
The Long-Run Behavior of Continuous Time Bayesian Networks

Liessman Sturlaugson and John W. Sheppard
Department of Computer Science

Montana State University
Bozeman, MT 59717

listurlaugson@gmail.com, john.sheppard@cs.montana.edu

Abstract

The continuous time Bayesian network (CTBN)
is a temporal model consisting of interdepen-
dent continuous time Markov chains (Markov
processes). One common analysis performed
on Markov processes is determining their long-
run behavior, such as their stationary distribu-
tions. While the CTBN can be transformed into
a single Markov process of all nodes’ state com-
binations, the size is exponential in the num-
ber of nodes, making traditional long-run anal-
ysis intractable. To address this, we show how
to perform “long-run” node marginalization that
removes a node’s conditional dependence while
preserving its long-run behavior. This allows
long-run analysis of CTBNs to be performed in a
top-down process without dealing with the entire
network all at once.

1 INTRODUCTION

Many problems in artificial intelligence require reasoning
about complex systems. One important and challenging
type of system is one that changes in time. Temporal mod-
eling and reasoning present additional challenges in repre-
senting the system’s dynamics while efficiently and accu-
rately inferring the system’s behavior through time. Con-
tinuous time Bayesian networks (CTBNs) were introduced
by Nodelman et al. (2002) as a temporal model capable of
representing and reasoning about finite- and discrete-state
systems without uniformly discretizing time, as found with
dynamic Bayesian networks (Murphy, 2002). CTBNs have
since been applied in a wide variety of temporal domains,
from medical prognosis (Gatti et al., 2011; Gatti, 2011) to
network security (Xu & Shelton, 2008, 2010) and reliabil-
ity modeling (Herbrich et al., 2007; Cao, 2011; Sturlaugson
& Sheppard, 2015).

While a variety of algorithms exist for querying probabili-
ties of nodes in a CTBN at a specific time given temporal

evidence, another useful type of query is to analyze a net-
work’s long-run behavior, i.e., the stationary distributions
of a CTBN’s nodes. None of the previous CTBN inference
algorithms were specifically designed to solve this prob-
lem. This paper presents the first inference algorithms for
efficiently computing the stationary distribution of nodes in
a CTBN.

The paper is organized as follows. Section 2 provides the
background for the rest of the paper. Section 3 gives the
theory and algorithms for computing stationary distribu-
tions in CTBNs. In Section 4, we demonstrate the algo-
rithms on three CTBNs. Section 5 contains the conclusion
and future work.

2 BACKGROUND

In this section, we begin by describing Markov processes
and their long-run behavior. We then introduce the CTBN
and discuss how combinations of nodes can be viewed as
Markov processes.

2.1 MARKOV PROCESSES

Although its name draws on the parallels between the con-
ditional independence encoded by Bayesian networks, the
CTBN is functionally a factored Markov process. There-
fore, we start with background on Markov processes.

2.1.1 Definition

There are variations and extensions of the Markov process
model, but the CTBN model uses the model described in
this section. We refer to a finite-state, continuous-time
Markov chain as a Markov process. In a Markov process,
a system comprises a discrete set of states, and the sys-
tem transitions probabilistically between these states. The
difference between a Markov process and a Markov chain
is that each transition occurs after a real-valued, exponen-
tially distributed sojourn time, which is the time it remains
in a state before transitioning. The parameters determining
the sojourn times and the transition probabilities are en-

coded in what is called an “intensity matrix.” If the inten-
sity matrix is constant throughout the lifetime of the sys-
tem, we refer to the Markov process as “homogeneous.”
Formally, we define a Markov process as follows.

Definition 2.1 (Markov Process). A finite-state,
continuous-time, homogeneous Markov process X
with a state space of size n is defined by an initial prob-
ability distribution P 0

X over the n states and an n × n
transition intensity matrix

QX =

−qX1,1 qX1,2 · · · qX1,n
qX2,1 −qX2,2 · · · qX2,n

...
...

. . .
...

qXn,1 qXn,2 · · · −qXn,n

in which each entry qXi,j ≥ 0 for i 6= j gives the transition
rate of the process moving from state i to state j, and each
entry qXi,i =

∑
j q

X
i,j is the parameter for an exponential

distribution, determining the sojourn times for the process
to remain in state i. For notational shorthand, the size of
the state-space of X will be denoted as |X|.

The value qXi,i gives the rate at which the system leaves state
xi, while the value qXi,j gives the rate at which the system
transitions from state xi to state xj . Let X(t) denote the
state of X at time t. For i 6= j, we have that

lim
h→0+

P (X(t+ h) = xj |X(t) = xi)

h
= qXi,j ,

while qXi,i =
∑

j 6=i q
X
i,j . With the diagonal entries con-

strained to be non-positive, the probability density func-
tion for the process remaining in state i is given by
qXi,i exp(−qXi,it), with t being the amount of time spent in
state i, making the probability of remaining in a state de-
crease exponentially with respect to time. The expected so-
journ time for state i is 1/

∣∣qXi,i∣∣. The transition probabilities
from state i to state j can be calculated as θXi,j = qXi,j/q

X
i,i.

Because the sojourn time uses the exponential distribution,
which is “memory-less,” the Markov process model ex-
hibits the Markov property, namely, that all future states of
the process are independent of all past states of the process
given its present state. In other words, for 0 < s < t <∞,

P (X(t+ h)|X(t), X(s)) = P (X(t+ h)|X(t)).

Rather than looking at the Markov process as a whole, we
can also consider subsets of states, which we refer to as a
subsystem. Formally, a subsystem S defines the behavior
of a subset of states of a full Markov process X . The in-
tensity matrix QS of the subsystem S is formed from the
entries of QX that correspond to the states in S.

2.1.2 Stationary Distributions of Markov Processes

A common analysis of Markov processes is to consider
their long-run behavior. In particular, we can consider the

stationary distribution πX = {πX
1 , . . . , π

X
n } of the pro-

cess, where

πX
i = lim

t→∞
P (X(t) = i).

AssumingQX is non-singular, we can compute the station-
ary distribution by setting up the system of equations

πX = QXπX (1)

with the added constraint
∑n

i=1 π
X
i = 1 (Taylor & Karlin,

1998). The complexity of solving for πX is determined by
n, the number of states in X .

The state convergence properties of a Markov process can
be analyzed from the stationary distribution. As an applica-
tion used in the paper, this could be the expected long-term
availability of a system. Changes to the model could be
tested to optimize the reliability of the system (e.g, what
is the minimum reliability of each component to guaran-
tee the target reliability of the entire system). Stationary
distributions of Markov processes have been used to ana-
lyze long-term trends in meteorology, economics, sociol-
ogy, biology, immunology–just to name a few. As a fac-
tored Markov process, the CTBN can be used wherever
a Markov process is applicable, while allowing the model
to become more powerful and flexible through its factored
representation.

2.2 CONTINUOUS TIME BAYESIAN NETWORKS

The CTBN was first introduced in Nodelman et al. (2002)
and then further developed in Nodelman (2007) as a
continuous-time probabilistic graphical model.

2.2.1 Definition

The motivation behind CTBNs is to factor a Markov pro-
cess in much the same way that a Bayesian network factors
a joint probability distribution. Instead of conditional prob-
abilities, the CTBN uses conditional Markov processes.
The CTBN is defined formally as follows.

Definition 2.2 (Continuous Time Bayesian Network). Let
X be a set of Markov processes {X1, X2, . . . , Xn}, where
each process Xi has a finite number of discrete states. For-
mally, a continuous time Bayesian network N = 〈B,G〉
over X consists of two components. The first is an
initial distribution denoted P 0

X over X specified as a
Bayesian network B. This distribution P 0

X is only used
for determining the initial state of the process. The sec-
ond is a continuous-time transition model G, which de-
scribes the evolution of the process from its initial distri-
bution. G is represented as a directed graph with nodes
X1, X2, . . . , Xn. Let Pa(X) denote the set of parents of
X in G, and let Ch(X) denote the set of children of X
in G. Let paX denote the set of all combinations of state
instantiations to Pa(X), and let 〈paX〉 ∈ paX . A set of

conditional intensity matrices (CIMs), denoted QX|Pa(X),
is associated with each X ∈ X and comprises matrices
QX|〈paX〉 ∀〈paX〉 ∈ paX

For example, suppose we have a two-node CTBN with de-
pendencies as A � B. Nodes A and B each have two
states, with conditional intensity matrices as follows.

QA|b0 =

a0 a1()
a0 −1 1
a1 2 −2

, QA|b1 =

a0 a1()
a0 −3 3
a1 4 −4

QB|a0
=

b0 b1()
b0 −5 5
b1 6 −6

, QB|a1
=

b0 b1()
b0 −7 7
b1 8 −8

Nodes A and B are two distinct but interdependent subsys-
tems of a larger Markov process.

2.2.2 Amalgamation

While we have shown that the CTBN is able to represent
a Markov process as a set of interdependent subsystems,
it is also useful to show how the subsystems of a CTBN
can be merged together into “supernodes” containing the
dynamics of multiple subsystems (Nodelman et al., 2002).

First we introduce additional notation for specific state in-
stantiations and sets of state instantiations. Let 〈paX\Y 〉
denote the state instantiation 〈paX〉 excluding any state of
Y (this changes 〈paX〉 only if Y is a parent of X). Then
QX|〈paX\Y 〉,Y is the set of conditional intensity matrices
that are dependent on the state instantiation 〈paX\Y 〉 and
each state of Y ,

QX|〈paX\Y 〉,Y = {QX|〈paX\Y 〉,y|y ∈ Y }.

Let paX\Y denote the set of all combinations of state in-
stantiations to Pa(X) excluding any state of Y (again, this
changes paX only if Y is a parent of X).

The process involves combining sets of conditional in-
tensity matrices from two different nodes, QX|〈paX\Y 〉,Y
and QY |〈paY \X〉,X , and forming a new conditional inten-
sity matrix QXY |〈paXY 〉, where 〈paXY 〉 = 〈paX\Y 〉 ∪
〈paY \X〉. That is, the state instantiations for the parents of
X and Y are combined, excluding the state instantiations
for X and Y . The state instantiations for X and Y are ex-
cluded from 〈paXY 〉 because QXY |〈paXY 〉 will be defined
over all state combinations of X and Y .

Let qXi,j be entry i, j of QX|〈paX〉,yk
, and let qYk,l be entry

k, l of QY |〈paY 〉,xi
. The combined CIM QXY |〈paXY 〉 is

the matrix defined over the states (xi, yk), with the entries
populated as follows.

Algorithm 1 Amalgamate two nodes of a CTBN.
Amalgamate(X,Y)

1: QXY |Pa(XY) ← ∅
2: for 〈paX\Y 〉 ∈ paX\Y ; 〈paY \X〉 ∈ paY \X
3: QXY ← 0
4: for i, j = 1, . . . , |X|; l, k = 1, . . . , |Y |
5: QX ← QX|〈paX\Y 〉,xi

6: QY ← QY |〈paY \X〉,yk

7: if i = j ∧ k = l
8: qXY

(i,j),(k,l) ← qXi,j + qYk,l
9: else if i = j ∧ k 6= l

10: qXY
(i,j),(k,l) ← qYk,l

11: else if i 6= j ∧ k = l
12: qXY

(i,j),(k,l) ← qXi,j
13: end if
14: end for
15: QXY |〈paXY 〉 ← QXY

16: QXY |Pa(XY) ← QXY |Pa(XY) ∪ {QXY |〈paXY 〉}
17: end for
18: return QXY |Pa(XY)

qXY
(i,j),(k,l) =

qXi,j if i 6= j and k = l

qYk,l if i = j and k 6= l

qXi,j + qYk,l if i = j and k = l

0 otherwise

(2)

The CIM QXY |〈paXY 〉 defines the simultaneous dynamics
of X and Y , given that their parents are in states 〈paXY 〉.
Thus, the state-space of XY is the Cartesian product of
the states of X and Y , making QXY |〈paXY 〉 an |X||Y | ×
|X||Y | matrix.

Definition 2.3 (Amalgamation). Amalgamation takes two
nodes X and Y and replaces them with node XY , hav-
ing the set of conditional intensity matrices QXY |Pa(XY)

as formed by combining QX|〈paX\Y 〉,Y and QY |〈paY \X〉,X
∀〈paX\Y 〉 ∈ paX\Y and ∀〈paY \X〉 ∈ paY \X according
to Equation 2. Amalgamation can be viewed as a multipli-
cation operation over sets of conditional intensity matrices
and is denoted QXY |Pa(XY) = QX|Pa(X) ×QY |Pa(Y).

Amalgamation takes two nodes and combines all of their
CIMs, producing a set of CIMs that are conditioned on
the combined parent states of X and Y . Thus, the set
QXY |Pa(XY) contains

∏
Z∈Pa(XY) |Z| conditional inten-

sity matrices.

Algorithm 1 shows the pseudocode for amalgamating two
nodes of a CTBN. Line 1 initializes the empty set of
conditional intensity matrices for the amalgamated node.
Lines 2-18 iterate over all combinations of parent state in-
stantiations of X and Y , excluding the state of X and Y .
Line 3 initializes the conditional intensity matrix to be pop-
ulated. Lines 4-14 iterate over the state combinations of X

and Y . Lines 5-6 assign the conditional intensity matri-
ces to temporary variables for simpler notation. Lines 7-13
populate the parameters of the conditional intensity matrix
initialized in line 3 per Equation 2. Lines 15-17 add the
conditional intensity matrix to the set of conditional inten-
sity matrices of the amalgamated node, which is returned
in Line 19.

Definition 2.4 (Full Joint Intensity Matrix). The full joint
intensity matrix of a CTBN is the matrix resulting from
amalgamating all nodes of the CTBN,

Q =
∏

X∈N
QX|Pa(X).

The size of Q is n× n, where n =
∏

X∈N |X|.

For example, the full joint intensity matrix from the CTBN
in Section 2.2.1 is as follows.

QAB =

(a0, b0) (a0, b1) (a1, b0) (a1, b1)

(a0, b0) −6 5 1 0
(a0, b1) 6 −9 0 3
(a1, b0) 2 0 −9 7
(a1, b1) 0 4 8 −12

3 NODE MARGINALIZATION IN THE
LIMIT

Now we want to address the problem of computing station-
ary distributions for nodes in a CTBN N . Formally, we
want to compute πX for X ∈ X. We can calculate the sta-
tionary distribution for a node X having no parents in N
by simply using the approach of Equation 1 on the single
intensity matrix of X (provided that X is irreducible). For
nodes with dependencies (which is the point of the CTBN
model), each node’s stationary distribution depends on all
ancestors in the network. In the worst case, a node could
have all other nodes as ancestors (one of our experiments
is a case of this). But as we have shown, the number of
equations is exponential in the size of the network when
working with the full joint intensity matrix directly.

We need to perform node marginalization so as to remove
a node’s dependence on its parents. This will allow us to
contain the problem to individual subnetworks and not the
entire network. Marginalization methods for CTBNs have
been developed in the past, most notably expectation prop-
agation (Nodelman et al., 2005) and belief propagation (El-
Hay et al., 2010). Both of these methods approximate a
node’s unconditional intensity matrix; however, each of the
unconditional intensity matrices by these methods are com-
puted for a specific interval of constant evidence. They are
not intended to describe the dynamics of a node as t→∞,

which is what we need if we are to compute stationary dis-
tributions. The remainder of this section develops a novel
CTBN node marginalization method that computes a long-
run unconditional intensity matrix.

3.1 THEORY

The key to computing the stationary distributions of nodes
in the CTBN is to compute stationary distributions of sub-
systems of a Markov process. This allows us to work with
subsets of nodes, instead of dealing with Q all at once. Let
S be the starting subsystem and D be the destination sub-
system. We now want to compute the rate at which S tran-
sitions to D in the limit. Formally, we want a tractable way
to evaluate

qXS,D = lim
t→∞

lim
h→0+

P (X(t+ h) ∈ D|X(t) ∈ S)
h

. (3)

Theorem 3.1. For a Markov process with disjoint subsys-
tems S and D and qXS,D as defined above, then

qXS,D =
1

Z

∑
i∈S

πX
i

∑
j∈D

qXi,j

where Z =
∑

i∈S π
X
i .

Proof. Because S is a set of multiple states when condi-
tioning on X(t) ∈ S, we must weight each state i in S by
the probability of being in state i at time t and renormalize.

lim
t→∞

lim
h→0+

P (X(t+ h) ∈ D|X(t) ∈ S)
h

=

lim
t→∞

lim
h→0+

1∑
i∈S P (X(t) = i)

∑
i∈S

P (X(t) = i) ×

∑
j∈D

P (X(t+ h) = j|X(t) = i)

h
=

lim
t→∞

1∑
i∈S P (X(t) = i)

∑
i∈S

P (X(t) = i) ×

∑
j∈D

lim
h→0+

P (X(t+ h) = j|X(t) = i)

h
=

lim
t→∞

1∑
i∈S P (X(t) = i)

∑
i∈S

P (X(t) = i)
∑
j∈D

qXij =

1∑
i∈S π

X
i

∑
i∈S

πX
i

∑
j∈D

qXij =

1

Z

∑
i∈S

πX
i

∑
j∈D

qXij

Corollary 3.2. Suppose that a Markov process X com-
prises n disjoint subsystems {S1, . . . , Sn}. Then qXSi,Si

=∑n
j=1,j 6=i q

X
Si,Sj

.

Algorithm 2 Compute long-run unconditional intensity
matrix of a node.
MarginalizeNode(FamX)

1: for i = 1, . . . , |X|
2: for j = 1, . . . , |X| s.t. j 6= i
3: Z ←

∑
k∈Si

πX
k

4: qXi,j ← 1
Z

∑
k∈Si

πX
k

∑
l∈Dj

qFamX

k,l

5: end for
6: qXi,i =

∑|X|
j=1,j 6=i q

X
i,j

7: end for
8: return QX

Proof. This follows from the definition of a Markov pro-
cess, which constrains qXi,i =

∑
j 6=i q

X
i,j . In other words,

if we know the rate at which the process leaves one sub-
system and enters every other subsystem, we also know the
rate with which the process leaves the subsystem.

3.2 ALGORITHMS

Now we apply this idea of computing long-run transi-
tion rates for Markov process subsystems to amalgamated
nodes in a CTBN. In this case, we take the subsystems to be
the states of a child node in an amalgamation of the child
and its parents. After computing the long-run transition
rates for the subsystems, we can construct an unconditional
intensity matrix for the child node.

Algorithm 2 computes a long-run unconditional intensity
matrix for nodeX from a set of amalgamated nodesFamX

that includes X and all parents of X . The variables i and
j iterate over the rows and columns, respectively, for the
unconditional intensity matrix of X . Line 3 computes the
normalization constant. The sets Si and Dj are the states
in FamX that include state i and state j ofX , respectively.
Line 4 computes the long-run transition rate of node X
from state i to state j, according to Theorem 3.1. Line 6
computes the long-run sojourn rate of state i of node X ,
according to Corollary 3.2. Line 8 returns the long-run un-
conditional intensity matrix of X that are populated by en-
tries qXi,j . The complexity of Algorithm 2 is dominated by
the computation of the stationary distribution. Assuming
QX is non-singular, its stationary distribution can be com-
puted in O(n3).

Now that we can compute a long-run unconditional inten-
sity matrix for a node, we can break the dependence of
the child on its parents. The unconditional intensity matrix
computed for the child will already incorporate the station-
ary distribution of the parents. We can repeat the process
in a top-down fashion through the network, computing the
stationary distributions of every node in the network with-
out having to deal with the entire network all at once. Al-
gorithm 3 calculates the long-run unconditional intensity
matrices for all of the nodes in a CTBN.

Algorithm 3 Compute long-run unconditional intensity
matrices of a CTBN.
MarginalizeCTBN(G)

1: G′ ← CollapseCycles(G)
2: repeat until termination
3: L1 ←

⋃
X∈G′

X s.t. Pa(X) = null

4: L2 ←
⋃

X∈L1

Ch(X) s.t. Pa(Ch(X)) ⊆ L1

5: if L2 = null then terminate
6: for X ∈ L2

7: FamX ← X
8: for Y ∈ Pa(X)
9: FamX ← Amalgamate(FamX , Y)

10: end for
11: QX′ ← MarginalizeNode(FamX)
12: for Y ∈ Pa(X)
13: remove edge (Y,X) from G′
14: end for
15: QX ← QX′

16: end for
17: end repeat

We need to turn G into a directed acyclic graph (DAG)
from which we can divide the graph into top-to-bottom lev-
els. The behavior of a node depends on all of its ances-
tors, thus to create a DAG we need to amalgamate all the
nodes of each cycle. In the next section we will show an
approximation step that avoids collapsing cycles when the
cycles themselves are too large for their amalgamation to
be tractable.

In Algorithm 3, line 1 collapses the cycles in the G by amal-
gamating all of the nodes in each cycle. Lines 2-17 iterate
over the levels of the DAG. Lines 3-4 find all of the 2nd-
level nodes, i.e., nodes with no other ancestors than their
immediate parents. If there are no more 2nd-level nodes,
then all of the nodes have been marginalized (no nodes have
parents), and line 5 terminates the loop. Lines 6-16 iterate
over all of the 2nd-level nodes. Lines 7-10 amalgamate
each 2nd-level node with all of its parents. Line 11 com-
putes the long-run unconditional intensity matrix for each
2nd-level node. Lines 12-14 remove the dependency of the
node on its parents, and line 15 updates the node’s set of
intensity matrices with the single intensity matrix from line
11. At the conclusion of the algorithm, the nodes of N are
individual unconditional Markov processes. Note that the
stationary distributions are computed along the way by Al-
gorithm 2. The complexity of the algorithm is dominated
by the maximum number of parents of any node (analogous
to tree-width in Bayesian network inference).

3.3 APPROXIMATION FOR CYCLES

One difficulty of node marginalization is that the dynamics
of a node depend on all of its ancestors. If the network is
a directed acyclic graph (DAG), then we can marginalize
each level in succession, and the complexity of isolation
depends on the number of immediate parents to each node.
However, cycles are allowed in CTBNs. When a cycle is
introduced, every node in the cycle must be included to
marginalize any node in the cycle, because every node in
the cycle is an ancestor of every other node in the cycle.

We can address this complication by adding an iterative
step to our long-run node marginalization algorithm that
avoids dealing with the entire cycle all at once. First, we
identify the cycles and all of the nodes they comprise. Let
XC denote the set of arbitrarily chosen nodes that cover all
of the cycles (it is possible that a single node could cover
multiple cycles). The set XC covers a cycle when at least
one node in XC is part of the cycle.

For each X ∈ XC , we temporarily remove all incoming
arcs. Previously, the node had a set of conditional intensity
matrices, whereas now we need to replace it with one un-
conditional intensity matrix. While this unconditional in-
tensity matrix depends on the dynamics of the parents that
were just removed, we simply use an unconditional inten-
sity matrix that is the average of the node’s conditional in-
tensity matrices. Formally, for each X ∈ XC , we remove
the incoming arcs to X and estimate an initial uncondi-
tional intensity matrix for X as

Q̂X ←
1

|QX|Pa(X)|
∑

QX|〈paX〉∈QX|Pa(X)

QX|〈paX〉.

Once we have done this for every cycle, the graph becomes
a DAG, and we run the MarginalizeCTBN algorithm as be-
fore.

Depending on the actual parameters, the resulting uncon-
ditional intensity matrices could be a poor approximation,
because of how we estimated the unconditional intensity
matrix of the nodes in XC . Now we can improve on our
estimates for Q̂X because, after the first iteration, we have
an unconditional intensity matrix for every immediate par-
ent ofX . So we add back all of the incoming nodes of each
X ∈ XC and call MarginalizeNode on each of these nodes.
This results in updated estimates for each Q̂X which now
take into account an estimate of the dynamics of the parents
of each X . Now we have the original DAG with updated
unconditional intensity matrices for eachX ∈ XC . We can
call MarginalizeCTBN again.

This process continues to loop around the cycles until con-
vergence. This process is analogous to loopy belief prop-
agation in cyclic graphs, such as in Markov random fields

Figure 1: Drug effect network.

and in Bayesian networks in which the acyclic constraint
has been relaxed (Koller & Friedman, 2009). The long-run
unconditional intensity matrices are approximations in this
case, because we have never viewed the cycle as a whole.
On the other hand, if the cycles have too many nodes, we
have kept the problem tractable.

4 EXPERIMENTS

We demonstrate the long-run marginalization methods on
three networks—two synthetic networks and one real-
world network. The two synthetic networks are small
enough that we can compute the stationary distributions
from the full joint intensity matrix. For the real-world net-
work, we can approximate the stationary distributions by
forward sampling the CTBN long enough into the future
such that the samples will have converged to the stationary
distribution.

4.1 DRUG EFFECT NETWORK

First, we used the drug effect network from Nodelman et al.
(2002) as shown in Figure 1. The network is a toy model
that shows the interaction of several variables on a patient’s
pain and drowsiness.

We collapse the Hungry → Eating → Full Stomach cycle
and marginalize Concentration. The unconditional inten-
sity matrix of Concentration is

QConcentration ≈

−0.02 0.01 0.01
0.25 −0.26 0.01
0.01 0.50 −0.51

 .

We then marginalize Pain and Drowsy, which yields,

QPain ≈
(
−0.56 0.56
0.28 −0.28

)
and

QDrowsy ≈
(
−0.18 0.18
0.46 −0.46

)
.

The calculated stationary distributions from both the
marginalized nodes and the full joint intensity matrix are

πpain ≈ 0.336

πpain-free ≈ 0.664

πdrowsy ≈ 0.713

πnon-drowsy ≈ 0.287.

However, using the full joint intensity matrix (brute-
force method) required solving a system of 864 equations.
Through our long-run node marginalization method, we
needed to solve systems of 72, 12, and 4 equations. In other
words, the complexity has been reduced by approximately
a factor of 10.

4.2 RING NETWORK

This second experiment tests our long-run marginalization
method on cyclic networks of varying length. For a ring
network of size n, we construct the network by adding n
three-state (s0, s1, s2) nodes and connecting them as fol-
lows:

X1 → X2 → · · · → Xn → X1.

Let each qki,j be an independent sample from a uniform dis-
tribution over the interval (0, 1). The conditional intensity
matrices for the nodes are defined as follows (for ease of
definition, X0 and Xn denote the same node):

QXk|Xk−1=s0 =

−qk1,1 qk1,1 0
0 −qk1,2 qk1,2
qk1,3 0 −qk1,3

 ,

QXk|Xk−1=s1 =

−q
k
2,1

qk2,1
2

qk2,1
2

qk2,2
2 −qk2,2

qk2,2
2

qk2,3
2

qk2,3
2 −qk2,3

 ,

QXk|Xk−1=s2 =

−qk3,1 0 qk3,1
qk3,2 −qk3,2 0
0 qk3,3 −qk3,3

 .

We vary the length of the cycle from 3 nodes to 8
nodes and, for each cycle length, apply the approximate
node marginalization method described in Section 3.3 and
compare the accuracy to the results from the brute-force
method. (Note that in this case the brute-force and ex-
act node marginalization methods are identical, because the
whole network is a cycle.) Because each network is gen-
erated with random parameters, we run a total of 100 tri-
als for each cycle length and average the results. We keep
track of the average number of iterations for the stationary
distribution estimates to converge, and we compute the av-
erage KL-divergence of the stationary distributions results
using the full joint intensity matrix from the results using
the iterative node marginalization method. These results
are shown in Table 1.

Table 1: Results for the ring networks.

Cycle Avg. Iterations Average
Length to Converge KL-Divergence

3 12.1 3.1E-4
4 10.1 5.5E-5
5 8.2 2.1E-5
6 7.6 1.7E-5
7 6.8 1.9E-5
8 6.0 1.4E-5

At least for these randomly generated networks, the itera-
tive node marginalization method maintained accurate es-
timates of the stationary distributions, and the number of
iterations to converge tended to decrease as the cycle grew.
Notice that the error decreases as the cycle length increases.
For these networks, at least, the dynamics of a node are
most influenced by the immediate parent. The second-most
influential node is the parent’s parent, and so on. As the
length of the cycle increases, the influence of the “arc that
completes the cycle” (whichever arc one chooses this to
be) exerts less influence on the dynamics of the cycle as a
whole. Therefore, temporarily removing an arc has a de-
creasing impact as the cycle becomes larger.

For a 3-node cycle, amalgamating the whole cycle will
most likely still be a tractable approach. For longer cycle
lengths, on the other hand, the applicability of the iterative
node marginalization method becomes more critical. In our
setup, every node added to the cycle triples the size of the
full joint intensity matrices and hence the system of equa-
tions to solve.

4.3 CARDIAC ASSIST SYSTEM

Third, we compared the inference methods on a larger, real-
world network. We used the model for a cardiac assist sys-
tem (CAS), presented by Cao (2011), which is broadly used
in the literature and based on a real-world system (Boudali
et al., 2007; Portinale et al., 2010). Cao (2011) shows how
the CTBN is able to encode Dynamic Fault Trees (DFTs),
which are reliability models that use Boolean logic to com-
bine series of lower-level failure events while preserving
failure sequence information (Dugan et al., 1992). The
intensity matrices of the CTBN are used to represent the
gates available in the DFT, including AND, OR, warm
spare (WSP), sequence enforcing (SEQ), probabilistic de-
pendency (PDEP), and priority AND (PAND). Our model
for this experiment is the DFT for the CAS system repre-
sented as a CTBN. Of the various repair policies evaluated
by Cao (2011), we use the repair rate of µ = 0.1 (10 hours)
for all components.

Figure 2 shows the network, while Table 2 gives the node
names. In this model, we are interested in the stationary

Figure 2: Cardiac assist system model.

distribution of the System node, i.e., in the long run, what
proportion of the time will the System be operational? This
corresponds to the operational availability of the subsys-
tem.

Notice that the node in which we are most interested is a
descendant of every other node in the network. Using our
node marginalization method, we can compute the station-
ary distribution of the System node as

πsystem-up ≈ 0.942

πsystem-down ≈ 0.058.

If we had attempted to work with the full joint intensity
matrix directly, we would be faced with solving a system of
over 6.6 million equations. In other words, the brute-force
method is intractable for this real-world network. Instead,
our node marginalization method divided the network into
a total of 14 subnetworks, with the two largest representing
systems of only 20 equations.

Instead of trying to solve the system of equations for this
large network, we can approximate the stationary distri-
bution by forward sampling the CTBN and observing the
convergence of the state probabilities. Because this is an
approximation method, we ran multiple trials to quantify
the average behavior of the approximation. We ran 100 tri-
als and averaged the results. For each trial, we sampled
the network so that we had 10K transitions for the Sys-
tem node. Because the dynamics of System depend on ev-
ery other node, we had to sample transitions from all other
nodes as well. By the time we had generated 10K transi-
tions for System, we had generated more than 100K transi-
tions on average for the other nodes. Our approximation of
the stationary distribution of System from 10K transitions
still resulted in a KL-divergence of 7.2E-3 on average. On
the other hand, our node marginalization method computed
the exact answer over 3 times faster on average.

Note that our node marginalization method produces an-

Table 2: CAS component names.

Abbreviation Name Subsystem
P primary CPU CPU
B warm spare CPU CPU

CS cross switch CPU
SS system supervision CPU
MA primary motor Motor
MB cold spare motor Motor
MS switching component Motor
PA pump A Pump
PB pump B Pump
PS cold shared pump Pump

Table 3: Expected sojourn times for CAS subsystems.

Subsystem MTBF (hrs) MTTR (hrs)
CPU 154 9.38

Pump 60K 5.00
Motor 410M 6.50

other useful output. Because the method computes uncon-
ditional intensity matrices along the way, we can observe
not only the stationary distributions of different nodes but
their long-run expected sojourn times as well. For exam-
ple, looking at the diagonal entries of the unconditional in-
tensity matrices of System, we see that, in the long-run, the
mean time between failures (MTBF) for the system is about
153 hours and the mean time to repair (MTTR) is about
9.37 hours. Which of the three subsystems contributes the
most to these values? Because of the top-down marginal-
ization process, we have already calculated the same values
for each of three subsystems, summarized in Table 3.

We have identified that the CPU subsystem contributes the
most to System failure, while the Motor subsystem, due to

its high reliability rates and its redundancy, very rarely con-
tributes to System failures. The Pump subsystem is identi-
fied as the fastest to be repaired. From long-run analysis on
both the stationary distributions and the expected sojourn
times, we have efficiently identified and quantified the un-
reliability of the CPU subsystem for efforts to make the
CAS more robust and reliable.

5 DISCUSSION

The experiments demonstrate the capability of the exact
and approximate node marginalzation methods developed
in this paper. We started with two synthetic networks that
were small enough to compute the stationary distributions
using the traditional approach when viewing a CTBN as
a Markov process via its full joint intensity matrix. With
the drug effect network, we showed that the exact method
computes the same values with a fraction of the computa-
tional complexity. With the cyclic network, the brute-force
and exact methods become indistinguishable. We showed
how an iterative variation of the exact node marginalization
method can effectively approximate the stationary distribu-
tions of nodes in cycles without handling the entire cycle
all at once. Lastly, we applied the node approximation
method to a non-trivial real-world network. In this case,
working with the full joint intensity matrix (the tradition,
brute-force approach) is intractable. We compare our ex-
act node marginalization method to an approximate method
based on forward sampling. For this experiment, our node
marginalization method is both more efficient and yields
the exact answer instead of an approximation.

Our methods assume that the stationary distributions of in-
dividual subnetworks can be computed efficiently. Specif-
ically, solving Equation 1 requires the matrix to be non-
singular (i.e., that the Markov process be irreducible). For
some CTBNs, this may not be the case, and some sub-
systems of the process may not be irreducible. Our exact
method breaks down in this case. However, note that the
traditional approach also breaks down, because it is also
based on Equation 1. As long as there exists a method
to compute π for a subnetwork (or at least approximate
π), this vector can be used in our top-down and/or iterative
node marginalization methods.

6 CONCLUSION

We have shown how to compute stationary distributions
and long-run expected sojourn times for CTBNs tractably
without working directly with the full joint intensity matrix.
For CTBNs with long cycles, we have shown an iterative
marginalization method that can be used to approximate
the long-run behavior. To demonstrate the methods, we
tested on three networks of varying complexity and showed
the advantage of using our marginalization methods. Fu-

ture work involves analyzing the behavior of the iterative
marginalization method, including research into network
topologies and parameters that could make the approxima-
tion poor, as well as analyzing convergence properties such
as proof of convergence.

References

Boudali, H., Crouzen, P., & Stoelinga, M. (2007). Dy-
namic fault tree analysis using input/output interactive
Markov chains. In 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (pp.
708–717).

Cao, D. (2011). Novel models and algorithms for systems
reliability modeling and optimization. Wayne State Uni-
versity.

Dugan, J., Bavuso, S., & Boyd, M. (1992). Dynamic fault-
tree models for fault-tolerant computer systems. IEEE
Transactions on Reliability, 41(3), 363–377.

El-Hay, T., Cohn, I., Friedman, N., & Kupferman, R.
(2010). Continuous-time belief propagation. In Proceed-
ings of the 27th International Conference on Machine
Learning (ICML).

Gatti, E. (2011). Graphical models for continuous time
inference and decision making. Università degli Studi di
Milano-Bicocca.

Gatti, E., Luciani, D., & Stella, F. (2011). A continu-
ous time Bayesian network model for cardiogenic heart
failure. Flexible Services and Manufacturing Journal,
1–20.

Herbrich, R., Graepel, T., & Murphy, B. (2007). Struc-
ture from failure. In Proceedings of the 2nd USENIX
workshop on tackling computer systems problems with
machine learning techniques (pp. 1–6).

Koller, D., & Friedman, N. (2009). Probabilistic Graphical
Models: Principles and Techniques. MIT Press.

Murphy, K. (2002). Dynamic Bayesian networks: repre-
sentation, inference and learning. University of Califor-
nia.

Nodelman, U. (2007). Continuous time Bayesian networks.
Stanford University.

Nodelman, U., Koller, D., & Shelton, C. (2005). Ex-
pectation propagation for continuous time Bayesian net-
works. In Proceedings of the Twenty-First Conference
Annual Conference on Uncertainty in Artificial Intel-
ligence (UAI-05) (pp. 431–440). Arlington, Virginia:
AUAI Press.

Nodelman, U., Shelton, C., & Koller, D. (2002). Con-
tinuous time Bayesian networks. In Proceedings of the
Eighteenth Conference on Uncertainty in Artificial Intel-
ligence (UAI) (pp. 378–387).

Portinale, L., Raiteri, D., & Montani, S. (2010). Supporting
reliability engineers in exploiting the power of dynamic
Bayesian networks. International Journal of Approxi-
mate Reasoning (IJAR), 51(2), 179–195.

Sturlaugson, L., & Sheppard, J. W. (2015). Sensitivity
analysis of continuous time Bayesian network reliability
models. SIAM/ASA Journal on Uncertainty Quantifica-
tion, 3(1), 346–369.

Taylor, H., & Karlin, S. (1998). An Introduction to Stochas-
tic Modeling. Academic Press.

Xu, J., & Shelton, C. (2008). Continuous Time Bayesian
Networks for Host Level Network Intrusion Detection.
In W. Daelemans, B. Goethals, & K. Morik (Eds.), Ma-
chine Learning and Knowledge Discovery in Databases
(Vol. 5212, pp. 613–627). Springer Berlin / Heidelberg.

Xu, J., & Shelton, C. (2010, September). Intrusion detec-
tion using continuous time Bayesian networks. Journal
of Artificial Intelligence Research (JAIR), 39(1), 745–
774.

