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Abstract

It is shown that any connected matroid having a
non-trivial cluster of BN variables as its ground
set induces a facet-defining inequality for the
polytope(s) used in the ILP approach to globally
optimal BN structure learning. The result applies
to well-known k-cluster inequalities, which play
a crucial role in the ILP approach.

1 INTRODUCTION

The motivation for this theoretical paper is learning
Bayesian network (BN) structure. Some hidden connection
of the theory of matroids to a recent trend in optimal BN
structure learning is revealed; specifically, matroids are
related to the application of integer linear programming
(ILP) methods in this area. To explain the motivation, in
this introductory section, the latest developments in the ILP
approach to learning BN structure are recalled. Matroid
theory is also briefly mentioned and the structure of the rest
of the paper is described.

1.1 ILP APPROACH TO LEARNING

The usual score-based approach to BN structure learning
consists in maximizing a scoring criterion G 7→ Q(G,D),
where G is an acyclic directed graph and D the observed
database (Neapolitan, 2004). The valueQ(G,D) says how
much the BN structure defined by the graph G fits the
database D. Nevertheless, some researchers are used to
identify the BN structure with the respective equivalence
class of graphs and prefer to talk about learning the class.

Since the classic heuristic greedy equivalence search (GES)
algorithm (Chickering, 2002) is known not to guarantee to
find a globally optimal BN structure, researches started to
look for alternative methods. One of them was based on
the idea of dynamic programming (Silander, Myllymäki,
2006), which, however, was limited in the number of BN

variables (= nodes of the graph) because of the exponential
growth of memory demands.

This limitation has been overcome by the ILP approach
based on family-variable vector representation of the
graphs suggested independently in (Jaakkola, Sontag,
Globerson, Meila, 2010) and (Cussens, 2010). An impor-
tant technical step to overcome the limitation was the idea
of the reduction of the search space developed by de Cam-
pos and Ji and published in a later journal paper (2011).

Jaakkola et al. (2010) introduced an important class
of cluster-based inequalities approximating the respective
family-variable polytope and came with a method of grad-
ual adding these special constraints. Cussens (2010) first
applied the family-variable vector representation in the re-
stricted context of pedigree learning. However, his next
paper (Cussens, 2011), which was inspired by (Jaakkola
et al., 2010), dealt with general BN structure learning and
came with a standard cutting plane approach offering a
more efficient way of adding the (cluster) inequality con-
straints, based on solving a special simple sub-ILP prob-
lem. Moreover, his experiments with general-purpose cut-
ting planes, the so-called Gomory cuts, lead him to the idea
to introduce a wider class of k-cluster inequalities, where
k is a natural number less than the cardinality of the cluster.
Bartlett and Cussens (2013) extended later the cutting plane
method to a more general branch-and-cut approach; they
included a lot of fine improvements and achieved much
better running times. One of the morals of their paper
was that using additional facet-defining inequalities for the
family-variable polytope can speed up the computation.

An alternative ILP approach based on characteristic-imset
representation of BN structures appeared in (Hemmecke,
Lindner, Studený, 2012); its motivational sources date back
to the method of imsets from (Studený, 2005). Unlike the
family-variable vectors, the characteristic imsets uniquely
correspond to BN structures. However, although this ILP
approach is also feasible, the computational experiments
reported in (Studený, Haws, 2014) have not resulted in bet-
ter running times in comparison with the 2013-year version
of GOBNILP software (Cussens and Bartlett, 2015).



Our recent manuscript (Cussens, Haws, Studený, 2015)
has been devoted to the comparison of the facet-defining
inequalities for the family-variable polytope and for the
characteristic-imset polytope. Note that the facet-defining
inequalities appear to be the most useful ones in the cutting
plane approach to solving ILP problems; see the reasons in
§ 9.1-9.2 of (Wolsey, 1998). In (Cussens et al., 2015), we
established a one-to-one correspondence between extreme
supermodular set functions and certain facet-defining in-
equalities for both polytopes. An important special case
of such facet-defining inequalities are the above mentioned
k-cluster constraints, which can be transformed to the
characteristic-imset context.

1.2 MATROID THEORY

The theory of matroids had been formed in the 1930’s as
an abstract theory of independence and since then became
one of important topics in combinatorial optimization. The
reader is referred to Oxley’s book (1992) for numerous
examples of how matroids pervade various branches of
discrete mathematics and for how they appear to be useful
in computer science.

In (Cussens et al., 2015) we observed an interesting relation
of the above mentioned k-cluster inequalities to the so-
called connected uniform matroids, which gives an elegant
interpretation to those inequalities.

In this paper, I extend our former observation and, using
an old result by Nguyen (1978) from matroid theory, show
that any connected matroid over a cluster of BN variables
involving at least two variables induces a facet-defining in-
equality both for the family-variable polytope and for the
characteristic-imset polytope.

In my opinion, this theoretical result broadens the class of
available facet-defining inequalities which can be used in
the cutting plane approach to solving ILP problems arising
in the optimal BN structure learning area.

1.3 PAPER STRUCTURE

In § 2 formal definitions of basic concepts are given: from
the area of BN structure learning, the theory of polytopes,
and matroid theory. The next § 3 then recalls a few obser-
vations on the cone of supermodular set functions and the
results from (Cussens et al., 2015), (Nguyen, 1978) that are
needed. These allows one to formulate and prove the main
result in § 4. An illustrating example is given in § 5. The
conclusions and the discussion are in § 6.

2 BASIC CONCEPTS

LetN be a finite set of BN variables; to avoid a trivial case,
assume n := |N | ≥ 2. In statistical context, the elements
of N correspond to random variables; in graphical context,

they correspond to nodes of (acyclic directed) graphs. Its
subsets C ⊆ N with |C| ≥ 2, called clusters in this paper,
will serve as ground sets of the matroids discussed here.

2.1 STRUCTURE LEARNING CONCEPTS

The symbol DAGs (N) will denote the collection of all
acyclic directed graphs over N , which means the graphs
having N as the set of nodes. Given G ∈ DAGs (N) and
a ∈ N , the symbol paG(a) := { b ∈ N : b → a in G},
is the parent set of the node a. A well-known equivalent
definition of acyclicity of a directed graph G over N is the
existence of a total order a1, . . . , an of nodes in N such
that, for every i = 1, . . . , n, paG(ai) ⊆ {a1, . . . , ai−1};
we say then the order and the graph are consonant.

A BN model is a pair (G,P ), where G ∈ DAGs (N)
and P a probability distribution on the joint sample space
XN :=

∏
a∈N Xa, the Cartesian product of individual non-

empty finite sample spaces Xa for variables a ∈ N , which
factorizes according to G. An equivalent characterization
of the factorization property is that P is Markovian with
respect to G, which means it satisfies the conditional inde-
pendence restrictions determined by G (Lauritzen, 1996).
The BN structure defined by G is formally the class of
Markovian probability distributions with respect to G.

Different graphs over N could be Markov equivalent,
which means they define the same BN structure. The
classic graphical characterization of equivalent graphs by
Verma and Pearl (1991) states that two graphs are Markov
equivalent if and only if they have the same adjacencies and
immoralities. Recall that an immorality in G ∈ DAGs (N)
is an induced subgraph ofG of the form a→ c← b, where
the nodes a and b are not adjacent in G. Markov equiva-
lence of G,H ∈ DAGs (N) will be denoted by G ∼ H .

The task of learning the BN structure is to determine it on
the basis of an observed (complete) database D, which is
a sequence x1, . . . , xm, m ≥ 1 of elements of the joint
sample space XN . This is often done by maximizing some
quality criterion, also called a score or a scoring criterion,
which is a bivariate real function (G,D) 7→ Q(G,D),
where G ∈ DAGs (N) and D a database. Examples of
such criteria are Schwarz’s (1978) Bayesian information
criterion (BIC) and Bayesian Dirichlet equivalence (BDE)
score (Heckerman, Geiger, Chickering, 1995). The reader
is referred to (Neapolitan, 2004) for the definition of a
relevant concept of statistical consistency.

A crucial technical assumption from the computational
point of view (Chickering, 2002) is that Q should be
additively decomposable, which means, it has the form

Q(G,D) =
∑
a∈N

qD(a | paG(a)) , (1)

where the summands qD(∗ | ∗) are called local scores. All
criteria used in practice satisfy this requirement.



Given an observed database D, the goal is to maximize
G 7→ Q(G,D). Since the aim is learn the BN structure, a
natural assumption is that the criterion Q to be maximized
is score equivalent (Bouckaert, 1995), which means, for
every database D and G,H ∈ DAGs (N),

Q(G,D) = Q(H,D) whenever G ∼ H.

Most of the criteria used in practice satisfy that.

2.2 POLYTOPES FOR LEARNING

We recall a few basic concepts from polyhedral geometry;
see (Barvinok, 2002) or (Ziegler, 1995) for more details.

Below we deal with the Euclidean real vector spaces RΓ,
where Γ 6= ∅ is a non-empty finite index set. Given two
vectors v, w ∈ RΓ, their scalar product will be denoted by

〈v, w〉Γ :=
∑
i∈Γ

vi · wi ,

or just by 〈v, w〉 if there is no danger of confusion.

A polytope P is the convex hull of finitely many vectors
from RΓ; we only consider non-empty P. The dimension
of P, denoted by dim(P), is the dimension of its affine
hull, which is nothing but a translate of a linear subspace.
The maximal number of affinely independent vectors in P
is then dim(P) + 1.

Given o ∈ RΓ and u ∈ R, a linear inequality 〈o, v〉 ≤ u
for v ∈ RΓ is called valid for P if it holds for any v ∈ P.
The inequality is then called tight for a vector w ∈ P if
〈o, w〉 = u. Given such valid linear inequality for P the
corresponding face of P is its subset F ⊆ P of the form

F = { v ∈ P : 〈o, v〉 = u }.

One usually deals with valid inequalities that are tight for
at least one vector w ∈ P in which case F 6= ∅. Then
we will name the respective inequality face-defining. The
function v ∈ RΓ 7→ 〈o, v〉 is typically a linear objective
to be maximized; with little abuse of terminology we will
then call o ∈ RΓ an objective.

A facet of a polytope P is its face of the dimension
dim(P) − 1. The corresponding inequality will be then
called facet-defining. Given a (non-empty) facet F ⊆ P of
a full-dimensional polytope P in RΓ, its facet-defining in-
equality is unique up to a positive multiple (of both o ∈ RΓ

and u ∈ R). A well-known fundamental result in poly-
hedral geometry is that every full-dimensional polytope P
with non-empty facets is specified as the set of vectors
v ∈ RΓ satisfying all facet-defining inequalities for P.
Thus, P is a bounded polyhedron and the facet-defining in-
equalities provide its minimal description in terms of in-
equalities.

2.2.1 Family-Variable Polytope

The index set for our family-variable vectors will be

Υ := { (a |B) : a ∈ N & ∅ 6= B ⊆ N \ {a} } .

Given G ∈ DAGs (N), the symbol ηG will denote the
family-variable vector encoding it:

ηG(a |B) =

{
1 if B = paG(a),
0 otherwise, for (a |B) ∈ Υ.

The family-variable polytope is defined as the convex hull
of the collection of all such vectors:

F := conv ({ ηG ∈ RΥ : G ∈ DAGs (N) }) .

Clearly, dim(F) = |Υ| = n · (2n−1 − 1).

One can re-write (1) in terms of ηG in this way:

Q(G,D) =
∑
a∈N

∑
B⊆N\{a}

qD(a |B) · ηG(a |B), (2)

which allows one to interpret Q as (the restriction of) a
linear function of ηG. In particular, the maximization
of Q over DAGs (N) turns into the task to maximize a
linear function with the objective o(a |B) = qD(a |B)
for (a |B) ∈ Υ over the family-variable polytope F. In
other words, the local scores become the components of
the respective objective vector o ∈ RΥ.

The assumption of score equivalence ofQ then implies the
respective objective satisfies, for everyG,H ∈ DAGs (N),

G ∼ H ⇒ 〈o, ηG〉Υ = 〈o, ηH〉Υ . (3)

Thus, if (3) holds for o ∈ RΥ we will say that it is a score
equivalent objective, abbreviated as an SE objective.

Given a cluster C ⊆ N , |C| ≥ 2, of BN variables and a
natural number k = 1, . . . , |C| − 1 the inequality

k ≤
∑
a∈C

∑
B⊆N\{a} : |B∩C|<k

ηG(a |B)

is valid for any G ∈ DAGs (N): as the induced subgraph
GC is acyclic, the first k nodes in a total order of nodes in
C consonant with GC have at most k − 1 parents in C. In
particular, the inequality is valid for any η ∈ F in place of
ηG and one can transform it into a standardized form:∑

a∈C

∑
B⊆N\{a} : |B∩C|≥k

η(a |B) ≤ |C| − k . (4)

We will call (4) the k-cluster inequality for C; its version
for k = 1 is simply the cluster inequality for C. Every
k-cluster inequality is facet-defining for F and the objective
defining (4) is SE; see (Cussens et al., 2015, Corol 4).



Example 1 Consider N = {a, b, c, d} = C and k = 2.
Then (4) takes the following form:

[ η(a | bc) + η(a | bd) + η(a | cd) + η(a | bcd) ]

+ [ η(b | ac) + η(b | ad) + η(b | cd) + η(b | acd) ] (5)
+ [ η(c | ab) + η(c | ad) + η(c | bd) + η(c | abd) ]

+ [ η(d | ab) + η(d | ac) + η(d | bc) + η(d | abc) ] ≤ 2 .

2.2.2 Characteristic-Imset Polytope

The characteristic imset of G ∈ DAGs (N), introduced in
(Hemmecke et al., 2012) and denoted below by cG, is an
element of the vector space RΛ where

Λ := {S ⊆ N : |S| ≥ 2 } .

Recall from (Studený, Haws, 2013) that cG is a many-to-
one linear function of ηG, the transformation is η 7→ cη :

cη(S) =
∑
a∈S

∑
B :S\{a}⊆B⊆N\{a}

η(a |B) (6)

for S ∈ Λ. Thus, given G ∈ DAGs (N), (6) can serve as
the definition of cG in which one substitutes η = ηG. A
fundamental observation is that, for G,H ∈ DAGs (N),
G ∼ H if and only if cG = cH (Hemmecke et al., 2012).
In particular, the characteristic imset is a unique represen-
tative of the corresponding BN structure.

The characteristic-imset polytope is defined as follows:

C := conv ({ cG ∈ RΛ : G ∈ DAGs (N) }) .

One can show that dim(C) = |Λ| = 2n−n−1. Of course,
C is the image of F by the linear mapping (6).

A notable fact is that any valid inequality for C induces a
valid inequality for F: if 〈z, c〉Λ ≤ u, where z ∈ RΛ and
u ∈ R, is a valid inequality for c ∈ C, substitute (6) into
〈z, cη〉Λ ≤ u and re-arrange the terms after the compo-
nents of η. Indeed, since the image of ηG by (6) is just cG,
one gets an inequality valid for any ηG, G ∈ DAGs (N).
Moreover, the induced inequality for η ∈ F is given by an
SE objective: if G ∼ H , one has cG = cG and, therefore,
〈z, cG〉Λ = 〈z, cH〉Λ.

In fact, there is a one-to-one correspondence between the
valid inequalities for C and the valid inequalities for F
given by SE objectives (Cussens et al., 2015). Thus, these
special valid inequalities for F can also be viewed as the
valid inequalities for C, that is, interpreted in the context
of C. This concerns many facet-defining inequalities for F:
the k-cluster inequality (4) takes the following form in the
characteristic-imset context, see (Cussens et al., 2015, § 9):∑

S⊆C, |S|≥k+1

z(S) · c(S) ≤ |C| − k ,

where z(S) = (−1)|S|−k−1 ·
( |S|−2
|S|−k−1

)
for any such S.

Example 2 Consider N = {a, b, c, d}. Then the 2-cluster
inequality for C = {a, b, c, d} takes the form

c(abc) + c(abd) + c(acd) + c(bcd)− 2 · c(abcd) ≤ 2 .

Indeed, the substitution of (6) in it gives just (5).

2.3 CONCEPTS FROM MATROID THEORY

Let us recall some definitions and basic facts from matroid
theory; see (Oxley, 1992, chapters 1,2,4) for more details.

A matroid is a pair (C, I) where C is a finite set, called its
ground set, and I a non-empty class of subsets ofC, called
the independent sets (of the matroid), which is closed under
subsets: I ∈ I, J ⊆ I implies J ∈ I and satisfies the
independence augmentation axiom :

if I, J ∈ I and |J | < |I|
then a ∈ I \ J exists with J ∪ {a} ∈ I.

We will also say that the matroid is on the set C.

A number of equivalent descriptions of the matroid (C, I)
exists. Any matroid can be described by the class B of its
bases, which are inclusion-maximal independent sets. The
above independence augmentation axiom implies that the
sets in B have the same cardinality. The shared cardinality
of bases of a matroid is called its rank. A well-known fact
is that B ⊆ P(C) is the class of bases of a matroid on C
iff it is a non-empty class of subsets of C satisfying the
following basis exchange axiom :

if I, J ∈ B and a ∈ I \ J
then b ∈ J \ I exists with (I \ {a}) ∪ {b} ∈ B.

The class D of dependent sets of (C, I) consists of those
subsets of C that are not independent sets. The circuits
of the matroid are the inclusion-minimal dependent sets. A
class C ⊆ P(C) is the class of circuits of a matroid on C iff
it is a class of non-empty inclusion-incomparable subsets of
C satisfying the following circuit elimination axiom :

if K,L ∈ C, K 6= L and a ∈ K ∩ L
then M ∈ C exists with M ⊆ (K ∪ L) \ {a}.

We will also use the description of the matroid (C, I) in
terms of its rank function, which is a function r on P(C)
defined as follows:

r(J) = max { |I| : I ⊆ J & I ∈ I } for any J ⊆ C.

The rank functions of matroids on C are characterized as
integer-valued set functions r : P(C) → Z satisfying the
following three conditions:

• if I ⊆ C then 0 ≤ r(I) ≤ |I|,



• if J ⊆ I ⊆ C then r(J) ≤ r(I),

• if I, J ⊆ C then r(I ∪ J) + r(I ∩ J) ≤ r(I) + r(J).

A set S ⊆ C is called a separator of a matroid (C, I) if

r(S) + r(C \ S) = r(C) .

The matroid is called connected if it has no other separators
except for the trivial ones S = ∅ and S = C. Observe that
if (C, I) is connected and |C| ≥ 2 then

⋃
B =

⋃
I = C,

for otherwise
⋃
I is a non-trivial separator or r ≡ 0. An

equivalent definition of a connected matroid on C is that,
for every pair a, b ∈ C, a 6= b, a circuit D ∈ C exists with
a, b ∈ D, see (Oxley, 1992, Prop 4.1.4).

The dual matroid to a matroid over C having B ⊆ P(C) as
its class of bases is the matroid on C having

B∗ := {C \B : B ∈ B}

as its class of bases. The formula for the rank function r∗

of the dual matroid is as follows:

r∗(J) = |J | − r(C) + r(C \ J) for J ⊆ C, (7)

see (Oxley, 1992, Prop 2.1.9). Another well-known basic
fact is that the dual matroid to a connected matroid is con-
nected as well, see (Oxley, 1992, Corol 4.2.8).

Example 3 Consider C = {a, b, c, d} and put

B = { {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d} }.

Clearly, B is the class of bases of a matroid on C. The
independent sets in it are subsets ofC of cardinality at most
two. The circuits are subsets ofC of cardinality 3. The rank
function only depends on the cardinality:

r(J) = min { |J | , 2 } for J ⊆ C.

The form of r implies that the only separators are S = ∅
and S = C. In particular, the matroid is connected. The
dual matroid is itself.

The above example is a special matroid in a certain sense:
for any integer 0 ≤ k ≤ |C| the uniform matroid on C of
the rank k has the collection of subsets of C of the cardi-
nality at most k as its class of independent sets.

In this paper, the attention is limited to matroids which have
clusters of BN variables C ⊆ N , |C| ≥ 2 as their ground
sets. Any matroid (C, I) on such cluster C can be inter-
preted as a matroid onN because I ⊆ P(C) can be viewed
as a class of subsets of N . This kind of trivial extension on
N leads to the rank function r : P(N)→ Z given by

r(S) = r(C ∩ S) for any S ⊆ N .

3 SUPERMODULAR FUNCTIONS

In (Cussens et al., 2015, § 7) a one-to-one correspondence
has been established between extreme supermodular set
functions and certain important facets of F, respectively of
C. The relevant concepts are recalled in this section.

A real function m : P(N)→ R on subsets of the set N of
BN variables will be called standardized if m(S) = 0 for
S ⊆ N , |S| ≤ 1, and supermodular if

∀U, V ⊆ N m(U) +m(V ) ≤ m(U ∪ V ) +m(U ∩ V ) .

Mirror images of supermodular functions are submodular
functions, defined by the converse inequalities; recall from
§ 2.3 that rank functions of matroids are submodular.

3.1 EXTREME SUPERMODULAR FUNCTIONS

The collection of standardized supermodular functions on
P(N), viewed as a set of vectors in RP(N), is a pointed
polyhedral cone. Therefore, it has finitely many extreme
rays, which makes the following definition meaningful.

A standardized supermodular function m : P(N) → R
will be called extreme if it generates an extreme ray of the
standardized supermodular cone. Recall that a non-zero
vector v in a cone generates its extreme ray if the only
summands in (positive) convex combinations of vectors
from the cone yielding v are non-negative multiples of v.

Theorems 1 and 2 from (Cussens et al., 2015) together give
the next observation.

THEOREM 1 An inequality 〈o, η〉Υ ≤ u for η ∈ RΥ,
where o ∈ RΥ, u ∈ R, is facet-defining for F and defined
by an SE objective o iff there exists an extreme standardized
supermodular function m on P(N) such that o is given by

o(a |B) = m({a} ∪B)−m(B) for (a |B) ∈ Υ, (8)

and u is the shared value of 〈o, ηH〉Υ for full graphs H
over N , that is, for such H ∈ DAGs (N) in which every
pair of distinct nodes is adjacent.

Example 4 Consider N = {a, b, c, d} and the set function

m(S) =

 2 if S = N ,
1 if |S| = 3,
0 otherwise,

for S ⊆ N .

Clearly, m is a standardized supermodular function; finer
arguments why m is extreme are given later (Example 5).
The formula (8) leads to the inequality (5). By Theorem 1,
(5) is facet-defining for the family-variable polytope F.

Moreover, Corollary 6 in (Cussens et al., 2015) says what
is the role of the inequalities from Theorem 1 in the
characteristic-imset context; here we have in mind the
correspondence of the inequalities mentioned in § 2.2.2.



COROLLARY 1 Facet-defining inequalities 〈o, η〉Υ ≤ u
for η ∈ F with SE objectives correspond to facet-defining
inequalities 〈z, c〉Λ ≤ u for c ∈ C tight for the 1-imset,
which is the vector in RΛ whose all components are ones.

3.2 SUBMODULARITY AND RANK FUNCTIONS

Mirror images of supermodular functions are submodular
ones, which play an important role in matroid theory. It
follows from the facts mentioned in § 2.3 that every rank
function of a matroid belongs to the cone of non-decreasing
submodular functions r with r(∅) = 0. This is a pointed
polyhedral cone and has finitely many extreme rays.

Nguyen (1978) was interested in the question when the
rank function of a matroid generates an extreme ray of that
cone. The next fact follows from his Theorem 2.1.5.

THEOREM 2 Let C be a non-empty finite set and (C, I) a
matroid on it such that C =

⋃
I . Then its rank function

r generates an extreme ray of the cone of non-decreasing
submodular functions on P(C) satisfying r(∅) = 0 iff the
corresponding matroid (C, I) is connected.

4 MAIN RESULT

LEMMA 1 Given a connected matroid (C, I) on C ⊆ N ,
|C| ≥ 2 with the rank function r : P(C)→ Z, the function

m(S) := |C ∩ S| − r(C ∩ S) for S ⊆ N , (9)

is extreme standardized supermodular function on P(N).

Proof: Let us denote by R[C], for C ⊆ N , the cone of
submodular functions r∗ on P(C) such that r∗(∅) = 0 and
r∗(C) − r∗(C \ {a}) = 0 for any a ∈ C. Any function
r∗ in R[C] is necessarily non-decreasing. The dual matroid
to (C, I) is connected; by Theorem 2, its rank function r∗

given by (7) generates an extreme ray of the non-decreasing
submodular cone. Since (C, I) is connected,

⋃
I = C

says r({a}) = 1 for any a ∈ C. Moreover, the dual ma-
troid to the dual matroid is again (C, I), which gives

1 = r({a}) = r∗∗({a}) (7)
= 1− r∗(C) + r∗(C \ {a})

for any a ∈ C; hence, r∗ belongs to the smaller cone
R[C]. This easily implies that r∗ generates an extreme
ray of R[C], which fact allows one to observe by a minor
consideration that its trivial extension

r∗(S) := r∗(C ∩ S) for S ⊆ N ,

generates an extreme ray of R[N ]. Finally, the formula

m(S) = r∗(N)− r∗(N \ S) for S ⊆ N ,

defines a one-to-one linear transformation of the cone R[N ]
onto the cone of standardized supermodular functions m

on P(N) (in fact, the transformation is self-inverse). In
particular, r∗ 7→ m maps generators of extreme rays to
generators of extreme rays, implying that m is extreme in
the respective cone. Thus, one can write for any S ⊆ N :

m(S) = r∗(N)− r∗(N \ S) = r∗(C)− r∗(C \ S)

(7)
= { |C| − r(C) } − { |C \ S| − r(C) + r(C ∩ S) }
= |C ∩ S| − r(C ∩ S) ,

which gives (9).

Example 5 Consider N = {a, b, c, d} = C and take the
uniform matroid on C of rank 2 from Example 3. It is a
connected matroid and, by Lemma 1, it induces through
(9) an extreme supermodular function m from Example 4.

THEOREM 3 Given a connected matroid (C, I) on a
cluster C ⊆ N , |C| ≥ 2 of BN variables, the inequality∑
a∈C

∑
B⊆N\{a}: ∃D∈C a∈D⊆B∪{a}

η(a |B) ≤ |C|−k, (10)

where k is the rank of (C, I) and C the collection of its
circuits, is a facet-defining inequality for F.

Proof: By Lemma 1, (9) gives an extreme standardized
supermodular function; one can apply Theorem 1 then. The
upper bound u in the respective facet-defining inequality
〈o, η〉Υ ≤ u for η ∈ F is the shared value 〈o, ηH〉Υ for full
graphs H ∈ DAGs (N). Using (8) one gets u = m(N),

that is, u = m(N)
(9)
= |C| − r(C) = |C| − k.

The formula for the objective coefficients o(a |B), where
a ∈ N and B ⊆ N \ {a} (possibly empty) is then

o(a |B)
(8)
= m({a} ∪B)−m(B)

(9)
= |C ∩ {a}| − r(C ∩ ({a} ∪B)) + r(C ∩B) ,

implying o(a |B) = 0 if a ∈ N \C. In case a ∈ C one has

o(a |B) = 1−r(C∩({a}∪B))+r(C∩B) = o(a |C∩B) .

Therefore, in the rest of the proof, we assume a ∈ C and
B ⊆ C \ {a}; our goal is to verify

o(a |B) =

{
1 ∃D ∈ C with a ∈ D & D ⊆ B ∪ {a},
0 otherwise,

which clearly gives (10). We come from the above formula

o(a |B) = 1− r({a} ∪B) + r(B) . (11)

Having fixed a ∈ C, the coefficient are monotone

E ⊆ B ⊆ C \ {a} ⇒ o(a |B) ≥ o(a |E) (12)

because of submodularity of r :

o(a |B)− o(a |E)
(11)
= r(B) + r({a} ∪ E)− r(E)− r({a} ∪B) ≥ 0 .



As (C, I) is connected one has r({a}) = 1 for any a ∈ C,
which gives

o(a | ∅) (11)
= 1− r({a}) + r(∅) = 1− 1 + 0 = 0.

Since the dual matroid is also connected, one has

o(a |C \ {a}) (11)
= 1− r(C) + r(C \ {a}) (7)

= r∗({a}) = 1.

In particular, the objective coefficients are either zeros or
ones. In case a circuitD ∈ C exists with a ∈ D ⊆ B∪{a},
it is enough to show o(a |D \ {a}) = 1 and apply (12).
Indeed, by the definition of a circuit, D \ {a} ∈ I and
r(D \ {a}) = |D| − 1. One cannot have r(D) = |D|, for
otherwise D ∈ I contradicts the assumption D ∈ C. Thus,
r(D) = |D| − 1 and one has

o(a |D \ {a}) (11)
= 1− r(D) + r(D \ {a}) = 1 .

It remains to show that o(a |B) = 0 in the complementary
case that no such D ∈ C exists for B. By the definition of
the rank function r, a set J ⊆ B exists with J ∈ I and
|J | = r(B). It is enough to show {a} ∪ J ∈ I because
then r({a} ∪B) = |J |+ 1 (use submodularity of r) and

o(a |B)
(11)
= 1−r({a}∪B)+r(B) = 1−(|J |+1)+|J | = 0 .

Thus, assume for a contradiction that {a} ∪ J ∈ D is a
dependent set and, by the definition of circuits, find D ∈ C
with D ⊆ {a} ∪ J . Necessarily a ∈ D, for otherwise a
contradictory conclusion J ∈ D is derived. This implies
a ∈ D ⊆ {a}∪J ⊆ {a}∪B contradicting the assumption
that no such circuit D ∈ C exists for B.

The observation that the k-cluster inequalities (4) are facet-
defining for the family-variable polytope easily follows
from Theorem 3. Indeed, any uniform matroid on C ⊆ N ,
|C| ≥ 2 of the rank k, 1 ≤ k ≤ |C| − 1 is connected. This
fact is illustrated by the following simple example.

Example 6 Consider N = {a, b, c, d}, C = {a, b, c} and
k = 1. The uniform matroid on C of rank 1 has the bases
{a}, {b} and {c}. Thus, the class of its circuits is

C = { {a, b}, {a, c}, {b, c} } .

Since every pair of BN variables in C is contained in a
circuit, it is a connected matroid. To get the specific form
of the inequality (10) in this case realize that a ∈ C is
contained in two circuits D ∈ C, namely in {a, b} and in
{a, c}. Thus, one has in (10) those terms η(a |B) where
B ⊆ N \ {a} and either b ∈ B (⇔ {a, b} ⊆ B ∪ {a}) or
c ∈ B. Thus, (10) takes the form

[ η(a | b) + η(a | c) + η(a | bc)
+ η(b | bd) + η(b | cd) + η(b | bcd) ]

+ [ η(b | a) + η(b | c) + η(b | ac)
+ η(b | ad) + η(b | cd) + η(c | acd) ]

+ [ η(c | a) + η(c | b) + η(c | ab)
+ η(c | ad) + η(c | bd) + η(c | abd) ] ≤ 2 ,

which is just the cluster inequality (4) for C with k = 1.
Theorem 3 claims it is a facet-defining inequality for F.

Another instance of a uniform matroid was mentioned in
Example 3; in this case, the inequality (10) turns into (5)
from Example 1. The next example goes beyond the scope
of k-cluster inequalities and uniform matroids.

Example 7 Consider C = {a, b, c, d} = N and put

B = { {a, b}, {a, c}, {a, d}, {b, c}, {b, d} }.

Clearly, B is the class of bases of a matroid on C of the
rank 2. The rank function has the form

r(J) =

 0 if J = ∅,
1 if J = {c, d} or |J | = 1,
2 otherwise,

for J ⊆ C,

while the class C of its circuits is

C = { {a, b, c}, {a, b, d}, {c, d} }.

As every pair of elements in C is contained in a circuit, it
is a connected matroid. Theorem 3 says that the inequality

[ η(a | bc) + η(a | bd) + η(a | bcd) ]

+ [ η(b | ac) + η(b | ad) + η(b | acd) ]

+ [ η(c | d) + η(c | ab) (13)
+ η(c | ad) + η(c | bd) + η(c | abd) ]

+ [ η(d | c) + η(d | ab)
+ η(d | ac) + η(d | bc) + η(d | abc) ] ≤ 2 .

is facet-defining for F. An interesting observation is
that the inequality (13) defines the so-called 4B-type facet
found by Bartlett and Cussens (2013); see (13) in § 6 of
their paper where {v1, v4} = {a, b} and {v2, v3} = {c, d}.

COROLLARY 2 The inequality (10) from Theorem 3 has
the following form in the characteristic-imset mode:∑
T∈Λ, T⊆C

z(T ) · c(T ) ≤ |C| − k for c ∈ RΛ, (14)

where z(T ) = −
∑
L⊆T

(−1)|T\L| · r(L)

are determined by the rank function r of the matroid. The
inequality (14) defines a facet of C containing the 1-imset.

Proof: This follows from Lemma 10 and the formula (20)
in (Cussens et al., 2015) saying that 〈o, η〉Υ = 〈z, cη〉Λ
where the coefficients z(T ) for T ∈ Λ are given by
the Möbius transform of the corresponding standardized
supermodular function m, that is, by

z(T ) =
∑
L⊆T

(−1)|T\L| ·m(L) for T ∈ Λ.
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Figure 1: Edges of the graph define a matroid.

In our case, m is given by (9), which implies z(T ) = 0
whenever T \ C 6= ∅. Moreover, the Möbius transform of
the first term in (9) vanishes for T ∈ Λ, T ⊆ C, which
gives (14). The second claim follows from Corollary 1.

Example 8 Consider again the matroid from Example 7.
The formula (14) applied to the rank function r gives

z(T ) =

 −1 if T = C,
1 if T ∈ C,
0 otherwise,

for T ∈ Λ, T ⊆ C.

In particular, the inequality (13) has the following form in
the characteristic-imset mode:

c(abc) + c(abd) + c(cd)− c(abcd) ≤ 2 .

5 FIVE VARIABLES EXAMPLE

Note that in case of four BN variables there is no other
matroid-based facet-defining inequality for F except the
k-cluster inequalities and (13). However, there are more
matroid-based inequalities in case of five BN variables.

An important class of matroids are the so-called graphic
matroids (Oxley, 1992, § 1.1). In fact, any undirected graph
G defines a matroid on the set of its edges. Specifically, a
set I of edges in G is considered to be independent (in the
graphic matroid) if the edge-subgraph of G consisting of
edges in I is a forest, that is, has no undirected cycle.

The circuits of this graphic matroid are then the sets D of
edges in G forming edge-minimal cycles in G, which means
the removal of any edge fromD results in a forest. The idea
is illustrated by an example.

Example 9 Consider C = {a, b, c, d, e} = N and define a
matroid on C by means of the graph in Figure 1, where the
edges are identified with the elements of C. It makes no
problem to observe that the matroid has three circuits:

C = { {a, b, c, d}, {a, c, e}, {b, d, e} } ,

while the number of bases is eight: these are all 3-element
subsets of C except for {a, c, e} and {b, d, e}. Of course,
these are just the sets of edges defining spanning trees for
the graph from Figure 1. It is easy to see that the matroid
is connected and has rank k = 3. Like in Example 6 one

can determine the terms η(∗ |B) which occur in (10). For
example, a ∈ C = N is contained in two circuits D ∈ C,
namely in {a, c, e} and {a, b, c, d}. In particular, one has
in (10) those terms η(a |B) where B ⊆ N \ {a} and either
{c, e} ⊆ B or {b, c, d} ⊆ B. The same principle applies
to b, c, d and e which results in the following abbreviated
form of (10):∑
ce⊆B ∨ bcd⊆B

η(a |B) +
∑

de⊆B ∨ acd⊆B

η(b |B)

+
∑

ae⊆B ∨ abd⊆B

η(c |B) +
∑

be⊆B ∨ abc⊆B

η(d |B) (15)

+
∑

ac⊆B ∨ bd⊆B

η(e |B) ≤ 2 .

Thus, by Theorem 3, the inequality (15) if facet-defining
for F. We leave to the reader to derive the rank function r of
the matroid and observe that its Möbius transform only has
4 non-zero values: −1 for circuits in C and +1 for C = N .
In particular, by Corollary 2, (15) has the following simple
form in the characteristic-imset mode:

c(abcd) + c(ace) + c(bde)− c(abcde) ≤ 2 .

Example 9 indicated a way one can search for connected
matroids, and, thus, for facet-defining inequalities to be
used in the ILP approach to BN structure learning. Graphic
matroids are common examples of matroids; but there are
many matroids which are not graphic, like the uniform ma-
troid from Example 3.

To utilize fully the matroid-based approach some computer
scientists may take the following exhaustive “brute-force”
approach: given a (presumably) small cluster C, |C| ≥ 2
generate by means of a computer all (permutation) types of
classes C of inclusion-incomparable subsets of C such that
∀ a, b ∈ C, a 6= b, a set D ∈ C exists with a, b ∈ D. Then
one can check (again with the help of a computer) which of
them satisfy the circuit elimination axiom. In this way one
gets all types of connected matroids on C and can trans-
form them into facet-defining inequalities for the family-
variable polytope or for the characteristic imset polytope.

Other people may prefer to search in the literature on ma-
troid theory. Indeed, researcher in this area have generated
various catalogues of (types of) matroids on small ground
sets; see, for example (Mayhew, Royle, 2008).

6 CONCLUSIONS

Theorem 3 implies that every connected matroid on a
non-trivial cluster of BN variables induces a facet-defining
inequality for the family-variable polytope; Corollary 2
says what is the form of that inequality in the context of
the characteristic-imset polytope.



This is a quite general theoretical result because the well-
known k-cluster inequalities, which play the key role in
contemporary ILP approaches to BN structure learning, can
be derived in this way. Specifically, they correspond to the
prominent (connected) uniform matroids.

The significance of the paper is mainly theoretical: the
area of statistical learning is related to a seemingly remote
field in discrete mathematics, namely to matroid theory.
Although matroids were previously known to have many
applications in combinatorial optimization, this particular
intimate link to BN structure learning could be surprising.
The advantage of the matroid-based approach to learning is
that the inequalities are easy to find and the verification that
they are facet-defining is immediate since testing whether
a matroid is connected is easy. The result is applicable in
both ILP approaches to BN structure learning, that is, both
in the context of the family-variable polytope and in the
context of the characteristic-imset polytope.

However, the result also has some potential for practical
future use because it may lead to bettering certain currently
used algorithms. Let me recall in more detail the original
motivation, which was the ILP approach to BN structure
learning. I have in mind the cutting plane method where
one solves an ILP optimization problem by the method
of iterative reduction of the feasible set. The solution to
a linear relaxation problem, which is a (non-integer) lin-
ear program with a larger feasible set, specified be a small
number of inequalities, is typically a fractional vector. The
next step is to solve the separation problem, that is, to find
an inequality from a reservoir of available inequalities (for
example from the class of cluster inequalities) which cuts
the current fractional solution from the true feasible region,
which is the polytope defined as the convex hull of integer
vectors in the feasible set, see (Wolsey, 1998, § 8.5)

From the point of view of computational efficiency, it is
essential to find such inequality which approximates the
polytope as close as possible near the current solution.
This leads to the suggestion to look for the most violated
inequalities by the current fractional solution; see also the
heuristic justification in (Cussens, 2011, § 4.1).

The presented result broadens the reservoir of available
facet-defining inequalities in the ILP approach to BN struc-
ture learning. In fact, it is claimed by Bartlett and Cussens
in (2013, § 6) that the inequality (13) from Example 7
has appeared to be particularly useful in their experiments.
Moreover, the other facet-defining inequalities for F, that
is, those not based on matroids, have not appeared to be
very useful. Their empirical observations are the basis
for my hope that the matroid-based inequalities may bring
some further progress in this area, perhaps even resulting
in better future running times.

Nevertheless, let me emphasize that additional problems
have to be solved to reach the practical applicability of

general matroid-based inequalities. More specifically, it is
necessary to solve the corresponding separation problem,
that is, to design a speedy algorithm for finding the (most)
violated inequalities by a current (fractional) solution in the
class of all general matroid-based inequalities. Thus, the
next step towards the practical application of the matroid-
based inequalities should be a proposal for such algorithm.
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