
Disciplined Convex Stochastic Programming:
A New Framework for Stochastic Optimization

Alnur Ali
Machine Learning Dept.

Carnegie Mellon University
alnurali@cmu.edu

J. Zico Kolter
School of Computer Science
Carnegie Mellon University
zkolter@cs.cmu.edu

Steven Diamond
Dept. of Computer Science

Stanford University
stevend2@stanford.edu

Stephen Boyd
Dept. of Electrical Engineering

Stanford University
boyd@stanford.edu

Abstract

We introduce disciplined convex stochastic pro-
gramming (DCSP), a modeling framework that
can significantly lower the barrier for modelers
to specify and solve convex stochastic optimiza-
tion problems, by allowing modelers to naturally
express a wide variety of convex stochastic pro-
grams in a manner that reflects their underly-
ing mathematical representation. DCSP allows
modelers to express expectations of arbitrary ex-
pressions, partial optimizations, and chance con-
straints across a wide variety of convex optimiza-
tion problem families (e.g., linear, quadratic, sec-
ond order cone, and semidefinite programs). We
illustrate DCSP’s expressivity through a number
of sample implementations of problems drawn
from the operations research, finance, and ma-
chine learning literatures.

1 INTRODUCTION

We introduce disciplined convex stochastic program-
ming (DCSP), a modeling framework for specifying and
solving convex stochastic programs: convex optimization
problems that include random variables. DCSP builds on
principles from stochastic optimization and convex analy-
sis to allow modelers to naturally express a wide variety of
stochastic programs in a manner that reflects their underly-
ing mathematical representation. At a high level, DCSP en-
ables modelers to specify — in a straightforward way —
and solve convex optimization problems that include (1)
expectations of arbitrary expressions, (2) partial optimiza-
tions, optimizations over (only) a subset of the optimization
variables, which additionally pave the way for the specifi-
cation of multi-stage stochastic programs (Sec. 2.1), and
(3) chance constraints, constraints that are required to hold
with high probability — these three building blocks can be
used to express a wide variety of stochastic optimization
problems.

Concurrently with this paper, we also make available an
open source Python implementation of DCSP, which we
refer to as cvxstoc1, that allows modelers to write and
solve stochastic programs — we present a variety of exam-
ples of using cvxstoc to model stochastic optimization
problems, drawn from the operations research, finance, and
machine learning literatures, in Sec. 4.

Related work Although other frameworks for stochastic
programming do exist ([24, 20, 11], and in Python mainly
[26]), they often require significant effort from the modeler
to manipulate the optimization problem into an amenable
form, support a limited number of stochastic programming
constructs (e.g., [11] only supports chance constraints with
uncertainty sets), and cannot express certain families of
convex optimization problems; indeed, checking the con-
vexity of and solving (convex) optimization problems in
general is challenging. DCSP builds on (and extends) dis-
ciplined convex programming (DCP) [10], a recently intro-
duced framework that makes it natural for modelers to ex-
press convex optimization problems, and additionally auto-
mates the tasks of verifying the convexity of these problems
and translating them into conic form (see, e.g., [8]). This
means that DCSP can be used to express and solve a wide
variety of stochastic convex optimization problems, includ-
ing linear, quadratic, second order cone, and semidefi-
nite programs. Probabilistic programming languages (e.g.,
[9, 16, 13]) offer an alternative approach, but tend to fo-
cus on inference problems, and may not contain the fea-
tures to capture traditional stochastic programming prob-
lem formulations; in contrast, convex modeling can be at-
tractive because local solutions are global solutions, effi-
cient solvers exist, and guarantees can often be obtained on
the optimality of a solution obtained by a solver.

This paper is structured as follows. In Sec. 2, we re-
view background on stochastic programming, DCP, and
cvxpy (an open source Python implementation of DCP).
In Sec. 3, we describe DCSP and cvxstoc’s syntax. In

1cvxstoc is available as an extension of the cvxpy Python
package [7]: see http://www.cvxpy.org.

Sec. 4, we present a number of examples that illustrate our
framework.

2 BACKGROUND

2.1 STOCHASTIC PROGRAMMING

A convex optimization problem has the form

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p,

where x ∈ Rn is the optimization variable, f0 : Rn → R is
a convex objective function, fi : Rn → R, i = 1, . . . ,m
are convex inequality constraint functions, and hi : Rn →
R, i = 1, . . . , p are affine equality constraint functions.

A convex stochastic program has the form

minimize
x

E f0(x, ω)

subject to E fi(x, ω) ≤ 0, i = 1, . . . ,m
hi(x) = 0, i = 1, . . . , p,

(1)

where fi : Rn × Rq → R, i = 0, . . . ,m are convex func-
tions in x for each value of a random variable ω ∈ Rq , and
hi : Rn → R, i = 1, . . . , p are (deterministic) affine func-
tions; since expectations preserve convexity, the objective
and inequality constraint functions in (1) are (also) convex
in x, making (1) a convex optimization problem.

Two-stage stochastic programs An important special
case of (1) is a so-called two-stage stochastic program (also
referred to as an optimization problem with recourse) [6]:

minimize
x

f0(x) + EQ(x, ω)

subject to fi(x) ≤ 0, i = 1, . . . ,m,
hi(x) = 0, i = 1, . . . , p,

(2)

where Q(x, ω) = infy{φ0(x, y, ω) : φi(x, y, ω) ≤ 0,
ψj(x, y) = 0, i = 1, . . . , s, j = 1, . . . , w}

is the second stage problem, y ∈ Rr is the second stage
optimization variable, φ0 : Rn × Rr × Rq → R is the
second stage objective function, and is convex in (x, y) for
each value of ω, φi : Rn × Rr × Rq → R, i = 1, . . . , s
are the second stage inequality constraint functions, also
convex in (x, y) for each value of ω, and ψi : Rn × Rr →
R, i = 1, . . . , w are the second stage equality constraint
functions, and are affine in (x, y). That is, Q is itself the
optimal value of another convex optimization problem, and
is convex in x for each value of ω.

Two-stage stochastic programs model the uncertain conse-
quences (in the second stage) of here-and-now decision-
making (in the first stage): e.g., in a finance application, we
may wish to decide which assets to purchase now, while
(also) factoring in how the asset prices might fluctate later.

Chance-constrained problems A chance constraint [5]
is a constraint on the variable x of the form

Prob (f(x, ω) ≤ 0) ≥ η,

where f is convex in x for each value of ω, and η is typi-
cally a large probability (e.g., 0.95); a chance-constrained
problem is an optimization problem with one or more
chance constraints. Chance constraints are typically non-
convex, although effective convex approximations exist
(see Sec. 3.3).

2.2 DISCIPLINED CONVEX PROGRAMMING

Disciplined convex programming (DCP) is a recently intro-
duced modeling framework for specifying and solving con-
vex optimization problems [10]. In a nutshell, DCP con-
sists of a library of convex atomic functions, and a convex
rule-set that prescribes how these atomic functions may be
composed to express (more complex) convex optimization
problems.

Convex rule-set Verifying the convexity of arbitrary ex-
pressions is challenging; DCP checks convexity using
Thm. 2.1, which is equivalent to enforcing a set of rules.

Theorem 2.1 ([10]). Suppose f = h(g1(x), . . . , gk(x)),
where h : Rk → R is convex and gi : Rn → R, i =
1, . . . , k, and one of the following holds for each i =
1, . . . , k:

• gi is convex and h is nondecreasing in argument i

• gi is concave and h is nonincreasing in argument i

• gi is affine.

Then f is convex2.

Thm. 2.1 permits a wide variety of convex expressions: for
example, the maximum eigenvalue of a symmetric matrix,
λmax(2X − 4I), where X ∈ Sn, is recognized as convex.
(On the other hand, as an example of a limitation of the
rule-set, the expression

(∑n
i=1 x

2
i

)1/2
, where x ∈ Rn, is

not recognized as convex, although it is recognized as con-
vex once reformulated as ‖x‖2.)

Library of atoms Atomic convex functions3 are speci-
fied in DCP in their epigraph form: for example, the (con-
vex) function f(x) = ‖x‖1 is specified as

minimize
t

1T t

subject to −t � x � t,
(3)

2A similar result holds for concave functions.
3See http://www.cvxpy.org/en/latest/

tutorial/functions/index.html for a list of the
convex atoms available in cvxpy.

where x, t ∈ Rn. Thus, whenever a modeler writes the
atom f(x) = ‖x‖1, DCP internally replaces it with (3),
introduces the variable t, and can subsequently optimize
over (x, t).

Disciplined convex programming DCP certifies a prob-
lem’s convexity by constructing an abstract syntax tree for
the objective and constraint functions, with atoms as inter-
nal nodes, and variables and constants as leaves, and then
applying Thm. 2.1 recursively [10, 22].

2.3 cvxpy

cvxpy [7] is an open source Python DCP implementation;
we briefly describe its syntax next.

Variables are declared simply in cvxpy as follows:� �
x = Variable()
x = NonNegative()
X = Semidefinite(n)� �
The first line declares x to be a variable in R, the second
declares x to be a variable in the nonnegative orthant R+,
and the third declares X to be a (n × n matrix) variable in
the positive semidefinite cone Sn+.

Convex expressions are specified by composing con-
vex atoms; for example, the log loss

∑m
i=1 log(1 +

exp(−yi(wTxi + b))) can be specified by using the sim-
pler log sum exp atom as follows:� �
expr = [log_sum_exp(vstack(0, -y[i]*(w.T*x[i]+b)))

for i in range(m)]� �
An objective is specified by instantiating a sense (i.e.,
Minimize or Maximize) with an expression:� �
obj = x.T*c
Minimize(obj)� �
Constraints are specified by forming a list of expressions:� �
constrs = [x >= 0, x.T*numpy.ones((n,1)) == 1, ...]� �
A convex optimization problem, then, is specified by in-
stantiating a Problem with an objective and a list of con-
straints:� �
prob = Problem(Minimize(obj), constrs)
prob.solve()� �
The last line solves the optimization problem.

3 DISCIPLINED CONVEX STOCHASTIC
PROGRAMMING

In this section we present the chief methodological contri-
bution of the paper: the disciplined convex stochastic pro-
gramming (DCSP) framework, along with an overview of

its implementation in the cvxstoc Python package. In
a nutshell, DCSP consists of the addition of three opera-
tions to the disciplined convex programming (DCP) frame-
work, which can be used to express a wide variety of con-
vex stochastic programs: the ability to (1) compute (ap-
proximations to) expectations of arbitrary expressions, (2)
handle partial optimization, and (3) compute (approxima-
tions to) chance constraints.

3.1 RANDOM VARIABLES AND EXPECTATIONS

Random variables The most fundamental operations in
stochastic programs, and hence in DCSP, are the ability to
specify random variables, and compute (approximations to)
expectations of arbitrary expressions containing these ran-
dom variables. As in Sec. 2, DCSP assumes that all expres-
sions in a stochastic program are convex in the optimization
variable(s) for each value of the random variable(s) — thus,
from the point of view of DCSP, random variables do not
affect the convexity of their parent expressions and can be
regarded as equivalent to constants, thereby requiring no
additions to the DCP convex rule-set. (Practically speak-
ing, DCSP permits the specification of a variety of random
variables; see Sec. 3.4.)

Expectations DCSP computes (approximations to) ex-
pectations of arbitrary expressions using simple Monte
Carlo evaluation, i.e.,

E f(x, ω) ≈ (1/N)

N∑
i=1

f(x, ωi),

where f is (again) assumed to be convex in the optimiza-
tion variable x for each value of the random variable ω,
and ωi, i = 1, . . . , N are samples of ω; this approximation
is referred to as the sample average approximation (SAA)
in the stochastic programming literature, and methods that
use it are often referred to as scenario-based methods. By
the DCP rule-set, the nonnegative weighted sum of convex
functions is a convex function; thus, the expectation oper-
ator applied to an expression that is convex in x returns an
expression that is (also) convex in x.

The SAA is, of course, a very simple method for approx-
imating an expectation, and much more involved methods
for solving stochastic programs exist, but the clear advan-
tage of this method is its simplicity: any random variable
can be included in a stochastic program as long as we are
able to draw samples of it. If ω is a discrete random vari-
able, then DCSP calculates its expectation exactly; oth-
erwise, DCSP draws samples using Markov chain Monte
Carlo (MCMC) methods4 [15].

In the case of unconstrained stochastic programs, the SAA
objective value is (naturally) an unbiased estimator of the

4We implement MCMC by leveraging the PyMC Python pack-
age [15].

true objective value, E f0(x, ω), with variance ∝ 1/N ,
and an asymptotically normal distribution [21, chap. 5].
Thm. 3.1 additionally tells us that (roughly) both the opti-
mal value and optimal set of a SAA converge almost surely
to the optimal value and optimal set of the true problem.

Theorem 3.1 ([21, Thm. 5.3]). Define p̂∗N , ŜN and p∗, S as
the optimal value and optimal set of a SAA with N samples
and of the true problem, respectively, and let K ⊂ Rn be a
compact set. Suppose (a) S ⊆ K is nonempty, (b) ŜN ⊆ K
is nonempty a.s., (c) f0 is finite and continuous on K, and
(d) (1/N)

∑N
i=1 f0(x, ωi)

a.s.−−→ f(x) (uniformly) for x ∈
K. Then p̂∗N

a.s.−−→ p∗ and supx∈ŜN
infy∈S ‖x−y‖2

a.s.−−→ 0.

p̂∗N is also a downward biased estimator of p∗, although
its bias decreases with N [21, Prop. 5.6]. In Sec. 3.4, we
empirically investigate the quality of the SAA.

3.2 PARTIAL OPTIMIZATION

DCSP adds a new partial optimization atom to the DCP
atom library, allowing modelers to express partial optimiza-
tions, i.e., optimizations over (only) a subset of the opti-
mization variables; this atom also forms the basis for spec-
ifying two-stage stochastic programs.

We start with the observation that partial optimization is a
convex operation (see, e.g., [4, page 87]): i.e., if f is convex
in (x, y) and C is a nonempty convex set, then

g(x) := inf
y
{f(x, y) : (x, y) ∈ C} ,

is convex in x.

Accordingly, DCSP specifies a new partial optimization
atom that takes as input a convex optimization problem and
returns (the epigraph form for) another convex atom, which
complies with the DCP prescription for specifying atoms
— this means that modelers can use partial optimizations
in stochastic programs as they would other atoms. In par-
ticular, two-stage stochastic programs, i.e., (2), can be nat-
urally expressed using this atom; furthermore, the second
stage optimization problem Q need not be in standard form
(as required by other frameworks).

3.3 CHANCE CONSTRAINTS

DCSP computes conservative approximations to chance
constraints, as they are typically nonconvex5; in particular,
DCSP replaces

Prob (f(x, ω) ≥ 0) ≤ 1− η, (4)

5One notable exception is chance constraints involving affine
functions of normal random variables, which can be expressed as
a second order cone constraint (see, e.g., [4, page 157]). How-
ever, we favor the approximate approach described in this section
because it is substantially more general, and applies to any class
of random variables.

with a convex upper bound derived as follows [3]. Suppose
φ : R → R+ is a nonnegative, increasing convex function
with φ(0) = 1; then φ(z) ≥ 1(z ≥ 0), where 1(z ≥ 0)
equals 1 if z ≥ 0 and 0 otherwise, and so φ(z/α) ≥ 1(z ≥
0), for some variable α ∈ R++. Thus

Eφ(f(x, ω)/α) ≥ Prob (f(x, ω) ≥ 0) ,

and so

αEφ(f(x, ω)/α) ≤ α(1− η) (5)
=⇒ Prob (f(x, ω) ≥ 0) ≤ 1− η,

i.e., (5) is a conservative approximation to (4). Note that (5)
is convex in (x, α): it is the perspective of the expectation
of a convex increasing function, φ, of a convex function,
f .6

In (5), α can be interpreted as modulating the “steepness”
of the approximation; several choices of φ are possible, and
are analogous, e.g., to different approximations to the zero-
one loss common in machine learning. DCSP uses φ(z) =
max{0, z + 1}, which roughly corresponds to a Markov-
inequality type bound7 on (4), and can also be interpreted
as the conditional value-at-risk of f(x, ω) [19]. Prop. 3.2
also tells us that this is the tightest possible choice of φ.

Practically speaking, DCSP approximates (5) with its SAA
(at which point all the benefits of DCP readily apply), then
optimizes over (x, α) to obtain the tightest possible bound;
in Sec. 4.3, we empirically investigate the quality of these
approximations.
Proposition 3.2 ([14]). Suppose φ : R → R+ is a non-
negative, increasing convex function and φ(z) ≥ 1(z ≥
0); then ∃α ∈ R+ such that E (f(x, ω)/α+ 1)+ ≤
Eφ(f(x, ω)).

3.4 cvxstoc

Next, we briefly detail the syntax of cvxstoc;
cvxstoc builds on cvxpy, and thus much of the usage
is similar.

Random variables are specified simply in cvxstoc as fol-
lows:� �
omega = RandomVariableFactory().create_normal_rv(0,1)� �
Here, omega is a standard normal random variable.
cvxstoc includes a RandomVariableFactory ob-
ject to simplify the specification of common random vari-
ables; see Sec. 4 for examples of the specification of other
random variables.

Expectations are specified by applying the expectation
atom:

6Alternatively, the modeler can fix α, in which case the bound
is convex in (x, η) if desired.

7Alternatively, one could take φ(z) = exp z, which would be
analogous to a Chernoff-type inequality.

� �
result = expectation(exp(omega*x), m)� �
Here, exp(omega*x) is the expression we wish to com-
pute the expectation of, and m is the number of Monte Carlo
samples to use when constructing the SAA.

Partial optimizations are specified by applying the
partial optimize atom:� �
atom = partial_optimize(prob, [y], [x])� �
The first argument here is a Problem, the second is a list
of variables to optimize over, and the third is a list of vari-
ables to not optimize over.

Two-stage stochastic programs can, in turn, be specified as
follows:� �
Q = partial_optimize(prob2, [y], [x])
prob1 = Problem(Minimize(f0 + expectation(Q(x),m)),

constrs)� �
Here, prob2 is the second stage problem, y is the second
stage variable, x is the first stage variable, and prob1 is
the first stage problem. Multi-stage stochastic programs
can be specified by iterating this construction:� �
Q2 = partial_optimize(prob3, [z], [x,y])
prob2 = Problem(Minimize(phi0 + expectation(Q2(y),m)),

↪→ constrs2)
Q1 = partial_optimize(prob2, [y], [x])
prob1 = Problem(Minimize(f0 + expectation(Q1(x),m)),

constrs1)� �
Chance constraints are specified by instantiating the prob
class and chaining it with an inequality:� �
prob(constr >= 0, m) <= 1-eta� �
Here, constr is a (stochastic) constraint, and m is the
number of Monte Carlo samples to use.

3.4.1 Quality of the sample average approximation

Here, we investigate the quality of the SAA employed by
cvxstoc in the special case of a (unconstrained) least
squares problem

minimize
x

E ‖Ax− b‖22, (6)

where the entries of A ∈ Rm×n ∼ Normal(µ1, σ
2
1), b ∈

Rm ∼ Normal(µ2, σ
2
2), and x ∈ Rn, in which case the

objective has the analytic form

xT EATAx− 2E bTAx+ E bT b,

assuming we know the second moments of (A, b). Fig. 1
plots the optimal value of the true problem (6) and a SAA
to (6): we see that the SAA obtains reasonable accuracy
after roughly 100 Monte Carlo samples.

Figure 1: The optimal values of the stochastic least squares prob-
lem (6) (red) and a SAA to (6) (blue) with 95% confidence inter-
vals (light blue) vs. the number of Monte Carlo samples; in this
case, m = 100, n = 50, although similar results hold across a
variety of problem sizes.

4 EXAMPLES

At this point, we switch gears slightly and present sev-
eral examples of stochastic programs along with their
corresponding cvxstoc implementations8; the majority
of these applications are well established or previously
known, though we also include some formulations that are
novel, to the best of our knowledge (namely, the precise
formulation of the stochastic optimal power flow problem
in Sec. 4.4, and the budgeted learning of a classifier in a
cascade problem in Sec. 4.6).

4.1 YIELD-CONSTRAINED COST
MINIMIZATION

We begin with a simple example from the operations re-
search literature (see, e.g., [4, page 107]). Consider the
(general) problem of choosing the parameters x ∈ Rn
governing a manufacturing process so that our cost cTx,
where c ∈ Rn, is minimized, while the parameters lie
in a set of allowable values S; we can model noise in
the manufacturing process by expressing this constraint as
Prob(x+ ω ∈ S) ≥ η, where ω ∈ Rn is a random vector
and η is a large probability (e.g., 0.95), which is referred
to as an η-yield constraint. Thus, we have the optimization
problem

minimize
x

cTx

subject to Prob(x+ ω ∈ S) ≥ η.

8Due to space constraints, we present one of these examples
in the supplementary material.

Note that if the distribution over ω is log-concave and S
is a convex set, then this constraint is convex in x. We
can directly express the yield-constrained cost minimiza-
tion problem using cvxstoc; an implementation is given
in Listing 1 (S is taken to be an ellipsoid).� �
Create problem data
n = 10
c = numpy.random.randn(n)
P, q, r = numpy.eye(n), numpy.random.randn(n), numpy.

↪→ random.randn()
mu, Sigma = numpy.zeros(n), 0.1*numpy.eye(n)
omega = RandomVariableFactory().create_normal_rv(mu,

↪→ Sigma)
m, eta = 100, 0.95

Create and solve optimization problem
x = Variable(n)
yield_constr = prob(quad_form(x+omega,P)

+ (x+omega).T*q + r >= 0, m) <= 1-eta
p = Problem(Minimize(x.T*c), [yield_constr])
p.solve()� �
Listing 1: A cvxstoc implementation of the yield-constrained
cost minimization problem.

4.2 THE NEWS VENDOR PROBLEM

The news vendor problem is a classic problem in the
stochastic programming literature (see, e.g., [2, page 15]);
in this problem, a vendor must decide how much newspa-
per to stock, so that profit is maximized while backorder
and return fees (due to excess or insufficient demand, re-
spectively) are minimized, in the face of uncertain demand.

Our optimization variables are the number of units of
stocked newspaper x ∈ R+, the number of units purchased
by customers y1 ∈ R+, and the number of unpurchased
(surplus) units that must be returned by the vendor y2 ∈
R+. Our problem data are b, s, r ∈ R+, which denote the
price to stock, sell, and return a unit of newspaper, respec-
tively. Lastly, we let the random variable d ∼ Categorical
model the uncertain (newspaper) demand.

We can pose the news vendor problem as the following
two-stage stochastic program:

minimize
x

bx+ EQ(x)

subject to 0 ≤ x ≤ u,

where Q(x) = min
y1,y2

−(sy1 + ry2)

s.t. y1 + y2 ≤ x
0 ≤ y1 ≤ d
y2 ≥ 0.

A cvxstoc implementation of the news vendor problem
is given in Listing 2; in contrast, a PySP [26] implemen-
tation (see the supplementary material) required 111 lines
spanning 6 files.� �
Create problem data
b, s, r, u = 10, 25, 5, 150
d_probs = [0.3, 0.6, 0.1]
d_vals = [55, 139, 141]

d = RandomVariableFactory().create_categorical_rv(
↪→ d_vals, d_probs)

Create optimization variables
x = NonNegative()
y1, y2 = NonNegative(), NonNegative()

Create second stage problem
obj = -s*y1 - r*y2
constrs = [y1+y2<=x, y1<=d]
p2 = Problem(Minimize(obj), constrs)
Q = partial_optimize(p2, [y1, y2], [x])

Create and solve first stage problem
p1 = Problem(Minimize(b*x + expectation(Q(x), want_de=

↪→ True)), [x<=u])
p1.solve()� �
Listing 2: A cvxstoc implementation of the news vendor
problem.

We can also represent a stochastic program by means of an
influence diagram, a directed acyclic graph, where circular
nodes correspond to random variables, square nodes corre-
spond to decision variables, diamond nodes correspond to
costs, and edges flow from node x to node y iff the value
of node y depends in some way on the value of node x;
Fig. 2 presents the influence diagram for the news vendor
problem.

−s

y1

d

−r

y2

b

x

Figure 2: The influence diagram for the news vendor problem.

4.3 PORTFOLIO OPTIMIZATION

In portfolio optimization, we wish to maximize wealth
while meeting certain restrictions on risk, in the face of
uncertain asset prices; we can pose a standard portfolio op-
timization problem [12], subject to two kinds of risk con-
straints, as a stochastic program.

The risk constraints we consider here are the value-at-risk
(VaR) (see, e.g., [25, chap. 29]) and conditional value-at-
risk (CVaR) (e.g., [19], [23, page 286]); intuitively, VaR
allows the modeler to control the probability of a loss (on
asset sales) beyond a (modeler-defined) threshold, and is
often nonconvex, while CVaR allows the modeler to control
the expected value of such a loss, and is convex.

Our optimization variables are the allocation vector (across
a set of n assets) x ∈ Rn, and the CVaR β ∈ R; the prob-

lem data is the loss threshold u ∈ R+, and the vector of
returns p ∼ Normal(p̄,Σ).

We can pose a CVaR-constrained portfolio optimization
problem as

minimize
x,β

E−pTx

subject to β + 1/(1− η)E(−pTx− β)+ ≤ u
1Tx = 1, x � 0,

(7)

where (z)+ := max{0, z}.

A cvxstoc implementation of the CVaR-constrained
portfolio optimization problem is given in Listing 3.� �
Create problem data
n = 10
pbar, Sigma = numpy.random.randn(n), numpy.eye(n)
p = RandomVariableFactory().create_normal_rv(pbar,

↪→ Sigma)
u, eta, m = numpy.random.rand(), 0.95, 100

Create optimization variables
x, beta = NonNegative(n), Variable()

Create and solve optimization problem
cvar = expectation(pos(-x.T*p - beta), m)
cvar = beta + 1/(1-eta)*cvar
prob = Problem(Minimize(expectation(-x.T*p,m)),

[x.T*numpy.ones((n,1)) == 1, cvar<=u])
prob.solve()� �
Listing 3: A cvxstoc implementation of the CVaR-constrained
portfolio optimization problem.

We can also pose a VaR-constrained portfolio optimization
problem as

minimize
x

E−pTx
subject to Prob(pTx ≤ 0) ≤ 1− η

1Tx = 1, x � 0.

(8)

As per Sec. 3.3, DCSP replaces the chance constraint in
(8) with a sample average approximation (SAA) to a (more
conservative) CVaR constraint (making (8) equivalent to
(7)). We investigate the quality of this approximation in the
special case where p ∼ Normal(p̄,Σ), in which case both
the VaR and CVaR constraints have analytic forms [18]: the
VaR constraint can be expressed as

p̄Tx ≥ Φ−1(η)‖Σ1/2x‖2, (9)

where Φ−1(·) is the inverse standard normal cumulative
distribution function, while the CVaR constraint can be ex-
pressed as

p̄Tx ≥ exp
(
−(Φ−1(η))2/2

)
/
(√

2π(1− η)‖Σ1/2x‖2
)
.

(10)
Fig. 3 plots the optimal value (i.e., wealth) of the VaR-
constrained portfolio optimization problem (8), the CVaR-
constrained portfolio optimization problem (7), and a SAA
to (7): we see that the wealth obtained by constraining VaR
is indeed less conservative than by constraining CVaR. The

SAA also obtains reasonable accuracy after roughly 100
Monte Carlo samples. Fig. 4 plots the probability of a SAA
to (7) vs. the number of Monte Carlo samples, and has a
similar interpretation.

Figure 3: The optimal values (higher means more wealth) of the
VaR-constrained portfolio optimization problem (8) (green), the
CVaR-constrained portfolio optimization problem (7) (red), and
a SAA to (7) (blue) with 95% confidence intervals (light blue)
vs. the number of Monte Carlo samples; the problem size n = 50,
although similar results hold across a variety of problem sizes.

4.4 OPTIMAL POWER FLOW

Consider a network G = (V, E), with a set of vertices V
and a set of edges E , that models an electrical grid: i.e., a
subset of the vertices G ⊆ V are generators, which produce
power, the remaining vertices L = V \ G are loads, which
consume power, and an edge is drawn between a generator
and a load if and only if there is a (physical) transmission
line between them.

In the standard optimal power flow problem, we wish to
minimize the total cost of generating power, while satis-
fying demand, subject to the topology of the network and
per-generator capacity constraints. We often do not have
complete control over all the generators in the grid, so we
denote the subset of generators that we do have control over
as G1, and also define G2 = G \G1; we also defineG = |G|,
G1 = |G1|, G2 = |G2|, and L = |L|. We write the per-
generator costs as cG1 ∈ RG1 and cG2 ∈ RG2 , and the
per-generator lower and upper (respectively) limits as l and
u ∈ RG.

The topology/demand constraints can be expressed as
Aplin = (pG1 , pG2 , pL), where A ∈ Rn×E is the incidence
matrix for the (directed) graph G, pG1 ∈ RG1 and pG2 ∈
RG2 are variables denoting (nonnegative) power genera-
tion, pL ∈ RL are constants denoting the (non-positive)
power consumption at the loads, and plin ∈ RE are vari-

Figure 4: The probability of a SAA to (7) (blue) with 95% con-
fidence intervals (light blue) and β (red) vs. the number of Monte
Carlo samples; the problem size n = 50, although similar results
hold across a variety of problem sizes.

ables denoting the power flowing through each edge.

Now, additionally consider the presence of a set of renew-
able generators (e.g., wind farms), which we denote W ,
whose (intermittent) generation an operator can either sell
on the spot market [17], or use to power loads. We let
W = |W|, and model this situation with a random vector
pW ∈ RW , (pW)i ∼ LogNormal(µi, σ

2
i), i = 1, . . . ,W .

We can cast this as the following optimization problem:

minimize
pG1

EQ(pG1)

where

Q(pG1) = min
pG2

,z,plin

[
cG1
cG2

]T [
pG1
pG2

]
+ cTWz

s.t. Aplin =

pG1
pG2
pL

pW − z

0 � z � pW
|plin| � ulin
lG �

[
pG1
pG2

]
� uG ,

cW is the (nonpositive) revenue obtained by selling renew-
able power, z ∈ RW is the decision vector for the renew-
able generators, and ulin are the limits on the power flowing
through each edge.

A cvxstoc implementation of the stochastic optimal
power flow problem is given in Listing 4. We solved this
problem on the IEEE 14 Bus Test Case, i.e., with n = 14,
G1 = 1, G2 = 1, W = 1, and L = 10: Fig. 5 presents the
results.

� �
Create optimization variables
p_g1, p_g2 = NonNegative(), NonNegative()
z = NonNegative(num_winds)
p_lines = Variable(E)
p_w = RandomVariable(pymc.Lognormal(name="p_w", mu=1,

tau=1, size=num_winds))

Create second stage problem
p_g = vstack(p_g1, p_g2)
p = vstack(p_g1,

p_g2,
p[load_idxes[:-1]],
p_w-z,
p[load_idxes[-1]])

p2 = Problem(Minimize(p_g.T*c_g + z.T*c_w),
[A*p_lines == p, p_g<=u_gens, z<=p_w,
abs(p_lines)<=u_lines])

Q = partial_optimize(p2, [p_g2, z, p_lines], [p_g1])

Create and solve first stage problem
p1 = Problem(Minimize(expectation(Q(p_g1), m)))
p1.solve()� �
Listing 4: A cvxstoc implementation of the optimal power
flow problem.

Figure 5: The electrical grid and (optimal) power generation for
the optimal power flow problem on the IEEE 14 Bus Test Case.
Red vertices are generators: a positive number indicates the opti-
mal power generation, while “sec. stg.” denotes an uncontrolled
generator. The blue vertex is a (stochastic) renewable generator:
its mean available (wind) power is shown above it. Other vertices
are loads: their (nonpositive) demanded powers are shown above
them.

4.5 ROBUST SUPPORT VECTOR MACHINE

Consider the problem of learning a support vector machine
(SVM) from a set of m data points {(xi, yi)}mi=1. Sup-
pose we would like to (additionally) model the fact that
our data collection process is noisy (in order to gain ro-
bustness in our solution), by incorporating the belief that
(say) xi ∼ Normal(µ1,Σ1) for all i where yi = 1 and
xi ∼ Normal(µ2,Σ2) for all i where yi = −1 into
the learning process. We can thereby pose the following
chance-constrained variant of the canonical (soft-margin)

SVM optimization problem [1]

minimize
w,b,ξi

‖w‖22 + C
∑m
i=1 ξi

subject to Prob
(
yi(w

Txi + b) ≥ 1− ξi
)
≥ η,

ξi ≥ 0, i = 1, . . . ,m,

where w ∈ Rn, b ∈ R, ξi ∈ R+ for i = 1, . . . ,m, C
is the regularization trade-off parameter, and η is a large
probability (e.g., 0.95)9.

A cvxstoc implementation of the robust SVM problem
is given in Listing 5.� �
w, b, xi = Variable(n), Variable(), NonNegative(m)

constr = []
Sigma = 0.1*numpy.eye(n)
for i in range(m):

mu = numpy.array(X[i])[0]
x = RandomVariableFactory().create_normal_rv(mu,
↪→ Sigma)
chance = prob(-y[i]*(w.T*x+b) >= (xi[i]-1), ns)
constr += [chance <= eta]

p = Problem(Minimize(norm(w,2) + C*sum_entries(xi)),
constr)

p.solve()� �
Listing 5: A cvxstoc implementation of the robust SVM
problem.

4.6 BUDGETED LEARNING OF A CLASSIFIER
IN A CASCADE

Suppose we are interested in learning a (single) classifier
that is part of a system (cascade) of classifiers; i.e., we are
interested in estimating the parameters a ∈ Rn and b ∈ R
of a first stage classifier, whose output is to be (somehow)
combined with the output of a second stage classifier, be-
fore presenting the combined output to a user10.

If we knew the second stage classifier’s parameters, then
our learning task would be trivial. Instead, we choose to
model our uncertainty as follows: we assume that we do
know the second stage classifier’s loss function, but remain
uncertain of its feature representation. We can pose this as
a two-stage stochastic program, where the expectation in
the second stage is taken over all possible feature represen-
tations for the second stage classifier; for instance, if the
cascade is being used for document classification, then we
might posit that each possible feature representation in the
second stage is a function of a sample of a word from a
generative model (e.g., latent Dirichlet allocation).

We additionally assume that there is some overall test time
budget on the cascade, which we express as an upper bound
u ∈ R+ on the quantity ‖a‖1 + ‖c‖1, where c ∈ Rq are the
parameters of the second stage classifier [27].

9We note that this formulation is quite fine-grained, in the
sense that per-data point noise models/distributions, as well as
mistake probabilities, may be specified.

10Such scenarios are common in web search: see, e.g., [27].

Concretely, we can write this optimization problem as

minimize
a,b

L1 (a, b; {xi, yi}mi=1) + EQ(a, b),

where Q(a, b) = min
c,d

L2 (c, d; {zi, wi}pi=1)

s.t. ‖a‖1 + ‖c‖1 ≤ u,

{(xi, yi)}mi=1 is the (fixed) training set of m points in
Rn for the first stage classifier, and {(zi, wi)}pi=1 is the
(stochastic) training set of p points in Rq for the second
stage classifier.

A cvxstoc implementation, where L1 and L2 are (both)
taken to be the `2-regularized log loss, is given in Listing
6.� �
Create optimization variables
a, b = Variable(n), Variable()
c, d = Variable(q), Variable()

Create second stage problem
obj2 = [log_sum_exp(vstack(0, -w[i]*(c.T*z[i]+d)))

for i in range(p)]
budget = norm1(a) + norm1(c)
p2 = Problem(Minimize(sum(obj2) + C*norm(c,2)),

[budget<=u])
Q = partial_optimize(p2, [c,d], [a,b])

Create and solve first stage problem
obj1 = [log_sum_exp(vstack(0, -y[i]*(x[i]*a+b)))

for i in range(m)]
p1 = Problem(Minimize(sum(obj1) + C*norm(a,2) +

expectation(Q(a,b), ns)), [])
p1.solve()� �
Listing 6: A cvxstoc implementation of the budgeted learning
of a classifier in a cascade problem.

5 CONCLUSION

We described disciplined convex stochastic program-
ming (DCSP), a modeling framework that can significantly
lower the barrier for modelers to specify and solve con-
vex stochastic programs. We presented a number of sam-
ple implementations of stochastic programs that illustrated
DCSP’s expressivity; in constrast, other frameworks often
require significantly more effort from the modeler to ex-
press the problem and/or manipulate it into standard form,
support a limited number of stochastic programming con-
structs, and cannot express certain families of convex opti-
mization problems.

Acknowledgements

We thank John Duchi and the reviewers for helpful dis-
cussions. This work was supported by a Dept. of Energy
Computational Science Graduate Fellowship under grant
number DE-FG02-97ER25308, and by the National Sci-
ence Foundation under grant number IIS-1320402.

References

[1] A. Ben-Tal, S. Bhadra, C. Bhattacharyya, and J. Nath.
Chance-constrained uncertain classification via ro-
bust optimization. Mathematical Programming,
127(1):145–173, 2011.

[2] J. Birge and F. Louveaux. Introduction to Stochas-
tic Programming. Springer Series in Operations Re-
search and Financial Engineering. Springer, 1997.

[3] S. Boyd. Chance-constrained optimization.
http://stanford.edu/class/ee364a/
lectures/chance_constr.pdf, January
2015.

[4] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[5] A. Charnes and W. Cooper. Chance-constrained pro-
gramming. Management Science, 6(1):73–79, 1959.

[6] G. Dantzig. Linear programming under uncertainty.
Management Science, 50(12 Supplement):1764–
1769, December 2004.

[7] S. Diamond, E. Chu, and S. Boyd. CVXPY: A
Python-embedded modeling language for convex op-
timization, version 0.2. http://www.cvxpy.
org, May 2014.

[8] A. Domahidi, E. Chu, and S. Boyd. ECOS: An SOCP
solver for embedded systems. In Proceedings of the
European Control Conference, 2013.

[9] N. Goodman, V. Mansinghka, D. Roy, K. Bonawitz,
and J. Tenenbaum. Church: A language for gener-
ative models with non-parametric memoization and
approximate inference. In Proceedings of the 24th
Conference on Uncertainty in Artificial Intelligence,
2008.

[10] M. Grant. Disciplined Convex Programming. PhD
thesis, Stanford University, 2004.

[11] J. Löfberg. YALMIP: A toolbox for modeling
and optimization in MATLAB. In Proceedings of
CCA/ISIC/CACSD, September 2004.

[12] H. Markowitz. Portfolio selection. The Journal of
Finance, 7(1):77–91, 1952.

[13] T. Minka, J. Winn, J. Guiver, S. Webster, Y. Za-
ykov, B. Yangel, A. Spengler, and J. Bronskill. In-
fer.NET 2.6, 2014. Microsoft Research Cambridge.
http://research.microsoft.com/infernet.

[14] A. Nemirovski and A. Shapiro. Convex approxima-
tions of chance-constrained programs. SIAM Journal
on Optimization, 17(4):969–996, 2006.

[15] A. Patil, D. Huard, and C. Fonnesbeck. PyMC:
Bayesian stochastic modelling in Python. Journal of
Statistical Software, 35(4):1–81, 7 2010.

[16] A. Pfeffer. Figaro: An object-oriented probabilis-
tic programming language. Charles River Analytics
Technical Report, page 137, 2009.

[17] D. Phan and S. Ghosh. Two-stage stochastic op-
timization for optimal power flow under renewable
generation uncertainty. ACM Transactions on Mod-
eling and Computer Simulation, 24(1):2:1–2:22, Jan-
uary 2014.

[18] A. Prékopa and R. Wets. Stochastic Programming,
volume 27. North-Holland, 1986.

[19] R. Rockafellar and S. Uryasev. Conditional value-at-
risk for general loss distributions. Journal of Banking
and Finance, pages 1443–1471, 2002.

[20] Richard E Rosenthal. GAMS — A user’s guide. 2004.

[21] A. Shapiro, D. Dentcheva, and A. Ruszczynski. Lec-
tures on Stochastic Programming: Modeling and
Theory. MOS-SIAM Series on Optimization. Soci-
ety for Industrial and Applied Mathematics, 2009.

[22] M. Udell, K. Mohan, D. Zeng, J. Hong, S. Diamond,
and S. Boyd. Convex optimization in Julia. In Pro-
ceedings of the 1st First Workshop for High Perfor-
mance Technical Computing in Dynamic Languages,
2014.

[23] S. Uryasev and P. Pardalos. Stochastic Optimization.
Applied Optimization. Springer, 2001.

[24] C. Valente, G. Mitra, M. Sadki, and R. Fourer. Ex-
tending algebraic modelling languages for stochas-
tic programming. INFORMS Journal on Computing,
21(1):107–122, 2009.

[25] S. Wallace and W. Ziemba. Applications of Stochas-
tic Programming. MPS-SIAM Series on Optimiza-
tion. Society for Industrial and Applied Mathematics,
2005.

[26] J. Watson, D. Woodruff, and W. Hart. PySP: Model-
ing and solving stochastic programs in Python. Math-
ematical Programming Computation, 4(2):109–149,
2012.

[27] Z. Wu, M. Kusner, K. Weinberger, M. Chen, and
O. Chapelle. Classifier cascades and trees for mini-
mizing feature evaluation cost. Journal of Machine
Learning Research, 15:2113–2144, 2014.

