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Abstract

Importance sampling (IS) and its variant, an-
nealed IS (AIS) have been widely used for es-
timating the partition function in graphical mod-
els, such as Markov random fields and deep gen-
erative models. However, IS tends to underesti-
mate the partition function and is subject to high
variance when the proposal distribution is more
peaked than the target distribution. On the other
hand, “reverse” versions of IS and AIS tend to
overestimate the partition function, and degener-
ate when the target distribution is more peaked
than the proposal distribution. In this work, we
present a simple, general method that gives much
more reliable and robust estimates than either IS
(AIS) or reverse IS (AIS). Our method works by
converting the estimation problem into a simple
classification problem that discriminates between
the samples drawn from the target and the pro-
posal. We give extensive theoretical and empir-
ical justification; in particular, we show that an
annealed version of our method significantly out-
performs both AIS and reverse AIS as proposed
by Burda et al. (2015), which has been the state-
of-the-art for likelihood evaluation in deep gen-
erative models.

1 INTRODUCTION

Probabilistic graphical models, such as Markov random
fields, Bayesian networks, and deep generative models pro-
vide a powerful set of tools for machine learning (e.g., Lau-
ritzen, 1996, Salakhutdinov and Hinton, 2009). Bayesian
analysis utilizing graphical models often involves calcu-
lating the partition function, i.e. the normalizing constant
of the distribution. Unfortunately, such computations are
prohibitive (often intractable) for general loopy graphical
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models. As such, efficient approximations via variational
inference and Monte Carlo methods are of great interest.

Importance sampling (IS) and its variants, such as annealed
importance sampling (AIS) (Neal, 2001), are probably the
most widely used Monte Carlo methods for estimating the
partition function. IS works by drawing samples from a
tractable proposal (or reference) distribution p0(x), and es-
timates the target partition function Z =

∫
f(x) by averag-

ing the importance weights f(x)/p0(x) across the samples.
Unfortunately, the IS estimate often has very high variance
if the choice of proposal distribution is very different from
the target, especially when the proposal is more peaked or
has thinner tails than the target. In addition, in practice
IS often underestimates the partition function due to the
heavy-tailed nature of the importance weights, leading to
overly optimistic likelihood estimates when used for model
evaluation (e.g., Burda et al., 2015).

On the other hand, the weighted harmonic mean method
(Gelfand and Dey, 1994), which we refer to as a reverse
importance sampling (RIS), works in an opposite way from
IS. It draws samples from the target distribution p(x) =
f(x)/Z, and estimates Z by taking the harmonic mean of
the importance weights f(x)/p0(x) across these samples.
In contrast to IS, reverse IS tends to overestimate the par-
tition function, and gives a high variance when the target
distribution is more peaked than the proposal. A reverse
version of annealed importance sampling was recently pro-
posed by Burda et al. (2015) to give conservative estimates
of test likelihood, in contrast to standard AIS that (like IS)
tends to overestimate the likelihood.

Given the opposing properties of IS and RIS, a natural way
to improve both is to take the average, or weighted average,
of their estimates, in the hope of canceling their individual
biases. Unfortunately, the magnitude of bias in IS and RIS
can be extremely imbalanced, and it is difficult to decide
how much weight each should be given. What is worse,
the average would inherent the largest variance between IS
and RIS, making even more stringent requirements on the
proposal, which should then be neither more peaked nor
more flat than the target.



In this work, we study a more efficient and straightforward
method for estimating the partition function based on sam-
ples from both the target distribution and the proposal dis-
tribution. The idea is to re-frame estimation of Z as a sim-
ple classification problem that discriminates between the
two samples from the target p(x) and proposal p0(x), re-
spectively. Our method does not have the inherent biases
observed in IS and RIS, and is much more robust in that it
always has finite variance whenever the proposal and tar-
get distributions overlap, a far more mild condition that is
easy to satisfy in practice. We provide extensive theoretical
and empirical justification for our method. In addition, we
show that an annealed importance sampling (AIS) counter-
part of our method significantly outperforms AIS, reverse
AIS, and their average, which are currently state-of-the-art
for model evaluation in deep generative models (Salakhut-
dinov and Murray, 2008, Burda et al., 2015).

Outline The remainder of the paper is organized as fol-
lows. We discuss related work in Section 2 and introduce
background on IS and RIS in Section 3. Section 4 discusses
the proposed method followed by an annealed extension in
Section 5. We give experiments in Section 6. The conclu-
sion is provided in Section 7.

2 RELATED WORK

The same idea of estimating normalization constants by
discriminating between different samples was first pro-
posed independently by Geyer (1991, 1994), although it
seems not to be well known in the machine learning com-
munity;1 our work appears to be the first to apply the idea
in graphical models, and importantly, propose the annealed
version that we show is effective on challenging deep gen-
erative models. Another interesting connection can be
drawn with a recent noise-matching algorithm (Gutmann
and Hyvärinen, 2010) for learning graphical models with
intractable partition functions, which is based on a similar
idea of discriminating between the observed data (from a
unknown target distribution) and some artificially generated
noise (from the proposal distribution). In fact, our algo-
rithm can be treated as a special noise matching algorithm
on a graphical model with only a single unknown parame-
ter Z. This connection is surprising in part because a naı̈ve
likelihood-based or Bayesian inference procedure treating
Z as an unknown parameter fails to work, as discussed in
Wasserman (Example 11.10, page 188, 2011) and a thread
of related internet discussion (e.g., Wasserman, 2012, and
links therein). An intriguing open question is to under-
stand if there exists a principled procedure that turns any
partition function free learning algorithm, such as Hinton
(2002), Lyu (2011), Asuncion et al. (2010), Sohl-Dickstein
et al. (2011), into a corresponding partition function infer-
ence method.

1 This connection was found by the authors after acceptance.

Related to importance sampling, its use in graphical mod-
els almost always require certain variance reduction tech-
niques. Variants of annealed importance sampling based
approaches (e.g., Salakhutdinov and Murray, 2008, Theis
et al., 2011, Burda et al., 2015, Ma et al., 2013) have been
proposed, and are widely used for likelihood evaluation of
deep generative models. Other examples of variance re-
duction methods include adaptive improvement of the pro-
posal (e.g., Cheng and Druzdzel, 2000), and combining
with search based methods (e.g., Gogate, 2009, Gogate and
Dechter, 2012, 2011) or variational methods (e.g., Wexler
and Geiger, 2007). Note that our approach is orthogonal
to these developments, and can be combined with them to
achieve even better results. In fact, many of our experi-
ments are set up to demonstrate the advantages of combin-
ing our method with variational and annealing techniques.

There are also other algorithms that leverage samples from
the target distribution. For example, Chib (1995), Chib and
Jeliazkov (2001) calculate the marginal likelihood from the
output of Gibbs sampling or Metropolis-Hastings. Also
related are other generalizations of importance sampling,
such as bridge sampling and path sampling (Meng and
Wong, 1996, Gelman and Meng, 1998).

3 BACKGROUND

Assume we have a distribution p(x) = f(x)/Z, where
Z =

∫
f(x)dµ(x) is the partition function that we are in-

terested in calculating; here the base measure µ(x) can be
the counting measure for discrete variables, or Lebesgue
for continuous variables. We consider Monte Carlo meth-
ods for estimating Z. Two basic methods are the following:

Importance Sampling (IS) Assume we have a tractable
distribution p0(x) which has been properly normalized,
that is,

∫
p0(x)dµ(x) = 1. We draw samples {x10, . . . , xn0}

from p0(x), and estimate Z by

Ẑis =
1

n

n∑
i=1

f(xi0)

p0(xi0)
.

This is an unbiased estimator of Z, that is, E(Ẑis) = Z,
and its mean squared error is known to be

nE
[
(Ẑis − Z)2

Z2

]
= χ2(p||p0) =

∫
p2

p0
dµ(x)− 1, (1)

where χ2(·||·) represents the chi-square divergence.

Unfortunately, χ2(p||p0) is often impractically large, or
even infinite, especially when p0(x) is more peaked than
p(x). Additionally, despite the theoretical unbiasedness of
Ẑ, it often underestimates Z. This is due to the distribu-
tion of the weights f(x)/p0(x) being heavy-tailed with a
resulting propensity for outliers. Consequently, the results



using IS may be more properly viewed as a probabilistic
lower bound rather than an unbiased estimate (e.g., Burda
et al., 2015).

Reverse Importance Sampling (RIS) The weighted
harmonic mean method (Gelfand and Dey, 1994), which
we refer to as a reverse importance sampling method,
works in an opposite way to importance sampling. It draws
samples {x11, . . . , xn1} from the target distribution p(x)
(e.g., via MCMC when exact sampling is difficult for p(x)),
and estimates Z by

Ẑris =

[
1

n

n∑
i=1

p0(x
i
1)

f(xi1)

]−1

.

Note that 1/Ẑris can be viewed as a regular importance
sampling estimate for 1/Z, justifying Ẑris as a reasonable
estimate of Z. Under regularity conditions (Gelfand and
Dey, 1994), the asymptotic MSE of Ẑris (assuming it ex-
ists) is

nE
[
(Ẑris − Z)2

Z2

]
= χ2(p0||p) =

∫
p20
p
dµ(x)− 1.

The χ2-divergence here has the opposite order as that in
(1) for IS, and tends to be large or infinite when p(x) is
more peaked than p0(x). In addition, Ẑris often gives upper
bounds on Z (in contrast to lower bounds by IS), which can
be easily seen by viewing 1/Ẑ is a regular IS estimate for
1/Z. The special case when p0(x) is a uniform distribution
is called the harmonic mean method (Newton and Raftery,
1994), and sometimes the Ogata-Tanemura method (Ogata
and Tanemura, 1985).

The fact that IS and RIS give under- and over-estimates
respectively suggests the use of their average log Ẑavg =

(log Ẑis + log Ẑris)/2 with asymptotic MSE of

nE
[
(Ẑavg − Z)2

Z2

]
=

1

4
(χ2(p||p0) + χ2(p0||p)). (2)

Unfortunately, this is large whenever one of χ2(p||p0) or
χ2(p0||p) is large and thus imposes more stringent con-
straints on po such that (2) is finite, i.e. it can neither be
too peaked nor too flat compared to the target distribution.
This can be significant even for simple distributions as in
the following example.

Example 1. Consider normal distributions p(x) =
N (x; 0, σ2) and p0(x) = N (x; 0, σ2

0). One can show that
var(Ẑis) = +∞ if σ0 ≤ σ/

√
2 (p0 is much more peaked

than p). Conversely, var(Ẑris) = +∞ if σ ≤ σ0/
√
2 (p is

much more peaked than p0). Therefore, their average Zavg

has finite variance only when σ/
√
2 ≤ σ0 ≤

√
2σ.

More advanced combinations of IS and RIS can be ob-
tained by estimating their variances, and taking weighted

averages, or selecting the better one according to their vari-
ance. Unfortunately, the variance estimates themselves are
unreliable, often over- or under-estimated, making these
methods ineffective. We explore and compare several of
these options in our experiments; see Section 6 for details.

4 DISCRIMINANCE SAMPLING

Here we propose a new estimator of Z, termed discrimi-
nance sampling (evoking importance and disciriminative),
based on both {xi1} ∼ p(x) and {xi0} ∼ p0(x) jointly. The
idea is to reframe estimation of Z as a classification prob-
lem between {xi1} and {xi0}. To start, we assign a binary
label yi1 = 1 for each xi1 ∼ p(x), and correspondingly
yi0 = 0 for each xi0 ∼ p0(x). Putting these samples to-
gether we get {xi} = {xi1}∪{xi0} and {yi} = {yi1}∪{yi0}.
In this way, the conditional distribution of yi given xi is

p(yi = 0 | xi) = p0(x
i)

f(xi)/Z + p0(xi)
,

where Z can be treated as an unknown parameter. This
motivates a parameter estimation procedure where we con-
sider a family of conditional probabilities p(y = 1|x; c) =

p0(x)
f(x)/c+p0(x)

, indexed by a parameter c, and estimate c by
maximizing the conditional likelihood:

Ẑdis = argmax
c : c≥0

2n∑
i=1

log
yif(xi)/c+ (1− yi)p0(xi)

f(xi)/c+ p0(xi)
.

Calculating the zero-gradient equation of the objective
function, we see that the optimal c should satisfy the fol-
lowing ratio matching condition:

1

2n

2n∑
i=1

p0(x
i)

f(xi)/c+ p0(xi)
=

1

2
, (3)

that is, the proportion of y = 0 (and y = 1) predicted by the
model should equal 1/2, matching the label proportions in
the data. Because the LHS of (3) is an increasing function
on c, Eq. (3) yields a unique solution unless p(xi)p0(xi) =
0 for all i, that is, when p(x) and p0(x) do not overlap.
In practice, we can solve (3) efficiently using root finding
algorithms such as the fzero function in MATLAB.

Proposition 1. Assume {xi1}ni=1 and {xi0}ni=1 are i.i.d.
samples from p(x) and p0(x), respectively. Let e1 =√
2n(Ẑdis/Z−1) and e2 =

√
2n(log Ẑdis− logZ). Define

γ = E[var(y|x)] = 1

2

∫
p(x)p0(x)

p(x) + p0(x)
dµ(x), (4)

then if γ 6= 0, we have Ẑdis
a.s.→ Z as n → ∞, and e1 and

e2 have a normal distribution N (0, ( 14 − γ)/γ
2).



Proof. Apply the standard asymptotic result in DasGupta
(Theorem 17.2, Page 264, 2008); the condition γ 6= 0 guar-
antees (3) has an unique solution as n → ∞. Note that e1
and e2 are asymptotically equivalent because log ε ≈ ε− 1
for ε ≈ 1.

Remarks. (i) Eq (4) above relates the accuracy of Ẑdis with
the variance of the label y given x, which is a measure of
distinguishability between the two samples {xi1} and {xi0}.
Ideally, we want to choose p0 so that it is hard to distin-
guish between {xi1} and {xi0}; when p0 = p, Ẑdis equals
Z exactly.

(ii) The variance of Ẑdis is infinite only if γ = 0, that is,∫
pp0

p+p0
= 0; this is possible only if p(x) and p0(x) do not

overlap, that is, p(x)p0(x) = 0 almost everywhere. Note
that this is a much milder condition compared to that for IS,
RIS and their average, since in practice it is usually easy to
choose a p0(x) that shares some support with p(x).

Example 2. To continue with Example 1, the MSE of Ẑdis

is finite for any σ0 > 0 and σ > 0, making it far more
robust than IS or reverse IS, which have finite MSE only
when σ0 > σ/

√
2 and σ0 <

√
2σ, respectively.

5 ANNEALED DISCRIMINANCE
SAMPLING

One advantage of our method is that it can be naturally ex-
tended to cases when we have more than two distributions,
in which case it is straightforward to frame a corresponding
multinomial classification problem. In this section, we con-
sider an improvement to our method by introducing a set
of auxiliary distributions that serve as intermediate points
between the target and reference distributions. This exten-
sion is analogous to annealed importance sampling (AIS)
(Neal, 2001, Salakhutdinov and Murray, 2008) and reverse
AIS (Burda et al., 2015), but with significantly better per-
formance.

Both AIS and reverse AIS are based on a set of distributions
{pk = fk(x)/Zk : k = 0, . . . ,m} where p0 is the normal-
ized reference distribution (Z0 = 1) and pm(x) = f(x)/Z
is the target distribution; the other distributions serves as
“intermediate points” between p0 and p. A typical choice
of the distributions is fk(x) = f(x)k/mf0(x)

1−k/m,
where k can be interpreted as a temperature parameter that
anneals between p and p0.

Now assume we drawm sets of samples {xik}ni=1 ∼ pk(x),
k = 0, . . . ,m. Similar to Section 4, we assign each xik with
a label yik = k, resulting a conditional likelihood of

p(yi = k|xi) = fk(x
i)/Zk∑m

k=0 fk(x
i)/Zk

.

We then treat {Zk : k = 1, . . .m} as a set of unknown pa-
rameters, and estimate them by performing maximum con-

Algorithm 1 Annealed Discriminace Sampling (Sequential
Binary Version)

Draw xi0 ∼ p0(x). Set wi
0 = 1 and Z0 = 1.

for k = 1 to m do
Generate weighted sample {xik, wi

k}ni=1 by the AIS
update in (8).
update Ẑk = Zk−1r̂k, where r̂k maximizes the
weighted conditional likelihood (9).

end for
Return: Ẑm is an estimate of the partition function Z.

ditional likelihood:

{Ẑk}mk=0= argmax
c>0: c0=Z0

m∑
k=0

n∑
i=1

log
fk(x

i
k)/ck∑m

k=0 fk(x
i
k)/ck

, (5)

where c0 is fixed to its known value (Z0 = 1). Similar to
the binary case, it is easy to show that {Ẑk} forms a con-
sistent estimation of {Zk} (although we are only interested
in Ẑm).

Note that (5) is a convex optimization w.r.t. {log ck}, and
can be solved efficiently. A further simplification of (5)
is to construct and combine a sequence of binary classifi-
cations between the (pk, pk+1) pairs, instead of the joint
multinomial classification. To be specific, we sequentially
estimate the ratio rk+1 = Zk+1/Zk between pk and pk+1

by discriminating between {xik} and {xik+1}:

r̂k+1 = argmax
ck+1>0
ck=1

k+1∑
k′=k

n∑
i=1

log
fk′(xik′)/ck′∑k+1
`=k f`(x

i
k′)/c`

(6)

and estimate Z = Zm by chaining the ratios together:

log Ẑ =

m∑
k=1

log r̂k ≈
m∑

k=1

log rk = logZ. (7)

Interestingly, we find that such sequential binary classifi-
cation works as well as the joint multinomial classifica-
tion in our experiments, possibly because the neighboring
{pk, pk+1} are close to each other and provide more accu-
rate estimates of their ratios.

Practical Implementation In practice, it is expensive to
sample from all pk(x) = fk(x)/Zk at each temperature in-
dependently, especially when the number of temperatures
is large. Instead, we use AIS (Neal, 2001) to sequentially
generate importance weighted samples for each pk(x): we
start with xi0 ∼ p0(x) and set wi

0 = 1, and sequentially up-
date the samples using Markov chain transitions and adjust
the weights accordingly:

xik ∼ Tk( · |xik−1), wi
k = wi

k−1

fk(x
i
k−1)

fk−1(xik−1)
, (8)



Algorithm 2 Annealed Discriminace Sampling (Multino-
mial Version)

1. Use AIS to generate {xik, wi
k}ni=1 for ∀ 0 ≤ k ≤ m.

2. Estimate Ẑk by maximizing

{Ẑk}mk=0= argmax
c>0: c0=Z0

m∑
k=0

n∑
i=1

w̃i
k log

fk(x
i
k)/ck∑m

k=0 fk(x
i
k)/ck

,

where w̃i
k = wi

k/
∑

i w
i
k are the normalized weights.

Return: Ẑm is an estimate of the partition function Z.

for ∀ 1 ≤ k ≤ m, where Tk(·|·) is a Gibbs or Metropolis-
Hastings transition kernel of pk. By the augmented variable
space argument of Neal (2001), we can show the weighted
sample (xik, w

i
k)

n
i=1 follows pk(x) in the sense that

E(wi
kh(x

i
k)) = const · Ex∼qk(h(x))

for any 0 ≤ k ≤ m and integrable function h(x);
this allows us to estimate the partition functions Zk us-
ing weighted versions of the multinomial (5) or sequen-
tial binary (6) classifications based on the weighted sam-
ples (xik, w

i
k). For example, we can estimate the ratio

rk+1 = Zk+1/Zk between pk+1 and pk by maximizing
a weighted version of the conditional likelihood in (6),

r̂k+1 = argmax
ck+1>0
ck=1

k+1∑
k′=k

n∑
i=1

w̃i
k′ log

fk′(xik′)/ck′∑k+1
`=k f`(x

i
k′)/c`

, (9)

where w̃i
k = wi

k/
∑n

i=1 w
i
k are the normalized weights un-

der each temperature k. See Algorithm 1 for the full al-
gorithm of the sequential binary version of our method;
the corresponding multinomial version is shown in Algo-
rithm 2. Note that both Algorithm 1 and 2 can recycle the
samples and weights generated by AIS and can be imple-
mented conveniently based on AIS. Alternatively, we can
also base our estimator on other methods that draw sam-
ples jointly from different temperatures, such as simulated
tempering and parallel tempering (see Liu, 2008, and refer-
ences therein).

6 EXPERIMENTS

We present experimental results on a toy Gaussian exam-
ple, pairwise Markov random fields (10 × 10 grids), and
deep generative models trained on real world data. Our
contributions are threefold: (1) We demonstrate the advan-
tage of our method compared to IS, reverse IS and their
combinations, and show that our method yields signifi-
cantly smaller bias and variance across all our experiments.
(2) We illustrate the benefits of combining deterministic
variational methods and the Monte Carlo based methods
discussed in this paper; we show that Monte Carlo meth-
ods can provide tighter (but “probabilistic”) bounds than

deterministic variational methods, and can be further im-
proved by using variational methods to provide better ref-
erence distributions p0. (3) We test the annealed version of
our algorithm in real-world deep learning models, includ-
ing restricted Boltzmann machines (RBM) and deep Boltz-
mann machines (DBM), and show that it significantly out-
performs the state-of-the-art AIS and reverse AIS methods
(Burda et al., 2015).

Setting We compare our algorithm with IS, RIS and three
different methods that combine IS and RIS in hopes of off-
setting their relative biases:

(1) Naı̈ve Averaging:

log Ẑavg = (log Ẑis + log Ẑris)/2.

Here the average is taken on the log domain; note that av-
eraging in the Z domain, i.e., (Ẑis+ Ẑris)/2 does not make
sense since we almost always have Ẑis � Ẑris, and the
result will be dominated by Ẑris.

(2) Weighted Averaging:

log Ẑw = (v̂−1
is log Ẑis + v̂−1

ris log Ẑris)/(v̂
−1
is + v̂−1

ris),

where v̂is, v̂ris are empirical estimates of var(log Ẑis) and
var(log Ẑris),

v̂is = v̂ar({ f(x
i
0)

p0(xi0)
})/Ẑ2

is,

v̂ris = v̂ar({p0(x
i
1)

f(xi1)
})Ẑ2

ris,

where v̂ar(·) represents the empirical variance estimate.
Note that the weights defined above should minimize the
variance of the combination if the variance estimates are ac-
curate. Unfortunately, variance estimates for the weighted
averaging approach are typically unreliable and have the
same under- / over-estimation problem as IS and RIS, caus-
ing the weighted average to perform poorly.

(3). Weighted Selection:

log Ẑs = [v̂is < v̂ris] log Ẑis + [v̂ris < v̂is] log Ẑris,

where we select the estimator with smaller estimated vari-
ance; here [·] is the indicator function.

Note that IS (resp. RIS) uses only {xi0}ni=1 ∼ p0(x) (resp.
{xi1}ni=1 ∼ p(x)), while our method uses both {xi0} and
{xi}. To make a conservative comparison, we use only
the first half of the samples {xi1}

n/2
i=1 and {xi0}

n/2
i=1 in our

method. However, we do not halve the samples when cal-
culating the averages Ẑavg, Ẑw and Ẑs, allowing them to
use exactly twice the information as our method. Despite
these unfavorable conditions, our method still consistently
outperforms IS, RIS and all the averaging based methods.
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Figure 1: Gaussian toy example. The estimated values (a)
and mean square errors (b) on logZ by different methods
(the true value is logZ = 0). IS performs poorly when σ0
is small (p0 is too peaked), while reverse IS is poor when
σ0 is large (p is too peaked). Our method performs much
better and is robust for all values of σ0. The result is aver-
aged over 1000 random trials.

Gaussian Toy Example As in Example 1, we consider
p(x) = N (x; 0, σ2) with fixed σ = 1 and p0(x) =
N (x; 0, σ2

0) with different values of σ0. We are interested
in calculating the normalization constant of p(x), which is
trivially Z = 1 in this case. We use n = 1000 samples
from both the target p(x) and reference p0(x).

Figure 1 reports the bias and MSE on logZ as returned
by our methods, IS, reverse IS, and the weighted selection
log Ẑs (the naı̈ve average log Ẑavg and weighted average
log Ẑw are worse than log Ẑs and not shown in the figure
for clarity). We find that our method significantly outper-
forms all the other algorithms, despite using fewer samples
than the averaging based methods.

The performance of IS and reverse IS in Figure 1(a) is
consistent with the theoretical analysis: IS tends to give
a lower bound, and degenerates quickly when σ0 is small
(p0 is more peaked than p), while reverse IS gives an upper
bound, and degenerates when σ0 is large (p is more peaked
than p0). In this case, it is interesting to see that the perfor-
mances of IS and reverse IS are extremely imbalanced and
anti-correlated (whenever IS performs well, RIS performs
poorly, and vice versa), which explains why weighted se-
lection is better than naı̈ve averaging in this case.

MRF on 10 × 10 Grid We consider Markov random
fields (MRFs) on a 10× 10 grid

p(x) =
1

Z
exp

(∑
ij

θij(xi, xj) +
∑
i

θi(xi)
)
,

where xi ∈ {0, 1}. We generate each θi(k) randomly by
N (0, σ2

s), with fixed σs = 0.1 and each θij(k, l) from
N (0, σ2

p), where σp characterizes the interaction strength
in the MRF. We also explore different choices of reference
distribution p0 for the MRF, including

(1) Uniform distribution as shown in Figure 2(a).

(2) Mean field approximation as shown in Figure 2(b).

(3) Mixture of trees constructed from the reparameteri-
zation obtained from tree reweighted belief propagation
(TRBP) (Wainwright et al., 2005) (Figure 2(c)). The edge
appearance probabilities in TRBP are set by assigning uni-
form weights to a random set of spanning trees.

The samples from p0 are drawn exactly, while those from
p are drawn using Gibbs sampling with 500 burn-in steps.
We use n = 1000 samples from each distribution in all
cases, and average the results over 500 random trials.

From Figure 2, we find our method significantly outper-
forms IS and reverse IS, and all the versions of their com-
binations under all three choices of p0. The determinis-
tic bounds returned by TRBP and MF are shown in Fig-
ure 2(a), and are significantly looser than the sampling
based bounds in these cases (which, however, provides
probabilistic, instead of deterministic bound guarantees as
the variational methods). We note that the proposal pro-
duced by MF is only as good as the uniform proposal. On
the other hand, the p0 produced by a mixture of TRBP trees
gives significantly better results (note that the y-axes are
not on the same scale). This result demonstrates the poten-
tial of combining variational methods and sampling meth-
ods, with carefully designed choices for p0 and estimation
methods (such as our method).

Interestingly, we find the performance of IS and reverse
IS are relatively balanced in the MRF examples, making
the naı̈ve average of IS and reverse IS outperform both the
weighted average and weighted selection. This is in con-
trast to the Gaussian toy example, where IS and reverse
IS are extremely imbalanced. Unfortunately, there is no
general method to tell whether IS and reverse IS will be
balanced or not beforehand.

Deep Generative Models We compare our annealed dis-
criminance sampling (ADS) with the AIS and reverse AIS
estimator (RAISE) as introduced in Burda et al. (2015)
for partition function estimation in deep generative mod-
els, including a restricted Boltzmann machine (RBM) and
a deep Boltzmann machine (DBM). We implement AIS and
RAISE following Algorithm 1 and Algorithm 32 in Burda
et al. (2015), respectively. We then take the samples and
weights generated by AIS and run our sequential binary
ADS in Algorithm 1 and multinomial ADS in Algorithm 2.
In principle, we can also reuse the same samples generated
by AIS to construct a version of a reverse AIS estimator.
Unfortunately, we find this works poorly in practice, and
it seems to be important to follow Algorithm 3 in Burda
et al. (2015) to generate new samples specifically for the

2 Algorithm 3 of Burda et al. (2015) was designed for calculat-
ing the testing likelihood; we adopt it for calculating the partition
function by replacing its conditional kernel T̃ (vtest)

k (·|h′k−1) in
the forward step with the unconditional kernel T̃k(·|x′k−1).
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Figure 2: MRFs on a 10 × 10 grid. The three columns represent the results when using different reference distributions
p0, including the uniform distribution (a), mean field approximation (b) and a mixture of trees constructed from TRBP (c).
Our algorithm consistently performs best. Note that the comparison is again in favor of the averaging methods since they
use twice as many samples as our method.

reverse AIS estimates. Note that implemented in this way,
the average of AIS and RAISE uses twice the number of
samples as our method. In addition, we emphasize that the
RAISE as proposed in Algorithm 3 in Burda et al. (2015)
includes both a forward and backward sampling step, re-
quiring twice the computational cost of AIS. In contrast,
our method has roughly the same time complexity as AIS,
because the cost of the discriminance analysis step in our
method, especially the sequential binary version, is negli-
gible compared to the sample generation steps of AIS as
used in Algorithm 1 in Burda et al. (2015).

In both our experiments for RBM and DBM and for all
the annealing-based algorithms, we use 21 ∼ 210 lin-
early spaced intermediate temperatures (or distributions)
and n = 1000 samples (corresponding to 1000 separate
MCMC chains in AIS). The reference distribution p0 is
taken to be the data base rate (DBR) distribution as sug-
gested by Salakhutdinov and Hinton (2009), which is con-
structed based the marginal statistics of the image dataset.
In all cases, we repeat the estimates 10 times and report the
average bias and MSE results.

To obtain the true partition function of both RBM and
DBM, we calculate the average of AIS and RAISE with an
extremely large number (in our case, 100,000) of tempera-
tures, until their estimates coincide to within 0.1 nats, i.e.,
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Figure 3: Estimates of log-partition function of a restricted
Boltzmann machine trained on MNIST with different num-
bers of intermediate temperatures. While all methods con-
verge to the same value, our method significantly outper-
forms other methods when the intermediate temperatures
are few.

| log Ẑis− log Ẑris| ≤ 0.1. This gives a high confidence es-
timate of the true partition function, since AIS and RAISE
are probabilistic lower and upper bounds, respectively.

We first consider a restricted Boltzmann machine (RBM)
with 500 hidden nodes trained on MNIST using contrastive
divergence with 25 steps. Figure 3 shows the results of
different algorithms. When there are many intermediate
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Figure 4: Estimates of log-partition function of a 784-500-
1000 deep Boltzmann machine trained on MNIST with dif-
ferent numbers of intermediate temperatures. While all
methods converge to the same value, our method outper-
forms both AIS and RAISE when the intermediate temper-
atures are few. Our multinomial ADS performs the same as
our binary version, and is omitted in the figure for clarity.

temperatures, all algorithms give accurate estimates. When
there are fewer intermediate temperatures, our ADS is able
to compute significantly more accurate estimates than AIS
and RAISE, or even their average. In addition, we find that
the binary and multinomial versions of our ADS algorithm
work similarly (almost identically) in all our experiments.

We then experiment on a more complex deep Boltzmann
machine, trained with a 784-500-1000 structure on MNIST
closely following the procedure in Salakhutdinov and Hin-
ton (2009): we initially train the first layer RBM for 100
epochs, then the second layer with 200 epochs and then
fine-tune the two layers jointly for 300 epochs. The results
of the different algorithms are shown in Figure 4. Similarly
to the results in the RBM experiment, ADS significantly
outperforms both AIS and RAISE when the number of tem-
peratures is small. In this case, we find that the average of
AIS and RAISE is quite accurate for this DBM model, al-
most as good as ADS. However, our algorithm still gives
significant advantages in practice: again, we use only half
the number of samples that are used by the average of AIS
and RAISE and have only 1/3 of the total computational
cost (because RAISE is twice as expensive as AIS or our
ADS method, as discussed previously).

7 CONCLUSION

In this paper, we introduced discriminance sampling, a
novel and efficient method for estimating log-partition
functions of probabilistic distributions. Using samples
drawn from both the target and proposal distributions, we
formulated the estimation problem into a discriminant anal-
ysis problem that classifies samples into their correspond-
ing distributions. Our approach does not under- / over-
estimate the true values like IS and reverse IS, and places
much less stringent requirements on the proposal distribu-

tions. In addition, we also extend our method to define
annealed discriminance sampling (ADS) and demonstrate
that ADS significantly outperform AIS, reverse AIS, and
performs as well or better than their average, which are
currently state-of-the-art methods for model evaluation in
deep generative models.
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