our interest.
This observation is not surprising given the linear conver-
gence of SVRG in comparison to the sub-linear conver-
gence of SGD (see [7] for more details). We then observe
that our algorithm is competitive to SVRG in terms of
training loss residual and test error rate (shown in the first
and the third columns of the figures respectively). How-
ever, our major gain is in the communication cost of the al-
gorithm. As seen in these figures, our algorithm performs
much better in comparison to other algorithms in terms of
communication cost. In other words, for the same com-
munication cost, our algorithm has a much lower objective
value when compared to SVRG and SGD. We believe that
the performance of our algorithm can be further improved
by utilizing the coresets of the previous iteration and is a
part of our ongoing investigation. For future work, it will
be interesting to test the performance of the algorithm on a
real distributed environment.

6 CONCLUSION

This paper introduces a novel general strategy for designing
communication efficient empirical loss minimization algo-
rithms. The key to our approach is the concept of coresets
— the idea of constructing a small summary of the train-
ing data and optimizing over this summary. We illustrated
this strategy on two popular supervised learning problems
— logistic regression and support vector machines. We
presented convergence analysis for our algorithm. Further-
more, preliminary experiments show encouraging results in
terms of both computational and communication costs.

References

[1] Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R.
Varadarajan. Geometric approximation via core-
sets. In Combinatorial and Computational Geometry,
MSRI, pages 1–30. University Press, 2005.

[2] Maria-Florina Balcan, Steven Ehrlich, and Yingyu
Liang. Distributed k-means and k-median cluster-
ing on general communication topologies. In Christo-
pher J. C. Burges, Lon Bottou, Zoubin Ghahramani,
and Kilian Q. Weinberger, editors, NIPS, pages 1995–
2003, 2013.

[3] Stephen Boyd. Distributed optimization and statisti-
cal learning via the alternating direction method of
multipliers. Foundations and Trends® in Machine
Learning, 3(1):1–122, 2010.

[4] Dan Feldman and Michael Langberg. A unified
framework for approximating and clustering data. In
Proceedings of the Forty-third Annual ACM Sympo-
sium on Theory of Computing, STOC ’11, pages 569–
578, New York, NY, USA, 2011. ACM.

[5] Dan Feldman, Melanie Schmidt, and Christian
Sohler. Turning big data into tiny data: Constant-size
coresets for k-means, pca and projective clustering. In
Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’13, pages
1434–1453. SIAM, 2013.

[6] Thorsten Joachims. Training linear svms in linear
time. In Proceedings of the 12th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and
Data Mining, KDD ’06, pages 217–226, New York,
NY, USA, 2006. ACM.

[7] Rie Johnson and Tong Zhang. Accelerating stochastic
gradient descent using predictive variance reduction.
In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahra-
mani, and K.Q. Weinberger, editors, Advances in
Neural Information Processing Systems 26, pages
315–323. Curran Associates, Inc., 2013.

[8] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J.
Smola. Efficient mini-batch training for stochastic op-
timization. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, KDD ’14, pages 661–670, New
York, NY, USA, 2014. ACM.

[9] Dhruv Mahajan, S. Sathiya Keerthi, S. Sundararajan,
and Léon Bottou. A functional approximation based
distributed learning algorithm. CoRR, abs/1310.8418,
2013.

[10] Y. Nesterov. Introductory Lectures on Convex Opti-
mization: A Basic Course. Mathematics and its appli-
cations. Kluwer Academic Publishers, 2004.

[11] J. Nocedal and S.J. Wright. Numerical Optimization.
Springer series in operations research and financial
engineering. Springer, 1999.

[12] Katya Scheinberg. An efficient implementation of
an active set method for svms. Journal of Machine
Learning Research, 7:2237–2257, December 2006.

[13] Mark Schmidt, Nicolas Le Roux, and Francis Bach.
Minimizing finite sums with the stochastic average
gradient. Technical report, 2013.

[14] Shai Shalev-Shwartz, Yoram Singer, and Nathan Sre-
bro. Pegasos: Primal estimated sub-gradient solver
for svm. In Proceedings of the 24th International
Conference on Machine Learning, ICML ’07, pages
807–814, New York, NY, USA, 2007. ACM.

[15] Ivor W. Tsang, James T. Kwok, Pak ming Cheung,
and Nello Cristianini. Core vector machines: Fast
svm training on very large data sets. Journal of Ma-
chine Learning Research, 6:363–392, 2005.

[16] Lin Xiao and Tong Zhang. A proximal stochastic
gradient method with progressive variance reduction.
SIAM Journal on Optimization, 24(4):2057–2075, jan
2014.

[17] Martin A. Zinkevich, Alex Smola, Markus Weimer,
and Lihong Li. Parallelized stochastic gradient de-
scent. In Advances in Neural Information Processing
Systems 23, pages 2595–2603, 2010.

