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Abstract
Ridge regression is one of the most popular and
effective regularized regression methods, and
one case of particular interest is that the number
of features p is much larger than the number of
samples n, i.e. p � n. In this case, the standard
optimization algorithm for ridge regression com-
putes the optimal solution x⇤ in O(n2p + n3

)

time. In this paper, we propose a fast relative-
error approximation algorithm for ridge regres-
sion. More specifically, our algorithm outputs a
solution ˜x satisfying k˜x � x⇤k

2

 ✏kx⇤k
2

with
high probability and runs in ˜O(nnz(A)+n3/✏2)
time, where nnz(A) is the number of non-zero
entries of matrix A.

To the best of our knowledge, this is the first al-
gorithm for ridge regression that runs in o(n2p)
time with provable relative-error approximation
bound on the output vector. In addition, we an-
alyze the risk inflation bound of our algorithm
and apply our techniques to two generalizations
of ridge regression, including multiple response
ridge regression and a non-linear ridge regression
problem. Finally, we show empirical results on
both synthetic and real datasets.

1 INTRODUCTION

Ridge regression is one of the most popular and effective
regularized regression methods, and one case of particu-
lar interest is that the number of features p is much larger
than the number of samples n, i.e. p � n. The defini-
tion of ridge regression problem is as follows. Given an
n⇥ p sample-by-feature design matrix A together with an
n-dimensional target vector b, and a parameter � > 0, the
goal of ridge regression is to find a p-dimensional vector

⇤The first two authors contributed equally.

x⇤ such that

x⇤
= argmin

x2Rp
kAx� bk2

2

+ � kxk2
2

. (1)

Saunders et al. [29] showed that that the unique minimizer
of Eq. (1) can be computed as follows

x⇤
= AT

(AAT
+ �In)

�1b. (2)

Using Eq. (2), the time complexity of computing x⇤ is
O(n2p + n3

), which is O(n2p) when p � n. This ap-
proach is widely applied in practice for the p > n cases.
However, for large dataset with high dimensional features,
i.e. p� n� 1, this approach can be prohibitively slow.

Our contributions. In this paper, we present the first al-
gorithm for ridge regression that runs in o(n2p) time with
a provable relative-error approximation bound on the out-
put vector. Specifically, our proposed algorithm outputs a
vector ˜x such that k˜x� x⇤k

2

 ✏ kx⇤k
2

with high prob-
ability without any assumptions on input A and b. We
show that our proposed algorithm runs in O(nnz(A) +

n2r log( r✏ )/✏
2

) time, where nnz(A) is the number of non-
zero entries of A and r is the rank of A. Since nnz(A) 
np ⌧ n2p and r  n, our algorithm is substantially faster
than the existing approach, which uses O(n2p + n3

) for
p � n instances, even if A is full rank (in this case, our
algorithm runs in O(nnz(A) + n3

log(

n
✏ )/✏

2

) time).

For supplements to our main result, we also prove a risk
inflation bound of our algorithm under standard statistical
assumptions. In addition, we apply our techniques to sev-
eral generalizations of ridge regression. In particular, we
extend our algorithm to multiple ridge regression problem,
where there are multiple target vectors. Similar to our re-
sult for standard ridge regression, we also prove a relative-
error bound on the output. Moreover, building upon the
recent results [3], we extend our techniques and design a
fast relative-error approximation algorithm for a non-linear
ridge regression problem.

We evaluate our algorithm on both synthetic and real
datasets. The experimental results support our theoretical



analysis and demonstrate that the proposed algorithm can
achieve considerable speed gains and produce highly accu-
rate outputs.

1.1 Related work

Oblivious subspace embedding (OSE). Sarlós [28] pio-
neered the use of OSEs for accelerating approximation al-
gorithms for numerical linear algebra problems, including
matrix multiplication, linear regression and low rank ap-
proximation. His algorithms were later improved by several
work [12, 24] using different OSEs such as sparse embed-
ding. More recent work showed that OSEs can be used to
speed up other problems as well, including k-means clus-
tering [10], approximating leverage scores [23], canonical
correlation analysis [2], support vector machine [25], SVD-
truncated linear regression [9], and non-linear regression
[3]. In this line of research, approximation algorithms of
linear regression [28, 12, 24, 27] are the most relevant to
ours. However, all of these work focused on n � p in-
stances and the fastest algorithm [24] among them runs
in O(nnz(A) + p3 log(p)/✏2) time, which is inefficient in
p � n cases. Moreover, they used the sketched matrix
SA which reduces the sample size n while we use AST

which reduces feature dimension p. This distinction leads
to a very different design and analysis of algorithms.

Ridge regression. The bottlenecks of solving ridge regres-
sion are constructing and inverting the kernel matrix AAT .
In the mean time, fast kernel approximation algorithms
for large datasets have been a research focus for many
years. Many approximation schemes are highly success-
ful such as low rank approximation [33], Nyström meth-
ods [7, 15, 19, 34], sampling [20, 1], incomplete Cholesky
factorization [5, 16] and specialized techniques for certain
classes of kernels [26, 21]. We notice that many of these
proposals focused on speeding up the n � p cases but
did not necessarily improve the p � n cases. More im-
portantly, from these work, it is not clear how the error of
kernel approximation impacts on the accuracy of the ap-
proximation result of ridge regression. This problem was
recently studied in several work [13, 4, 35] under different
settings. However, none of these work provided a relative-
error approximation guarantee on the output vector.

The work most closely related to our results is [22]. They
proposed an approximation algorithm for ridge regression
by accelerating the computation of kernel matrix AAT

using subsampled randomized Hadamard transformation
(SRHT). Their algorithm runs in O(np log(n)/✏2 + n3

)

time, which is o(n2p) time. However, their algorithm does
not have a provable guarantee on the error of the output
vector. In addition, the risk inflation bound they proved
might not hold since their proof is based on a problematic
claim. We have included a detailed argument and coun-
terexample for their proof in our supplementary material
(see Section E).

2 PRELIMINARIES

2.1 NOTATION

Let [k] denote the set of integers {1, 2, . . . , k}. Given a ma-
trix M 2 Rn⇥p of rank r. For i 2 [n], let M

(i) denote the
i-th row of M as a row vector. Let nnz(M) denote the num-
ber of non-zero entries of M. Let kMkF denote the Frobe-
nius norm of M and let kMk

2

denote the spectral norm
of M. Let �i(M) denote the i-th largest singular value
of M and let �

max

(M) and �
min

(M) denote the largest
and smallest singular values of M. The thin SVD of M is
M = UM⌃MVT

M , where UM 2 Rn⇥r, ⌃M 2 Rr⇥r and
VM 2 Rp⇥r.

The Moore-Penrose pseudoinverse of M is a p⇥ n matrix
defined by M†

= VM⌃�1

M UT
M , which can be computed in

O(n2p) time when p > n. Finally, let In denote the n⇥ n
identity matrix and let 0n denote the n⇥ n zero matrix.

2.2 OBLIVIOUS SUBSPACE EMBEDDING

We start by reviewing the definition of oblivious subspace
embedding (OSE).
Definition 1. Given any r > 0, � 2 (0, 1) and ✏ 2 (0, 1),
we call a t⇥p random matrix S an (r, �, ✏)-OSE, if, for any
rank r matrix M 2 Rp⇥m, the following holds simultane-
ously for all z 2 Rm,

(1� ✏) kMzk
2

 kSMzk
2

 (1 + ✏) kMzk
2

,

with probability at least 1� �.

In fact, many random matrices, which are widely used in
machine learning, have been shown to be OSEs, e.g. Gaus-
sian matrices [14] and random sign matrices [28]. However,
many of these matrices are dense. For a dense OSE S 2
Rt⇥p, computing sketched matrix SM given M 2 Rp⇥m

requires time O(t · nnz(M)). To speed up the computation
of the sketched matrix SM, several work sought S support-
ing fast matrix-vector multiplication [12, 32, 24]. We refer
interested readers to [8] for an overview of the development
of fast OSEs.

In this paper, we use a combination of two types of
fast OSEs: sparse embedding and subsampled randomized
Hadamard transformation (SRHT). In the following, we
review their definitions and key properties.

Sparse embedding. A sparse embedding matrix �sparse is
a very sparse matrix such that there is only one non-zero
element per column. �sparse 2 Rt⇥p can be constructed as
follows. Let h : [p] ! [t] be a random mapping such that
for each i 2 [p], h(i) is uniformly distributed over [t]. Let
� 2 {0, 1}t⇥p be a binary matrix with �h(i),i = 1 for
each i 2 [p] and all remaining entries 0. Let D be an p⇥ p
random diagonal matrix where each diagonal entry is inde-
pendent chosen +1 or �1 with equal probability. Finally,



the sparse embedding matrix �sparse is the product of D
and �, i.e. �sparse = �D. It is easy to see that comput-
ing �sparseM takes O(nnz(M)) time due to the sparsity of
�sparse.

Recently, Clarkson and Woodruff [12] showed that �sparse
is an (r, �, ✏)-OSE if t � O(r2/✏4). Later, the bound on
t was improved to t � O(r2/✏2) by Nelson and Nguyen
[24]. Their result is restated in the following.
Theorem 1. [24, Theorem 3] Given ✏ 2 (0, 1), � 2 (0, 1)
and r > 0, if t � ��1

(r2 + r)/(2✏ � ✏2)2, then sparse
embedding matrix �sparse 2 Rt⇥p is an (r, �, ✏)-OSE.

SRHT. An SRHT matrix �srht is a highly structured matrix
which allows fast, FFT-style matrix-vector multiplication.
The definition of SRHT matrix �srht 2 Rt⇥p is as follows.
Without loss of generality, suppose that p is a power of 2
(otherwise we can pad a sufficient number of zeros). Then,
�srht is given by

�srht =

r
p

t
RHD,

where D 2 Rp⇥p is a random diagonal matrix whose en-
tries are +1 or �1 with equal probability; R 2 Rt⇥p are
t rows from the p ⇥ p identity matrix, where the rows
are chosen uniformly at random without replacement; and
H 2 Rp⇥p is a normalized Walsh-Hadamard matrix, which
is defined as

Hk =


Hk/2 Hk/2

Hk/2 �Hk/2

�
with H

2

=


+1 +1

+1 �1

�
,

and H = p�
1
2Hp 2 Rp⇥p.

Using FFT-style algorithms, the product �srhtM can be
computed in O(np log(p)) time [32]. Tropp [32] showed
that �srht is an OSE if t � O([

p
r +

p
log(p)]2 log(r)/✏),

or t � O(r log(r)/✏) when r > log(p). His result is re-
stated in the next theorem.
Theorem 2. [32, Lemma 4.1] Given ✏ 2 (0, 1), � 2 (0, 1)
and r > 0, if t � 6✏�1

[

p
r +

p
8 log(3p/�)]2 log(3r/�),

then SRHT matrix �srht 2 Rt⇥p is an (r, �, ✏)-OSE.

2.3 COMBINATION OF SPARSE EMBEDDING
AND SRHT

Sparse embedding matrix is an extremely fast OSE since
computing �sparseM takes only O(nnz(M)) time, which
equals to the complexity of reading M. Meanwhile SRHT
produces a sketch with t = O(r log(r)/✏) rows which
is smaller than sparse embedding, which requires t =

O(r2/✏2). In this paper, we use the combination of SRHT
and sparse embedding that enjoys the benefits from both
of them. Specifically, we consider the product S =

�srht�sparse, where �srht is a t ⇥ t0 SRHT matrix and
�sparse is a t0 ⇥ p sparse embedding matrix. The next theo-
rem shows that, if t = O([

p
r +

p
log(p)]2 log(r)/✏) and

t0 = O(r2/✏2), the product S is an OSE.

Theorem 3. Given ✏ 2 (0, 1), � 2 (0, 1) and r > 0,
select integers t0 � 2��1

(r2 + r)/(2✏/3 � ✏2/9)2 and
t � 18✏�1

[

p
r +

p
8 log(6p/�)]2 log(6r/�). Let �sparse

be a t0 ⇥ p sparse embedding matrix and let �srht be a
t ⇥ t0 SRHT matrix. Then the product S = �srht�sparse is
an (r, �, ✏)-OSE.

Hence, when r � O(log(p)), the product S has t =

O(r log(r)/✏) rows, which is smaller than only using
sparse embedding matrix, and computing a sketched matrix
SM given M 2 Rp⇥m takes O(nnz(M)+mr2 log(r)/✏2)
time. The proof of Theorem 3 is deferred to the supplemen-
tary material.

3 ALGORITHMS AND MAIN RESULTS

In this section, we present our approximation algorithm for
ridge regression (Algorithm 1). Then, we state our main re-
sult on the approximation guarantee of our algorithm (The-
orem 4). In Section 3.1, we outline the proofs of our main
result.

Algorithm. Algorithm 1 takes inputs of the design ma-
trix A 2 Rn⇥p, target vector b 2 Rn, regularization
parameter � > 0 and integer parameters t0 and t. The
first part of Algorithm 1 is to compute the sketched ma-
trix AST , where S 2 Rt⇥p is chosen to be the product
of sparse embedding matrix �sparse 2 Rt0⇥p and SRHT
matrix �srht 2 Rt⇥t0 , i.e. S = �srht�sparse. As the first
step, the algorithm constructs the sparse embedding matrix
�sparse and the SRHT matrix �srht. After that, the algorithm
applies �sparse and �srht to each row A

(i) and obtains the
sketched row (AST

)

(i) = (A
(i)�

T
sparse)�

T
srht for all i 2 [n].

This step can be done in one pass through the rows of A in
arbitrary order. The algorithm then combines the sketched
rows {(AST

)

(i)}i2[n] to form the sketched matrix AST .

Next, the algorithm uses the sketched matrix AST to com-
pute the approximate solution ˜x of ridge regression Eq. (1).
In this step, we use the following key estimation of ˜x,

˜x = AT
(AST

)

†T
(�(AST

)

†T
+AST

)

†b. (3)

This step requires access to AST , which is computed in
the previous step, and a second pass through A (for pre-
multiplying AT ). We summarize the above procedure of
computing AST and ˜x in Algorithm 1.

Main result. Our main result is the following theorem
which states that, with high probability, the output ˜x ob-
tained in Algorithm 1 is a relative-error approximation to
the optimal solution x⇤ of ridge regression .
Theorem 4. Suppose that we are given a design ma-
trix A 2 Rn⇥p of rank r, a target vector b 2 Rn,
a regularization parameter � > 0, accuracy parameters
✏ 2 (0, 1) and � 2 (0, 1). Select integers t0, t such that
t0 � 2��1

(r2 + r)/(✏/6� ✏2/144)2 and t � 72✏�1

[

p
r +p

8 log(6p/�)]2 log(6r/�). Run Algorithm 1 with inputs



Algorithm 1 Fast relative-error approximation algorithm
of ridge regression

Input: design matrix A 2 Rn⇥p (n samples with p fea-
tures), target vector b 2 Rn, regularization parameter
� > 0, integer parameters t0 and t.

Output: approximate solution ˜x 2 Rp to ridge regression
problem Eq. (1).

1: Construct sparse embedding matrix �sparse 2 Rt0⇥p.
2: Construct SRHT matrix �srht 2 Rt⇥t0 .
3: for each row A

(i) of A in arbitrary order do
4: Compute (AST

)

(i)  (A
(i)�

T
sparse)�

T
srht

5: end for
6: Construct AST by concatenating row vectors

{(AST
)

(i)}i2[n].
7: Compute the pseudoinverse (AST

)

†

8: Set ˜x AT
(AST

)

†T
(�(AST

)

†T
+AST

)

†b
9: return ˜x

A, b, �, t0, t and let ˜x denote the output of the algorithm.
Then, with probability at least 1� �, we have

k˜x� x⇤k
2

 ✏ kx⇤k
2

, (4)

where x⇤ is the optimal solution of ridge regression in
Eq. (1).

In addition, if t0 = O(r2/✏2) and t = O(r log(r)/✏), the
time complexity of Algorithm 1 is

O
⇣
nnz(A) + nr2 log

⇣r
✏

⌘
/✏2 + n2r log(r)/✏

⌘
.

Running times. Set t0 = O(r2/✏2) and t =

O(r log(r)/✏) according to Theorem 4. Then, the time
complexity of each step of Algorithm 1 can be ana-
lyzed as follows. Constructing sparse embedding matrix
�sparse and SRHT matrix �srht uses O(p) time. Right-
multiplying the sparse embedding matrix A�T

sparse takes
O(nnz(A)) time. Computing SRHT (A�T

sparse)�
T
srht uses

O(nt0 log(t0)) = O(nr2 log( r✏ )/✏
2

) time. The pseudoin-
verse of AST and �(AST

)

†T
+ AST can be computed

in O(n2t) = O(n2r log(r)/✏) time. Computing the prod-
uct (AST

)

†T
(�(AST

)

†T
+AST

)

†b also takes O(n2t) =
O(n2r log(r)/✏) time. Finally, left-multiplying AT uses
O(nnz(A)) time. So, the total running time is the sum of
all these operations, which is O(nnz(A)+nr2 log( r✏ )/✏

2

+

n2r log(r)/✏).

Remarks. In practice, one may not have prior knowledge
on the rank r of A. By Theorem 4, it is safe to assume that
r = n, which is the largest possible value of r, and hence
set t0 = O(n2/✏2) and t = O(n log(n)/✏). In this case, the
running time of Algorithm 1 is O(nnz(A)+n3

log(

n
✏ )/✏

2

).
This is still an o(n2p) algorithm and is substantially faster
than the standard O(n2p+ n3

) solver for p� n instances.

In addition, the estimation method of ˜x as in Eq. (3) holds
for general OSEs S, not necessarily limiting to the one used

in Algorithm 1, i.e. S = �srht�sparse. This fact is formalized
in the following lemma.
Lemma 1. Given A 2 Rn⇥p of rank r, b 2 Rn, � > 0.
Suppose that S 2 Rt⇥p is an (r, �, ✏/4)-OSE for ✏ 2 (0, 1)
and � 2 (0, 1). Then, with probability at least 1 � �, the
approximation solution ˜x obtained by Eq. (3) satisfies

k˜x� x⇤k
2

 ✏ kx⇤k
2

,

where x⇤ is the optimal solution to ridge regression Eq. (1).

Our choice of OSE S = �srht�sparse in Algorithm 1 guar-
antees that the sketched matrix AST can be computed effi-
ciently while has a small number of columns. By Lemma 1,
one may use other OSEs as well, for example, SRHT
S = �srht. This would lead to a total time complexity
of O(np log(p) + n2r log(r)/✏), which is slower than our
choice in Algorithm 1 if A is a sparse matrix.

3.1 PROOF

From this point on, we denote the thin SVD of matrix
A 2 Rn⇥p with rank r by A = U⌃VT , with U 2 Rn⇥r,
⌃ 2 Rr⇥r and V 2 Rp⇥r. We denote the full SVD of
SV by SV = U�⌃�V

T
� , with U� 2 Rt⇥r, ⌃� 2 Rr⇥r

and V� 2 Rr⇥r. Notice that V� is an r ⇥ r unitary ma-
trix and therefore V�V

T
� = Ir. We will frequently use the

following property of the pseudoinverse of matrix product.
Fact 1. For any matrix A 2 Rm⇥n and B 2 Rn⇥p, we
have (AB)

†
= B†A†, if at least one of the following holds.

1. A has orthonormal columns.

2. B has orthonormal rows.

3. A has full column rank and B has full row rank.

By Fact 1, we immediate obtain the following lemma.
Lemma 2. Suppose that SV is full rank, then the pseu-
doinverse of AST is given by

(AST
)

†
= (SV)

†T⌃�1UT .

The first step of our proof is to represent x⇤ and ˜x in a form
that is easier to work with.
Lemma 3. Let the optimal solution of ridge regression x⇤

be defined as in Eq. (2). We have

x⇤
= VG�1UTb,

where G = �⌃�1

+⌃.

Proof. Consider the full SVD of A as A = U
+

⌃
+

VT
+

,
with U

+

2 Rn⇥n, ⌃
+

2 Rn⇥n and V
+

2 Rp⇥n. By
the relationship between thin SVD and full SVD, we can

see that U
+

= [U,U�], ⌃+

=


⌃

0n�r

�
and V

+

=

[V,V�], with U� 2 Rn⇥(n�r) and V� 2 Rp⇥(n�r) be-
ing column orthonormal matrices.



Now, by definition of x⇤, we have

x⇤
= AT

(AAT
+ �I)�1b

= V
+

⌃
+

UT
+

(U
+

⌃2

+

UT
+

+ �U
+

UT
+

)

�1b

= V
+

⌃
+

(⌃2

+

+ �I)�1UT
+

b

= V
+


⌃

0n�r

� 
(⌃2

+ �Ir)
�1

��1In�r

�
UT

+

b

= V
+


(⌃+ �⌃�1

)

�1

0n�r

�
UT

+

b

= V(⌃+ �⌃�1

)

�1UTb.

Lemma 4. Define matrix ˜G = �⌃�1

+ ⌃(SV)

T
(SV).

Let ˜x be defined as in Eq. (3). Suppose that SV is full rank.
Then, we have that ˜G is full rank and that

˜x = V ˜G�1UTb.

Proof. By the construction of ˜x, we have

˜x = AT
�
(AST

)

†�T
⇣
�
�
(AST

)

†�T
+AST

⌘†
b

= V⌃UTU⌃�1

(SV)

† ��U⌃�1

(SV)

†
+U⌃(SV)

T
�†

b

= V(SV)

† ��U⌃�1

(SV)

†
+U⌃(SV)

T
�†

b

= VV�⌃
�1

� UT
�

⇣
�U⌃�1V�⌃

�1

� UT
� +U⌃V�⌃�U

T
�

⌘†
b

= VV�⌃
�1

� UT
�U�

⇣
�⌃�1V�⌃

�1

� +⌃V�⌃�

⌘†
UTb

= VV�⌃
�1

�

⇣
�⌃�1V�⌃

�1

� +⌃V�⌃�

⌘†
UTb, (5)

where we have repeatedly used Fact 1 and Lemma 2.

Define T
1

= �⌃�1V�⌃
�1

� + ⌃V�⌃�. Next, we show
that rank(T

1

) = r. To see this, we define T
2

= �I +

⌃V�⌃
2

�V
T
�⌃ and notice that T

2

= T
1

(⌃�V
T
�⌃). Since

� > 0, it is clear that T
2

is a positive definite matrix and
therefore rank(T

2

) = r.

Now notice that rank(⌃�V
T
�⌃) = rank(⌃�) = r. Hence,

we have

rank(T
1

) = rank(T
1

(⌃�V
T
�⌃)) = rank(T

2

) = r.

Then, using Fact 1 on ⌃†
� and T†

1

, we have

(5) = VV�

�
�⌃�1V� +⌃V�⌃

2

�

�†
UTb

= V
�
�⌃�1

+⌃V�⌃
2

�V
T
�

�†
UTb

= V ˜G†UTb,

where we have used Fact 1 again and that SV =

U�⌃�V
T
� . Finally, the rank of ˜G is given by

rank(

˜G) = rank(T
1

⌃�V
T
� ) = rank(T

1

) = r.

Hence the pseudoinverse of ˜G equals to its inverse,
i.e. ˜G†

=

˜G�1, and this concludes our proof of the
lemma.

From Lemma 3 and Lemma 4, we see that ˜x admits a rep-
resentation that is very similar to x⇤. It is clear that the key
difference between ˜x and x⇤ comes from that of ˜G and G.

The next lemma (Lemma 5) is our key technical lemma,
which shows that ˜G is closely related to G in the sense
that G�1 is an approximate matrix inversion of ˜G.
Lemma 5. Given ✏ 2 (0, 1/4) and � 2 (0, 1). Let S be
an (r, �, ✏)-OSE. Let ˜G = �⌃�1

+ ⌃(SV)

T
(SV) and

G = �⌃�1

+ ⌃. Notice that G is invertible and define
R = G�1

˜G� I. Then, with probability at least 1� �, we
have (a) SV is a full rank matrix, (b) kRk

2

 2✏+ ✏2, and
(c)

��
(I+R)

�1R
��
2

 2✏+ ✏2

1� (2✏+ ✏2)
.

To prove Lemma 5, we need two ingredients from linear
algerbra and the theory of OSEs. First, we use the following
property on the stability of singular values.
Lemma 6. [31, Section 1.3.22 (iv)] Let C 2 Rm⇥n and
D 2 Rm⇥n be two matrices of the same size. Then, for all
i 2 [min{m,n}],

|�i(C+D)� �i(C)|  kDk
2

.

Lemma 6 can be regarded as a generalization of Weyl’s in-
equality to singular values of non-Hermitian matrices. We
refer readers to [see 31, Section 1.3] for a proof.

The second ingredient we needed is the following charac-
terization of OSEs.
Theorem 5. Let V 2 Rp⇥r be a column orthonormal ma-
trix. Let S 2 Rt⇥p be an (r, �, ✏)-OSE. Then, with proba-
bility 1 � � over the choices of S, we have that (a) SV is
a full rank matrix and (b) for all i 2 [r], the i-th largest
singular value of SV is bounded by

|1� �i(SV)|  ✏. (6)

The proof of Lemma 6 and Theorem 5 is deferred to the
supplementary material. Using them, we are now ready to
prove Lemma 5.

Proof of Lemma 5. Since S is an (r, �, ✏)-OSE. By Theo-
rem 5, we have that, with probability 1 � �, SV is a full
rank matrix and all singular values of SV are bounded in
[1� ✏, 1+ ✏]. In the rest of the proof, we assume this holds.
And this already proves part (a) of the lemma.

We start with bounding kRk
2

. By the definition of R, we
have

kRk
2

=

���G�1

(

˜G�G)

���
2



=

��
(�⌃�1

+⌃)

�1⌃((SV)

T
(SV)� I)

��
2


��
(�⌃�1

+⌃)

�1⌃
��
2

��V�⌃
2

�V
T
� � I

��
2

=

��
(�⌃�1

+⌃)

�1⌃
��
2

��V�⌃
2

�V
T
� �V�V

T
�

��
2

=

��
(�⌃�1

+⌃)

�1⌃
��
2

��⌃2

� � I
��
2

 max

i

�i

���1

i + �i
((1 + ✏)2 � 1)

 2✏+ ✏2, (7)

where we have used the fact that V� is a unitary matrix and
dropped terms that do not change spectral norm.

Now, we apply Lemma 6 by setting C = I and D = R.
Then, for all i 2 [r], we have

�i(I+R) � 1� kRk
2

� 1� (2✏+ ✏2). (8)

Hence, we have
��
(I+R)

�1R
��
2


��
(I+R)

�1

��
2

kRk
2

 (�
min

(I+R))

�1 kRk
2

 2✏+ ✏2

1� (2✏+ ✏2)
.

We are now ready to prove our main results: Lemma 1 and
Theorem 4.

Proof of Lemma 1. Let ✏0 = ✏/4 and recall the definition
R = G�1

˜G�I. Since S is an (r, �, ✏0)-OSE. By Lemma 5,
with probability 1��, we have that SV is a full rank matrix
and that

��
(I+R)

�1R
��
2

 2✏0+✏02

1�(2✏0+✏02) . In the rest of the
proof, we assume that this event happens.

Since SV is a full rank matrix. Applying Lemma 3 and
Lemma 4, we have

k˜x� x⇤k
2

=

���V(

˜G�1 �G�1

)UTb
���
2

=

���( ˜G�1 �G�1

)UTb
���
2

, (9)

where we have dropped the unitary term V which does not
change l

2

norm.

Next, we write ˜G = G(I + R). This means that ˜G�1

=

(I+R)

�1G�1. Therefore,

(9) =
���

(I+R)

�1 � I
�
G�1UTb

��
2

=

���(I+R)

�1RG�1UTb
��
2

(10)


��
(I+R)

�1R
��
2

��G�1UTb
��
2

=

��
(I+R)

�1R
��
2

kx⇤k
2

 2✏0 + ✏02

1� (2✏0 + ✏02)
kx⇤k

2

(11)

 4✏0 kx⇤k
2

= ✏ kx⇤k
2

,

where Eq. (10) follows from matrix inversion lemma, i.e.
C�1 �D�1

= �C�1

(C �D)D�1 for any squared ma-
trices C and D of the same size, and Eq. (11) follows from
the assumption on

��
(I+R)

�1R
��
2

.

Proof of Theorem 4. It is easy to see that the solution ˜x
returned by Algorithm 1 is given by Eq. (3) with S =

�srht�sparse. Therefore, the bound on k˜x� xk
2

follows im-
mediately from Lemma 1 and Theorem 3 which shows that
S = �srht�sparse is an (r, �, ✏/4)-OSE. And the running
time analysis of Algorithm 1 is given in Section 3.

4 RISK INFLATION BOUND

In this section, we study the risk inflation of the approx-
imate solution ˜x returned by Algorithm 1 with respect to
the optimal solution x⇤ of ridge regression. We begin with
review the definition of risk of ridge regression. To prop-
erly define the risk, we need to that A and b have the linear
relationship as follows

b = Ax
0

+ e, (12)

where x
0

2 Rp is an unknown vector which is assumed to
be the “true” parameter and e 2 Rn is independent noise in
each coordinate, with E [ei] = 0 and Var [ei] = �2. Under
this assumption, the risk of any vector ˆb 2 Rn is given by

risk(

ˆb) , 1

n
E

���ˆb�Ax
0

���
2

2

�
,

where the expectation is taken over the randomness of noise
[4].

The following theorem shows that, compared with the op-
timal solution x⇤, the approximate solution ˜x returned by
Algorithm 1 increases the risk by a small additive factor.
Theorem 6. Given A 2 Rn⇥p of rank r, b 2 Rn,
� > 0, ✏ 2 (0, 1) and � 2 (0, 1). Assume that
A and b have the linear relationship as in Eq. (12).
Let ˜x denote the output of Algorithm 1 with inputs A,
b, �, t0 =

⌃
2��1

(r2 + r)/(✏/6� ✏2/144)2
⌥

and t =l
72✏�1

[

p
r +

p
8 log(6p/�)]2 log(6r/�)

m
. Let x⇤ denote

the optimal solution of ridge regression. Then, with proba-
bility at least 1� �,

risk(

˜b)  risk(b⇤
) +

3✏

n
kAk2

2

⇣
kx

0

k2 + �2⇢2
⌘
, (13)

where we define ˜b = A˜x and b⇤
= Ax⇤; we also define

⇢2 =

P
i2[r]

⇣
�i

�2
i+�

⌘
2

and �i is the i-th largest singular
value of A.

5 EXTENSIONS

In this section, we present two extensions to our algorithm.
First, we consider the multiple response ridge regression



problem, and obtain an efficient approximation algorithm
with relative-error guarantee similar with Algorithm 1. Sec-
ond, combining with the recent results of Avron et al. [3],
we present a fast relative-error approximation algorithm of
a special nonlinear ridge regression problem called struc-
tured ridge regression.

5.1 MULTIPLE RESPONSE RIDGE REGRESSION

In this part, we generalize our techniques to solve multi-
ple response ridge regression [11]. The multiple response
ridge regression problem is defined as follows. Given a
design matrix A 2 Rn⇥p, m target vectors (responses)
B 2 Rp⇥m and a regression parameter � > 0, the multiple
response regression problem is to find an n⇥m matrix X⇤

such that

X⇤
= argmin

X2Rn⇥m

kAX�Bk2F + � kXk2F . (14)

The optimal solution of Eq. (14) is given by

X⇤
= AT

(�In +AAT
)

�1B. (15)

It is clear that Eq. (15) takes O(n2p + n3

+ nm) time to
compute, which is expensive if p� n� 1.

Next, we generalize our techniques to solve multiple re-
sponse regression problem. The first step is to compute the
sketched matrix AST , where S = �srht�sparse. Notice that
this step is identical to that of Algorithm 1, which uses one
pass through A. Then, we use the following generalized
version of Eq. (3) to compute the approximate solution ˜X,

˜X = AT
(AST

)

†T
(�(AST

)

†T
+AST

)

†B, (16)

which uses a second pass through A. We show that the ap-
proximate solution ˜X given by Eq. (16) is a relative-error
approximation of X⇤ in the following theorem.
Theorem 7. Given A 2 Rn⇥p of rank r, B 2 Rn⇥m,
� > 0, parameter ✏ 2 (0, 1) and � 2 (0, 1). Select in-
tegers t0, t such that t0 � 2��1

(r2 + r)/(✏/6 � ✏2/144)2

and t � 72✏�1

[

p
r +

p
8 log(6p/�)]2 log(6r/�). Let S =

�srht�sparse, where �sparse 2 Rt0⇥p is a sparse embedding
matrix and �srht 2 Rt⇥t0 is an SRHT matrix. Then, with
probability at least 1� �, we have

��� ˜X�X⇤
���
F
 ✏ kX⇤kF ,

where ˜X is given by Eq. (16) and X⇤ is the optimal solu-
tion to multiple response ridge regression Eq. (14). In ad-
dition, the total time complexity of computing AST and ˜X
is O(nnz(A) + nr2 log( r✏ )/✏

2

+ n2r log(r)/✏+ nm).

5.2 STRUCTURED RIDGE REGRESSION

In this part, we consider a non-linear ridge regression prob-
lem, called structured ridge regression, which is closely re-
lated to kernel ridge regression with polynomial kernels.

Structured ridge regression uses a non-linear kernel ex-
pansion function 'q , which is studied recently by Avron
et al. [3] under the context of (non-regularized) structured
regression. The kernel expansion function 'q maps a p-
dimensional vector a to a pq-dimensional vector 'q(a) =

{aj�1

i }
(i,j)2[p]⇥[q] for q > 1. The definition of 'q corre-

sponds to the kernel function k'q (a,b) = 'q(a)
T'q(b) =P

(i,j)2[p]⇥[q](aibi)
j�1, for any p-dimensional a and b.

Clearly, k'q is related to polynomial kernels, which is de-

fined as kq(a,b) = (aTb)q =

⇣P
i2[p] aibi

⌘q
. For more

detailed discussion and the connections of 'q to other ker-
nels, we refer interested readers to [3].

In the following, we define structured ridge regression,
which can be seen an l

2

regularized version of structured
regression proposed by Avron et al. [3],

x⇤
= argmin

x2Rpq
k'q(A)x� bk2

2

+ � kxk2
2

, (17)

where 'q(A) is an n⇥ pq matrix consisting of n expanded
samples, i.e. its i-th row vector is 'q(A)

(i) = 'q(A
(i))

for all i 2 [n]. Clearly, Eq (17) is a non-linear ridge re-
gression problem. For this problem, the dual space ap-
proach gives that x⇤

= 'q(A)

T
(K + �In)

�1b, where
K = 'q(A)'q(A)

T . It is clear that computing x⇤ using
this approach takes O(n2pq + n3

) time.

We extend our techniques to accelerate the computa-
tion of structured ridge regression for p � n instances
by using the following property of 'q . Avron et al.
[3] showed that there exists a fast multiplication al-
gorithm which computes the product 'q(A)�T

sparse in
O((nnz(A) + nqt0) log2(q)) time by exploiting the
structure of 'q(A). Therefore, we only need to modify
Algorithm 1 to use the fast multiplication algorithm for
computing the sketched matrix ('q(A)�T

sparse)�
T
srht; then

run the modified algorithm with input 'q(A) and b. We
show that this procedure gives a relative-error approxima-
tion algorithm for structured ridge regression that runs in
O
�
nnz(A) log

2

(q) + n3q log2(q)/✏2 + n3

log

�
n
✏

�
/✏2

�

time, which is faster than the dual space approach when
p � n. For constant q, this is also asymptotically faster
than solving kernel ridge regression with polynomial
kernel in dual space, whose computational complexity is
O(n2p + n3

). We defer the detailed description of the
approximation algorithm and its related analysis to the
supplementary material (see Section D).

6 EXPERIMENTS

Baselines. We compare the performance of our algorithm
SKETCHING (Algorithm 1) to three baselines. The first
baseline is the STANDARD algorithm, which computes the
optimal solution using the dual space approach in Eq. (2).
The other two baselines use popular randomized dimen-
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Figure 1: Quality-of-approximation and running times on synthetic dataset

(a) ARCENE: Speedup (b) ARCENE: Error rate (c) ARCENE: Relative error

(d) DOROTHEA: Speedup (e) DOROTHEA: Error rate (f) DOROTHEA: Relative error

Figure 2: Classification accuracy and running times on realworld datasets

sionality reduction methods, including sampling and ran-
dom projection. The SAMPLING algorithm simply samples
a subset of t columns of A uniformly at random. The PRO-
JECTION algorithm post-multiplies A by a random sign
matrix �T

sign 2 Rp⇥t, with each entry of �sign having
value chosen from {±1/

p
t} uniformly at random. Then,

sketched matrices with t columns obtained by SAMPLING
and PROJECTION are plugged in Eq. (3) to compute an
approximate solution ˜x of ridge regression. Finally, no-
tice that �sign is also an OSE for sufficiently large t [28]
and therefore, by Lemma 1, the PROJECTION algorithm
produces a relative-error approximation as well. However,
for dense A, computing A�T

sign alone takes O(tnp) time,
which is even slower than the STANDARD algorithm when
t > n. Hence, we do not compare its running time to other
competing algorithms.

Implementation. Our implementation of Algorithm 1 is
slightly different from its description in two places. First,
Algorithm 1, and its analysis, uses the Walsh-Hadamard
transformation (as a step of SRHT), while our implementa-
tion uses discrete Hartley transformation (DHT) [30]. DHT
has a highly optimized implementation provided in FFTW
package [17]. In addition, it is possible to show that DHT or
other Fourier-type transformations have a guarantee similar
to Walsh-Hadamard transformation [2, 32]. Second, we set

t0 = 2t, i.e. the sketch size of sparse embedding is two
times larger than that of SRHT. Empirically, this setting
offers a good trade-off between accuracy and speed. All
competing algorithms are implemented using C++ and the
experiments are conducted on a standard workstation using
a single core.

6.1 SYNTHETIC DATASET

Setup. We generate the n ⇥ p design matrix A using the
following method, such that each row (sample) of A con-
tains an s-dimensional signal and p-dimensional noises.
Specifically, we define A = M⌃VT

+ ↵E. Here, M is
an n⇥ s matrix which represents the signals, and each en-
try Mij ⇠ N (0, 1) is an i.i.d Gaussian random variable.
⌃ is an s ⇥ s diagonal matrix and the diagonal entries are
given by ⌃ii = 1 � (i � 1)/p for each i 2 [s]. V is a
p ⇥ n column orthonormal matrix which contains a ran-
dom s-dimensional subspace of Rp. Notice that M⌃VT is
a rank s matrix with linearly decreasing singular values. E
is an n⇥ p matrix which contributes the additive Gaussian
noise Eij ⇠ N (0, 1). ↵ > 0 is a parameter chosen to bal-
ance the energy of signals M⌃VT and the energy of noises
E. In this experiment, we choose ↵ = 0.05 which brings��M⌃VT

��
F
⇡ ↵ kEkF . Then, we generate the target vec-

tor x 2 Rp with xi ⇠ N (0, 1). Finally, the target vector



b 2 Rn is given by b = Ax + �e, where ei ⇠ N (0, 1)
and � = 5.

Metrics. We measure the performance of our algorithm
and baselines both in terms of accuracy and speedup fac-
tor. More specifically, let x⇤ denote the optimal solu-
tion produced by the standard algorithm and let ˜x de-
note the output vector returned by an approximation al-
gorithm. To evaluate the accuracy of approximation, we
compute three metrics: relative error: k˜x�x

⇤k2
kx⇤k2

; cosine sim-

ilarity: ˜x

T
x⇤

k˜xk2kx⇤k2
; objective suboptimality: f(˜x)

f(x⇤
)

� 1, with

f(x) , kAx� bk2
2

+ � kxk2
2

. In addition, the speedup
factor is given by the ratio between the time used by STAN-
DARD algorithm and that of a competing algorithm.

Results. In the experiment, we set n = 500, p = 50000

and s = 50. We run the competing algorithms with 10
different choices of t within range [2000, 20000]. The re-
sults are shown in Figure 1. Figure 1(a) reports the speed
up of approximation algorithms with respect to the STAN-
DARD algorithm. We see that our algorithm SKETCHING
is slightly slower than the SAMPLING algorithm, but both
of them speed up considerably with respect to the STAN-
DARD algorithm. Figure 1(b), (c) and (d) plot the accuracy
metrics of the competing algorithms. We see that indeed
the accuracy of approximation improves as the sketch size
t increases. In addition, both of our SKETCHING algorithm
and the PROJECTION algorithm output a significantly more
accurate solution than the SAMPLING algorithm. Notably,
when the sketch size t ⇡ 10000, our algorithm SKETCH-
ING has a relative-error smaller than 10%, cosine similarity
larger than 99% and objective suboptimality less than 10%;
meanwhile speeds up the computation about 4 times.

6.2 REALWORLD DATASETS

Setup. We also test the proposed algorithm on two binary
classification datasets: ARCENE and DOROTHEA [18].
Both datasets are publicly available from the UCI repos-
itory [6]. ARCENE contains 200 samples (100 for train-
ing and 100 for testing) with 10000 real valued features.
DOROTHEA consists of 1150 samples (800 for training
and 350 for testing) with 100000 binary valued features.
We apply ridge regression on both classification tasks by
setting the responses to be +1 for positive examples and
�1 for negative examples. We run ridge regression algo-
rithms on the training data to compute the feature weights
and measure the classification error rate on the testing data.
For each dataset, we test 10 different choices of sketch size
t and record the classification error rates and speed up fac-
tors of competing algorithms.

Results. The experiment results are shown in Figure 2.
From the results, we observe that the classification error
decreases as the sketch size t increases. It is also clear
that, using the same sketch size t, SKETCHING and PRO-

JECTION produce more accurate predictions than SAM-
PLING. On the other hand, SKETCHING and SAMPLING al-
gorithms are considerably faster than the STANDARD algo-
rithm. From the results, we see that our algorithm SKETCH-
ING substantially speeds up the computation, while attains
a very small increase in error rate. For ARCENE dataset,
when t ⇡ 3000, SKETCHING accelerates the computation
by 2.1 times while increases the error rate by 4.5%; and,
for DOROTHEA dataset, when t ⇡ 20000, the speedup
of SKETCHING is about 4.1 times and the error rate is al-
most the same to the STANDARD algorithm. In addition, we
continue to observe that the relative-error decreases as t in-
creases. The SKETCHING algorithm and the PROJECTION
algorithm outperform the SAMPLING algorithm in terms of
accuracy on both datasets. We remark that, for moderately
large t, the SKETCHING algorithm achieves a relative-error
that is smaller than 20% on both datasets.

7 CONCLUSIONS

We presented an efficient relative-error approximation al-
gorithm for ridge regression for p � n cases. Our algo-
rithm runs in ˜O(nnz(A) + n3/✏2) time, which is substan-
tially faster than the existing O(n2p + n3

) algorithm for
large p instances. In addition, we analyzed the risk infla-
tion of our algorithm and extended our techniques to de-
sign fast relative-error approximation algorithms for mul-
tiple response ridge regression and structured ridge regres-
sion. We reported experimental results of our algorithm on
both synthetic and real datasets, which supported our anal-
ysis and demonstrated good practical performance.
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