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Abstract

Learning graphical model parameters from in-
complete data is a non-convex optimization prob-
lem. Iterative algorithms, such as Expectation
Maximization (EM), can be used to get a lo-
cal optimum solution. However, little is known
about the quality of the learned local optimum,
compared to the unknown global optimum. We
exploit variables that are always observed in the
dataset to get an upper bound on the global op-
timum which can give insight into the quality of
the parameters learned by estimation algorithms.

1 Introduction

Probabilistic graphical models (PGMs) have been useful
to many fields, including computer vision, bioinformat-
ics, natural language processing, and statistical physics;
see [20, 32, 17, 22]. A graphical model represents a joint
probability distribution compactly using a structure popu-
lated with parameters. In this paper, we consider two types
of graphical models: Markov Random Fields (MRFs) and
Bayesian networks (BNs).

An MRF consists of an undirected graph defining condi-
tional independence relationships between variables, and
a factor for every maximal clique in the graph; see [15,
16, 24]. A Bayesian network consists of a directed
acyclic graph associated with conditional probability ta-
bles; see [4].

Learning graphical model parameters from data is typi-
cally reduced to finding the maximum likelihood param-
eters: ones that maximize the probability of a dataset, due
to their attractive statistical properties [6]. However, due
to the complexity of learning maximum likelihood param-
eters, other simplified methods have also been proposed
in literature such as pseudo-likelihood [2], ratio match-
ing [10], composite maximum likelihood [30], contrastive
divergence [9], and more recently the LAP algorithm [23].

A key distinction is commonly drawn between complete
and incomplete datasets. In a complete dataset, the value
of each variable is known in every example in the dataset,
whereas in an incomplete dataset, some variables may have
missing values. Computationally, learning from incom-
plete data can be much harder than learning from complete
data, as we discuss next.

When the data is complete, learning maximum likelihood
parameters can be done efficiently in BNs by one pass
through the dataset, and by solving a convex optimization
problem in MRFs. However, in MRFs, evaluating the ob-
jective or computing the gradient requires doing inference,
to compute the partition function, which is #P-hard [27]. It-
erative algorithms, such as gradient descent [28], conjugate
gradient (CG) [8], L-BFGS [21], iterative proportional fit-
ting (IPF) [13], and more recently EDML [25] can be used
to get the global optimum solution.

On the other hand, if the data is incomplete, the optimiza-
tion problem is generally non-convex, i.e. has multiple lo-
cal optima. Iterative algorithms, such as expectation max-
imization (EM) [5, 18] and gradient descent can be used
to get a local optimum solution; see Chapter 19 in [24].
The fixed points of these algorithms correspond to the sta-
tionary points of the likelihood function. Hence, these al-
gorithms are not guaranteed to converge to global optima.
As such, they are typically applied to multiple seeds (initial
parameter estimates), while retaining the best estimates ob-
tained across all seeds. However, little is known about the
quality of the learned estimates, compared to the unknown
global optimum.

In this paper, we propose an upper bound on the unknown
global optimum that can give insight into the quality of the
learned estimates, as compared to the global optimum. It
may also help derive branch-and-bound methods to get the
global optimum. Our proposed technique exploits variables
that are always observed and requires solving a convex op-
timization problem. In case of BNs, this convex optimiza-
tion problem can be solved efficiently.

The paper is organized as follows. In Section 2, we de-



fine our notation and give an introduction to the problem
of learning graphical model parameters. We propose the
MRF and BN upper bounds in Sections 3, and 4, respec-
tively. The experimental results are given in Section 5. We
review some of the related work in Section 6, and conclude
in Section 7.

2 Learning Parameters

In this section, we define our notation, and review how pa-
rameter estimation for graphical models is formulated as an
optimization problem.

2.1 Notation

Upper case letters (X) denote variables and lower case let-
ters (x) denote their values. Variable sets are denoted by
bold-face upper case letters (X) and their instantiations by
bold-face lower case letters (x).

We use θ to denote the set of all network parameters. Pa-
rameter learning in graphical models is the process of esti-
mating these parameters θ from a given dataset.

A dataset is a multi-set of examples. Each example is an
instantiation of some network variables. We will use D to
denote a dataset and d1, . . . ,dN to denote its N examples.
The following is a dataset over four binary variables:

example E B A C
1 e b a ?
2 ? b a ?
3 e b a ?

This dataset has three examples, d1, d2 and d3. For a bi-
nary variable X , we will use x and x to denote its two
values. Moreover, a “?” indicates a missing value of a vari-
able in an example. The first example above corresponds to
instantiation e, b, a, while the second example corresponds
to instantiation b, a.

A variable X is fully observed in a dataset iff the value
of X is known in each example of the dataset (i.e., “?”
cannot appear in the column corresponding to variable X).
Variables A and B are fully observed in the above dataset.
Moreover, a variable X is hidden in a dataset iff its value
is unknown in every example of the dataset (i.e., only “?”
appears in the column of variable X). Variable C is hidden
in the above dataset. When all variables are fully observed
in a dataset, the dataset is said to be complete. Otherwise,
the dataset is incomplete. The above dataset is incomplete.
Finally, we will use DO to denote the dataset which results
from removing variables outside O from dataset D.

2.2 Markov Random Fields

An MRF is an undirected graph over variables X, popu-
lated with factors. The MRF parameters are given by the

vector θ = (. . . , θXf
, . . . ), where Xf are the variables of

factor f . Component θXf
is a parameter set for a factor f ,

assigning a number θxf
> 0 for each instantiation xf of

variable set Xf .

Given a dataset D with examples d1, . . . ,dN , the log like-
lihood of parameter estimates θ is defined as:

``(θ|D) =
N∑
i=1

logZθ(di)−N logZθ. (1)

Here, Zθ is the partition function, Zθ =
∑

x

∏
f θxf

and
Zθ(di) =

∑
x∼di

∏
f θxf

(di ∼ x means that instanti-
ations di and x are compatible). For simplicity, we will
assume a tabular representation of factors as opposed to an
exponential representation as given in [24, Chapter 19]. In
our experiments, however, we use the exponential repre-
sentation to avoid the need for explicit non-negativity con-
straints.

The first term in Equation 1 is called the data term, whereas
the second term is called the model term. If the data is com-
plete, Equation 1 can be formulated as a convex optimiza-
tion problem, and the data term becomes trivial to evaluate.
However, when the data is incomplete, Equation 1 is non-
convex.

2.3 Bayesian Networks

A Bayesian network is a directed acyclic graph populated
with conditional probability tables (CPTs). Generally, we
will use X to denote a variable in a Bayesian network
and U to denote its parents. For every variable instanti-
ation x and parent instantiation u, the Bayesian network
includes a parameter θx|u that represents the probabil-
ity Pr(X=x|U=u). This implies the requirement that∑
x θx|u = 1, for each parent instantiation u.

Given a dataset D with examples d1, . . . ,dN , the log like-
lihood of parameter estimates θ is defined as:

``(θ|D) =
∑N
i=1 logPrθ(di).

Here, Prθ is the distribution induced by the network struc-
ture and parameters θ. One typically seeks maximum like-
lihood parameters

θ? = argmax
θ

``(θ|D).

It is not uncommon to also assume a Dirichlet prior on net-
work parameters. In particular, for each variable X with
values x1, . . . , xn, and parent instantiation u, a Dirichlet
prior is specified using exponents ψx1|u, . . . , ψxn|u. This
prior induces a density ∝

∏n
i=1[θxi|u]

ψxi|u−1 over the pa-
rameters θx1|u, . . . , θxn|u of variable X given parent in-
stantiation u. It is also common to assume that expo-
nents are > 1, which guarantees a unimodal density. With
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Figure 1: Auxiliary MRF graph under fully observed vari-
ables O = {O1, O2}.
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Figure 2: Auxiliary MRF graph under fully observed vari-
ables O = {O1, O2, O3}.

Dirichlet priors, the objective function becomes

``(θ|D) + log ρ(θ).

Here, ρ(θ) is proportional to the prior density on parame-
ters θ, and is given by

ρ(θ) =
∏
Xu

∏
x

[θx|u]
ψx|u−1.

Parameters that optimize the above objective function are
called MAP estimates as they maximize the posterior den-
sity of the parameters given the dataset.

When every exponent ψx|u is equal to 1 (uninformative
prior), we get ρ(θ) = 1 and MAP estimates reduce to max-
imum likelihood estimates. Moreover, when every expo-
nent ψx|u is equal to 2, MAP estimates reduce to maxi-
mum likelihood estimates with Laplace smoothing. This
is a common technique to deal with the problem of insuf-
ficient counts (i.e., instantiations that never appear in the
dataset, leading to zero probabilities and division by zero).
We will use Laplace smoothing in our experiments.

3 An Upper Bound for MRFs

In this section, we utilize variables that are always observed
in a dataset to obtain an upper bound on the likelihood.
The bound is obtained by solving a convex optimization
problem over an auxiliary MRF, which is defined next.

3.1 Decomposition

The auxiliary MRF is obtained by first decomposing the
MRF graph G using variables O that are fully observed in
the dataset.
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Figure 3: Auxiliary MRF graph under fully observed vari-
ables O = {O1, O2, O3}.

Definition 1 Let G|O be the result of deleting variables
O from graph G. A component of G|O is a maximal set
of nodes S that are connected in G|O. A variable B is a
boundary for component S iff edge B − S appears in G,
B 6∈ S and S ∈ S.

Boundary variables must be included in O. Moreover,
component variables cannot intersect with O. Figures 1–
3 depict the components and boundaries of some MRF
graphs.

We are now ready to define the auxiliary MRF by defining
its graph. The auxiliary MRF will then have one factor over
each maximal clique of this graph.

Definition 2 The auxiliary graph for graph G and vari-
ables O is denoted AG|O and defined as follows: (1) The
nodes of AG|O are the variables O; (2) AG|O has an edge
X − Y iff the edge exists in G or X and Y are boundary
variables of some component of G|O.

Figures 1–3(c) depict some auxiliary MRF graphs.

3.2 Optimization

We will next use the auxiliary MRF graph to formulate a
convex optimization problem, called the auxiliary problem.
The solution of this auxiliary problem will provide an upper
bound on the likelihood.

Definition 3 Given an MRF graphG, and a corresponding
dataset D with fully observed variables O, the auxiliary
optimization problem is that of learning the parameters of
auxiliary MRF AG|O from dataset DO.

The auxiliary optimization problem is always convex. This
follows since the graph AG|O contains only variables O,
which are fully observed in the dataset D. Hence, the aux-
iliary optimization problem corresponds to learning the pa-
rameters of an MRF under complete data (DO is a complete
dataset in this case).

The following theorem shows that the solution of the con-
vex optimization problem provides an upper bound on the
likelihood.

Theorem 1 Let G be an MRF graph and D be a corre-



sponding dataset with fully observed variables O. Let f(θ)
be the likelihood function for MRF graphG, and let g(θ) be
the likelihood function for its auxiliary MRF graph AG|O.
We then have f(θ) ≤ g(θ∗), where θ∗ is the global opti-
mum for g(θ).

Proof Let F1(X1), . . . , Fn(Xn) be the factors of auxiliary
MRFAG|O, representing parameters θ (i.e., each Fj(xj) is
a parameter in θ). Note that Xj is a maximal clique of
the auxiliary graph and Xj ⊆ O. Let the dataset D be
{d1, . . . ,dN}. The convex optimization problem g(θ) is
then

maximize g(θ) =

N∑
i=1

logZθ(di)−N logZθ (2)

where

Zθ =
∑
o

n∏
j=1

Fj(xj), xj ∼ o (3)

Zθ(di) =

n∏
j=1

Fj(xj), xj ∼ di (4)

We will now expand the above equations for optimizing the
auxiliary likelihood g(θ) so we can optimize the original
likelihood f(θ). The basic observation is that f(θ) can be
written in terms of marginals over the fully observed vari-
ables. However, these marginals are not free to take any
values, as they have to correspond to some original param-
eters that realize such marginals. Hence, we must constrain
these marginals, which correspond to auxiliary parameters
Fi(xi), in terms of the original parameters. We do this next.

First, note that for each factor fk(Yk) of the original MRF
G, there is some factor Fj(Xj) of the auxiliary MRF, such
that Yk ∩O ⊆ Xj . We will therefore assign each original
factor fk to a corresponding auxiliary factor Fj , writing f jk
to denote this assignment.

Next, for each auxiliary factor Fj(Xj), let Zj be the vari-
ables appearing in original factors f jk , but not in the auxil-
iary factor Fj . Consider now the following equation, which
defines auxiliary parameters Fj(xj) in terms of original pa-
rameters f jk(yk):

Fj(xj) =
∑
zj

∏
k

f jk(yk), yk ∼ xjzj (5)

The original optimization problem f(θ) can now be de-
fined using Equations 2, 3 and 4, subject to the equality
constraints of Equation 5 (i.e., we are now optimizing the
original parameters f jk(yk)). By relaxing these equality
constraints, and optimizing over the auxiliary parameters
Fj(xj), we get back the auxiliary optimization problem.
Since the latter is obtained by relaxing constraints, we have
f(θ) ≤ g(θ?). �

Figure 4: A chain MRF with alternating fully observed
variables, and its corresponding auxiliary MRF.

Figure 5: A binary tree MRF with alternating fully ob-
served levels, and its corresponding auxiliary MRF.

Note that when all variables are fully observed in the
dataset D (i.e., the dataset is complete), the auxiliary MRF
graph corresponds to the original MRF graph, and the
bound becomes exact.

3.3 Computing the Bound

The proposed upper bound can be computed using standard
methods for estimating parameters under complete data.
These methods require inference on the auxiliary MRF,
whose complexity depends on the treewidth of its under-
lying graph. This treewidth can be larger or smaller than
the treewidth of the original MRF, depending on the pat-
terns of data incompleteness. We will illustrate this next
using a set of examples, in which fully observed nodes are
shaded, while hidden nodes are left unshaded.

Figures 4 and 5 show MRFs of bounded treewidth and
certain patterns of data incompleteness that lead to auxil-
iary MRFs with bounded treewidth. In particular, Figure 4
shows a chain with alternating fully observed and hidden
variables, which results in an auxiliary MRF with treewidth
1, regardless of the chain length. Figure 5 shows a complete
binary tree with alternating fully observed levels, leading
to an auxiliary MRF with treewidth 2, regardless of the tree
depth.

Figure 6 shows an example where the auxiliary MRF has a
lower treewidth. However, Figure 7 shows an n × n grid,
leading to an auxiliary MRF with treewidth 2n − 1. Simi-
larly, Figure 8 shows an MRF with treewidth 1, yet an aux-
iliary MRF of treewidth n.



Figure 6: An MRF structure that leads to an auxiliary MRF
of lower treewidth.

Figure 7: A grid with alternating fully observed rows, and
its corresponding auxiliary MRF.

4 An Upper Bound for Bayesian Networks

We now present a similar upper bound on the likelihood
function for a Bayesian network structure G. Again, the
bound is defined based on the set of fully observed vari-
ables O in a dataset.

Definition 4 ([26]) LetG|O be the result of deleting edges
in DAG G that are outgoing from variables O. A
component of G|O is a maximal set of variables S that are
connected in G|O. A variable B is a boundary for compo-
nent S iff edge B → S appears in G, B 6∈ S and S ∈ S.

Figure 9 depicts an example DAG with its components and
boundaries. Note that the boundary variables B of a com-
ponent must all be fully observed, B ⊆ O. Moreover, for
any component S, the variables S ∩O must be leaf nodes
in G|O.

We will next interpret the boundary variables B of each
component S as the parents of observed variables in com-
ponent S. This interpretation will be used to define an aux-
iliary distribution over the fully observed variables.

Definition 5 The auxiliary distribution for DAG G and
variables O is denoted PG|O and defined as follows: (1)
PG|O is over the variables O, (2) PG|O is the product of
factors Pr(L|B), where B is the boundary variables of
some component S and L = S ∩O.

Figure 8: An MRF structure with treewidth 1, and its cor-
responding auxiliary MRF of treewidth n.
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Figure 9: A DAG and its components under fully observed
variables O = {V,X,Z}.

Each probability Pr(l|b) will be interpreted as an auxiliary
parameter θl|b. We can now state our upper bound.

Theorem 2 Let G be a DAG and D be a corresponding
dataset with fully observed variables O. Let f(θ) be the
likelihood function for G and D, and let g(θ) be the likeli-
hood function for the auxiliary distribution PG|O. We then
have f(θ) ≤ g(θ∗), where θ∗ is the global optimum for
g(θ).

Proof We now sketch the proof of this theorem, which is
similar to the one for MRFs. That is, we express auxil-
iary parameters in terms of original parameters, allowing
us to formulate the original optimization problem as an
optimization problem with non-convex equality constraints
(which relate auxiliary and original parameters). By relax-
ing these equality constraints, we obtain a convex optimiza-
tion problem that provides an upper bound on the original
optimization problem. Hence, it suffices to show the non-
convex equality constraints in this case.

Consider a factor Pr(X |U) of the auxiliary distribution,
and the corresponding parameters θx|u. Variables X must
then be leaves of some component S in G|O, and U must
correspond to the boundary variables of component S. One
can then express each auxiliary parameter θx|u in terms
of original parameters that pertain only to the variables
in component S. In particular, let Pr(.) be the distribu-
tion induced by the original DAG G and let y be an in-
stantiation of variables S \ X. We then have Pr(x|u) =∑

y Pr(x,y|u). Moreover, Pr(x,y|u) can be expressed
in terms of original parameters pertaining only to variables
S. This follows since, given U, S is independent of all
other variables in DAG G. �

One difference from the upper bound for MRFs is that this
bound can be computed more efficiently. In particular, the
optimal estimate θ? can be identified using a single pass
through the dataset DO. Similarly, g(θ?) can be computed
using a single pass through the dataset, once the estimate
θ? is identified.



5 Experimental Results

Our experiments are structured as follows. Given a network
G, we generate a dataset D while ensuring that a certain
percentage of variables are fully observed, with all others
hidden. Using dataset D, we estimate the parameters of
network G using EM.

We compare the local optimum learned by EM, to the pro-
posed bound gotten using decomposition, and to the bound
that assumes all distributions are valid (which we call the
naive bound).

The naive bound is computed by discarding the graph struc-
ture and assigning a probability to every data example
based on its number of occurrences in the dataset. This
effectively assumes a fully connected graph. Consider, for
example, a simple dataset with a data example d1 that is
repeated twice and another d2 that is repeated 3 times. The
naive bound assigns a probability 2

5 to d1, and 3
5 to d2, and

computes the likelihood: ( 25 )
2 × ( 35 )

3.

Before we present our results, we have the following ob-
servations on our data generation model. First, we made
all unobserved variables hidden (as opposed to missing at
random) as this leads to a more difficult learning problem,
especially for EM. Second, it is not uncommon to have a
significant number of variables that are always observed
in real-world datasets. For example, in the UCI repository:
the internet advertisements dataset has 1558 variables, only
3 of which have missing values; the automobile dataset has
26 variables, where 7 have missing values; the dermatol-
ogy dataset has 34 variables, where only age can be miss-
ing; and the mushroom dataset has 22 variables, where only
one variable has missing values [1].

In our experiments, we use the following networks: alarm,
andes, asia, win95pts, diagnose, pigs, spect, water, to-
gether with chains, trees, and grids. Network win95pts (76
variables) is an expert system for printer troubleshooting in
Windows 95, whereas Network pigs is used for diagnosing
the PSE disease. Network andes is an intelligent tutoring
system. Network diagnose is from the UAI 2008 evalua-
tion. Network spect is a naive Bayes network induced from
a dataset in the UCI ML repository, with 1 class variable
and 22 attributes. Chains, trees, and grids are randomly
generated networks. The other networks are commonly
used benchmarks.

Figures from 10 to 25 show the objective function val-
ues gotten by EM for different benchmarks and for differ-
ent percentages of fully observed variables, together with
the proposed bound (decomposition bound), and the naive
bound. We have the following observations on the results.

In most cases, our proposed bound was much tighter than
the naive bound. One can also see that the proposed bound
coincides (or almost coincides) with the EM’s curve in Fig-
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Figure 10: Upper bound for network Alarm.

ures 11, 15, 18, 19, 20, 21, 22, 23, 24, and 25. This shows
that the bound can be tight in many cases. When the bound
coincides with the EM curve, it provides a certificate that
EM is getting the global optimum in these cases.

Moreover, in Figures 10, 14, and 17, as the number of fully
observed variables increases, the gap between the proposed
bound and EM’s curve tends to shrink, which suggests that
the bound becomes tight and that EM gets close to the
global optimum in these cases. On the other hand, for cases
where the proposed bound was not close to the EM’s curve,
it could be that EM is getting a local optimum, or the bound
is not tight, in these cases.

Furthermore, we note that the excellent performance of the
upper bound on Network Spect in Figure 15, and on tree
networks in Figures 20, 21, and 22 is partially because hid-
den variables associated with leaf nodes in these networks
can be ignored from the computation of the likelihood, as
their values are summed out.

We finally conduct an experiment to see how often EM ap-
proaches the bound if started from different seeds; using a
3× 3 grid while fully observing 50% of the variables. Fig-
ure 26 shows the difference in likelihood between the upper
bound and EM for this benchmark, when started from dif-
ferent seeds (x-axis). One can see that EM gets close to the
bound in many cases for this benchmark. We note, how-
ever, that a more comprehensive study is needed for assess-
ing the quality of EM estimates under different seeds—a
study that can be significantly aided by the proposed upper
bound.

6 Related Work

Decomposing Bayesian networks based on fully observed
variables was proposed in [26] to speed-up parameter esti-
mation. Our bound relies on this decomposition as a first
step in formulating the auxiliary optimization problem.

Variational methods (see [14]) can provide lower bounds
on the likelihood in graphical models. Moreover, an upper
bound for the likelihood in the context of Gaussian mix-
tures was proposed in [3]. However, this bound only works
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Figure 11: Upper bound for network Asia.
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Figure 12: Upper bound for network Win95pts.
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Figure 13: Upper bound for network Diagnose.
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Figure 14: Upper bound for network Andes.
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Figure 15: Upper bound for network Spect.
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Figure 16: Upper bound for network Water.
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Figure 17: Upper bound for network Pigs.
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Figure 18: Upper bound for a chain network (50 nodes).
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Figure 19: Upper bound for a chain network (180 nodes).
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Figure 20: Upper bound for a tree network (63 nodes).
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Figure 21: Upper bound for a tree network (127 nodes).
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Figure 22: Upper bound for a tree network (255 nodes).
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Figure 23: Upper bound for a 3× 3 MRF grid.
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Figure 24: Upper bound for a 6× 6 MRF grid.
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Figure 25: Upper bound for a 9× 9 MRF grid.
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Figure 26: Likelihood difference between decomposition
bound and EM started from different points.



asymptotically. An upper bound on maximum likelihood
that only works for phylogenetic trees was proposed in [7].
Techniques for computing upper and lower bounds on like-
lihoods in sigmoid and noisy-OR networks were proposed
in [12].

Some work also exists for obtaining upper and lower
bounds on the partition function. In particular, mean field
theory, e.g. [33, 14], provides such a lower bound (tighter
bounds have also been derived [19]). In contrast, upper
bounds are not widely available [31]. For the special case
of the Ising Model, a recursive procedure was proposed for
upper bounding the log partition function [11]. An up-
per bound on the partition function of an arbitrary MRF
was proposed in [31] based on solving a convex variational
problem. While bounds on the partition function can be
used to get an upper bound on the likelihood, the non-
convex term related to the data remains non-convex, which
does not make the bound easy to compute. The bound we
proposed, however, is based on solving a convex optimiza-
tion problem.

7 Conclusion

We proposed a technique for obtaining an upper bound on
the global optimum in parameter estimation. The technique
applies to incomplete datasets and exploits variables that
are always observed in the dataset. The bound is computed
by solving a convex optimization problem, which can be
solved by a single pass through the dataset in Bayesian net-
works. The proposed bound can be useful in providing a
certificate of global optimality for parameters learned by
estimation algorithms. Empirically, we showed that the
bound can be tight, and can be used to show that an es-
timation algorithm is obtaining the global optimum or an
estimate that is very close to the optimum.
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[4] Adnan Darwiche. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press, 2009.

[5] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum
likelihood from incomplete data via the EM algorithm. Jour-
nal of the Royal Statistical Society B, 39:1–38, 1977.

[6] R. A. Fisher. On the mathematical foundations of theoretical
statistics. Philosophical Transactions of the Royal Society of
London Series, 1922.

[7] Michael D. Hendy and Barbara R. Holland. Upper bounds
on maximum likelihood for phylogenetic trees. Bioinfor-
matics, 2003.

[8] Magnus R. Hestenes and Eduard Stiefel. Methods of con-
jugate gradients for solving linear systems. Research of the
National Bureau of Standards, 1952.

[9] G. Hinton. Training products of experts by minimizing con-
trastive divergence. In Neural Computation, 2000.

[10] A. Hyvärinen. Estimation of non-normalized statistical
models using score matching. JMLR, 2005.

[11] T. S. Jaakkola and M. Jordan. Recursive algorithms for ap-
proximating probabilities in graphical models. In Advances
in Neural Information Processing Systems, 1996.

[12] Tommi S. Jaakkola and Michael I. Jordan. Computing upper
and lower bounds on likelihoods in intractable networks. In
Proceedings of the Conference on Uncertainty in Artificial
Intelligence, 1998.

[13] Radim Jirousek and Stanislav Preucil. On the effective im-
plementation of the iterative proportional fitting procedure.
Computational Statistics & Data Analysis, 19(2):177–189,
1995.

[14] M. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. Saul.
Learning in Graphical Models, chapter “An introduction to
variational methods for graphical models. Cambridge, MA:
MIT Press, 1999.

[15] R. Kindermann and J. L. Snell. Markov Random Fields and
their Applications. American Mathematical Society, 1980.

[16] Daphne Koller and Nir Friedman. Probabilistic Graphical
Models: Principles and Techniques. MIT Press, 2009.

[17] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Condi-
tional random fields: Probabilistic models for segmenting
and labeling sequence data. In ICML, 2001.

[18] S. L. Lauritzen. The EM algorithm for graphical associ-
ation models with missing data. Computational Statistics
and Data Analysis, 19:191–201, 1995.

[19] S. L. Lauritzen. Graphical Models. Oxford, U.K.: Oxford
Univ. Press, 1996.

[20] S Z. Li. Markov random field modeling in image analysis.
Springer-Verlag, 2001.

[21] D. C. Liu and J. Nocedal. On the Limited Memory BFGS
Method for Large Scale Optimization. Mathematical Pro-
gramming, 45(3):503–528, 1989.

[22] E. Marinari, G. Parisi, and J.J. Ruiz-Lorenzo. Numerical
simulations of spin glass systems. Spin Glasses and Random
Fields, 1997.



[23] Yariv Dror Mizrahi, Misha Denil, and Nando de Freitas.
Linear and parallel learning of Markov random fields. In
In International Conference on Machine Learning (ICML),
2014.

[24] Kevin Patrick Murphy. Machine Learning: A Probabilistic
Perspective. MIT Press, 2012.

[25] Khaled S. Refaat, Arthur Choi, and Adnan Darwiche.
EDML for learning parameters in directed and undirected
graphical models. In Advances in Neural Information Pro-
cessing Systems 26, pages 1502–1510, 2013.

[26] Khaled S. Refaat, Arthur Choi, and Adnan Darwiche. De-
composing parameter estimation problems. In Advances
in Neural Information Processing Systems 27, pages 1565–
1573, 2014.

[27] Dan Roth. On the hardness of approximate reasoning. Arti-
ficial Intelligence, 1996.

[28] S. Russel, J. Binder, D. Koller, and K. Kanazawa. Local
learning in probabilistic networks with hidden variables. In
Proceedings of the Fourteenth International Joint Confer-
ence on Artificial Intelligence, 1995.

[29] R. Shachter. Evidence absorption and propagation through
evidence reversals. In Proceedings of the Conference on
Uncertainty in Artificial Intelligence, 1990.

[30] C. Varin, N. Reid, and D Firth. An overview of composite
likelihood methods. Statistica Sinica, 2011.

[31] Martin J. Wainwright, Tommi S. Jaakkola, and IEEE Alan
S. Willsky, Fellow. A new class of upper bounds on the
log partition function. IEEE Transactions on Information
Theory, 2005.

[32] C. Yanover, O. Schueler-Furman, and Y. Weiss. Minimiz-
ing and learning energy functions for side-chain prediction.
In Speed, Terry and Huang, Haiyan (eds.), Research in
Computational Molecular Biology, volume 4453 of Lecture
Notes in Computer Science, 2007.

[33] J. Zhang. The application of the gibbs-bogoliubov-feynman
inequality in mean-field calculations for Markov random-
fields. IEEE Tran. on Image Process., 5(7):1208–1214,
1996.


