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Abstract

Many objects can be represented as sets of multi-
dimensional points. A common approach to
learning from these point sets is to assume that
each set is an i.i.d. sample from an unknown un-
derlying distribution, and then estimate the sim-
ilarities between these distributions. In realistic
situations, however, the point sets are often sub-
ject to sampling biases due to variable or incon-
sistent observation actions. These biases can fun-
damentally change the observed distributions of
points and distort the results of learning. In this
paper we propose the use of conditional diver-
gences to correct these distortions and learn from
biased point sets effectively. Our empirical study
shows that the proposed method can successfully
correct the biases and achieve satisfactory learn-
ing performance.

1 INTRODUCTION

Traditional learning algorithms deal with fixed, finite di-
mensional vectors/points, but many real objects are actu-
ally sets of points that are multi-dimensional, real-valued
vectors. For instance, in computer vision an image is of-
ten treated as a set of patches with each patch described
by a fixed length feature vector (Li and Perona, 2005). In
monitoring problems, each sensor produces one set of mea-
surements for a particular region within a time period. In a
social network, a community is a set of people. It is impor-
tant to devise algorithms that can effectively process and
learn from these data.

A convenient and often adopted way to deal with point sets
is to construct a feature vector for each set so that standard
learning techniques can be applied. However, this conver-
sion process often relies on human effort and domain ex-
pertise and is prone to information loss. Recently, several
algorithms were proposed to directly learn from point sets

based on the assumption that each set is a sample from
an underlying distribution. (Póczos et al., 2011, 2012)
proposed novel kernels between point sets based on effi-
cient and consistent divergence estimators. (Gretton et al.,
2007; Muandet et al., 2012) designed a class of set kernels
based on the kernel embedding of distributions. (Boiman
et al., 2008; McCann and Lowe, 2012) developed simple
classifiers for point sets based on divergences between the
sets and the classes. Some parametric methods have also
been proposed (Jaakkola and Haussler, 1998; Jebara et al.,
2004). These methods achieved impressive empirical suc-
cesses, thus showing the advantage of learning directly
from point sets.

One factor that can significantly affect the effectiveness of
learning is sampling bias. Sampling bias comes from the
way we collect points from the underlying distributions,
and makes the observed sample not representative of the
true distribution. It undermines the fundamental validity of
learning because the points are no longer iid samples from a
distribution conditioned only on the object’s type. Though
it has been extensively studied in statistics, this key prob-
lem has been largely ignored by the previous research on
learning from sets. The goal of this paper is to alleviate
the impact of sampling bias when measuring similarities
between point sets.

We consider point sets with the following structure. Let
each point be described by two groups of random variables:
the independent variables (i.v.) and dependent variables
(d.v.). A point is collected by first specifying the value
of the i.v., and then observing a sample from the distribu-
tion of the d.v. conditioned on the given i.v. Figure 1 shows
a synthetic example where the i.v. is sampled uniformly,
and the d.v. is from the Gaussian distribution whose mean
is proportional to the value of i.v., forming the black line-
shaped point set. Many real world situations, including sur-
veys and mobile sensing, produce point sets of this type. In
patch-based image analysis, we first specify the location
of the patches as the i.v. and then extract their features as
the d.v. In traffic monitoring, a helicopter is sent to specific
locations at specific times (i.v.) and measures the traffic



volume (d.v.).
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Figure 1: The observation biases.

We assume that the sampling bias affects the way we ob-
serve i.v. , yet the observation of d.v. given i.v. remains in-
tact. This assumption is compatible with the covariate shift
model (Shimodaira, 2000; Huang et al., 2007). As shown
in Figure 1, an unbiased observer will sample i.v. uniformly
and get the black set. Biased observers might focus more
on the smaller or larger values of the i.v. and create the bi-
ased red and blue sets, where the curves show the observed
marginal densities of the i.v. The joint and marginal dis-
tributions of the biased sets now look very different from
each other and the unbiased set. Nevertheless, no matter
what the distribution of i.v. is, the distribution of d.v. given
i.v. is always the same Gaussian that does not change with
the observer. In traffic monitoring, the helicopter may be
tasked with other, non-traffic, jobs that create different pa-
trol schedules each day, thus creating an uneven profile of
the city’s traffic. But the measured traffic volumes at the
patrolled locations are still accurate.

To correct sampling biases of this kind, we propose to use
conditional divergences. Existing divergence-based meth-
ods use the joint distribution of the i.v. and the d.v. to mea-
sure the differences between point sets. On the other hand,
conditional divergences focus on the conditional distribu-
tions of d.v. given i.v. and are insensitive to the distribution
of i.v., which is distorted by the sampling bias in our set-
ting. As long as the conditional distributions are intact, the
conditional divergences will be reliable. Moreover, it can
be shown that the divergence between joint distributions is
a special case of the conditional divergence. A fast and
consistent estimator is developed for the conditional diver-
gences. We also discuss specific examples of correcting
sampling biases, including some extreme cases.

We evaluate the effectiveness of conditional divergences on
both synthetic and real world data sets. On synthetic data
sets, we show that the proposed estimator is accurate and
the conditional divergences are capable of correcting sam-
pling biases. We also demonstrate their performance on
real-world climate and image classification problems.

The rest of this paper is organized as follows. The back-

ground and some related work is introduced in Section 2.
Section 3 defines the conditional divergence and describes
its properties and estimation. Section 4 describes how to
use conditional divergence to correct various sampling bi-
ases. In Section 5 we make a discussion about the condi-
tional divergences. In Section 6, we evaluate the effective-
ness of the proposed methods on both synthetic and real
data sets. We conclude the paper in Section 7.

2 BACKGROUND AND RELATED
WORK

We consider a data set that consists of M point sets
{Gm}m=1,...,M , and each point set Gm is a set of d-
dimensional vectors, Gm = {zmn}n=1,...,Nm , zmn ∈ Rd.
Each point zmn = [xmn; ymn] is a concatenation of two
shorter vectors xmn ∈ Rdx and ymn ∈ Rdy represent-
ing the independent variables i.v. and the dependent vari-
ables d.v. respectively. We assume that each Gm has an
underlying distribution fm(z) = fm(x, y), and the points
{zmn} are i.i.d. samples from fm(z). fm can be written as
fm(z) = fm(y|x)fm(x). In the context of image classifi-
cation, eachGm is an image, and xmn is the location of the
nth patch and ymn is the feature of that patch.

We can learn from these sets by estimating the divergence
between the fm’s as the dissimilarity between the Gm’s.
Having the dissimilarities, various problems can be solved
by using similarity based learning algorithms, including k-
nearest neighbors (KNN), spectral clustering (Ng et al.,
2001), and support vector machines (SVM). In this direc-
tion, several divergence-based methods have been proposed
(Boiman et al., 2008; Póczos et al., 2012; Muandet et al.,
2012), and both empirical and theoretical successes were
achieved.

In the presence of sampling bias that affects the distribution
of i.v., fm(x) is transformed into f ′m(x). Consequently
the observed Gms represent the biased joint distribution
f ′m(z) = fm(y|x)f ′m(x). Therefore naı̈vely learning from
the point sets using joint distributions will lead us to the
distorted f ′m’s instead of the true fm’s. To correct the sam-
pling bias, we need to either 1) modify the point sets to
restore f(z), or 2) use similarity measures that are insensi-
tive to f(x).

Existing correction methods often reweigh the points in the
training set so that its effective distribution matches the dis-
tribution in the test set (Shimodaira, 2000; Huang et al.,
2007; Cortes et al., 2008). Our proposed conditional di-
vergences are insensitive to the biased distributions of the
independent variables and thus robust against sampling bi-
ases.

Traditionally in statistics and machine learning, sampling
bias is considered between the training set and the test
set. In contrast, we consider problems consisting of a large



number of point sets, and our goal is to learn from the sets
themselves. This extension raises many important chal-
lenges, including how to find a common basis to compare
all pairs of distributions, how to deal with unobserved seg-
ments of distributions, and how to design efficient algo-
rithms.

To our knowledge, this is first time sampling bias is ad-
dressed in the context of learning from sets of points. Al-
gorithms such as (Póczos et al., 2011, 2012; Gretton et al.,
2007; Muandet et al., 2012; Boiman et al., 2008; McCann
and Lowe, 2012; Jebara et al., 2004) all directly compare
the joint distributions of the observed points, making them
susceptible to sample bias. (Póczos, 2012) proposed the
use of conditional divergence, yet sampling bias was still
not considered.

3 CONDITIONAL DIVERGENCES

We propose to measure the dissimilarity between two dis-
tributions p(z) = p(x, y) and q(z) = q(x, y) using the
conditional divergence (CD) based on the Kullback-Leibler
(KL) divergence:

CDc(x) (p(z)||q(z)) = Ec(x) [KL (p(y|x)||q(y|x))] (1)

where c(x) is a user-specified distribution over which the
expectation is taken. CD is the average KL divergence be-
tween the conditional distributions p(y|x) and q(y|x) over
possible values of x, and c(x) can be considered as the im-
portance of the divergences at different x’s. CD’s defini-
tion is free of the i.v. distributions p(x) and q(x), which
are vulnerable to sampling biases. By definition, CD has a
lot in common with the KL divergence: it is non-negative,
and equals zero if and only if p(y|x) = q(y|x) for every x
within the support of c(x). CD is also not a metric and not
even symmetric.

In the form of (1), CD is hard to compute because the diver-
gences KL (p(y|x)||q(y|x)) are not available for arbitrary
continuous distributions. Also note that c(x) is a distribu-
tion specified by the user. To make CD more accessible,
we can rewrite it as

CDc(x) (p(z)||q(z)) (2)

= Ep(z)

[
c(x)

p(x)

(
ln
p(z)

q(z)
− ln

p(x)

q(x)

)]
.

Now, CD is defined in terms of the density ratios of the
input distributions and the expectation over p(z).

An interesting case of (2) occurs when we choose c(x) =
p(x), which gives the result

CDp(x) (p(z)||q(z)) (3)
= KL(p(z)||q(z))− KL(p(x)||q(x)).

We can see this special CD is equal to the joint divergence
(divergence between joint distributions) minus the diver-
gence between the marginal distributions of x. Intuitively,
CD is removing the effect of p(x) and q(x) from the joint
divergence, so that the net results are free from the sam-
pling bias. Moreover, when p(x) and q(x) are the same,
KL(p(x)||q(x)) vanishes and this CD equals the joint di-
vergence. In other words, when there is no sampling bias,
CDp(x) (p(z)||q(z)) = KL(p(z)||q(z)).

3.1 ESTIMATION

In this section we give an estimator for CD (2). Suppose we
have two setsGp andGq with underlying distributions p(z)
and q(z) respectively. We can approximate the expectation
(2) with the empirical mean and estimated densities:

ĈDc(x) (p(z)||q(z)) (4)

=
1

Np

Np∑
n=1

c(xp,n)

p̂(xp,n)

(
ln
p̂(zp,n)

q̂(zp,n)
− ln

p̂(xp,n)

q̂(xp,n)

)
,

where Np is the size of Gp, p̂, q̂ are the estimates of p, q.

c(t) is an arbitrary input from the user and we can see
that its role is to reweight the log-density-ratios at differ-
ent points in Gp. To generalize this notion, we define the
generalized conditional divergence (GCD) and its estima-
tor as the weighted average of the log-density-ratios:

GCDw (p(z)||q(z)) (5)

=

Np∑
n=1

w(xp,n)

(
ln
p(zp,n)

q(zp,n)
− ln

p(xp,n)

q(xp,n)

)
ĜCDw (p(z)||q(z)) (6)

=

Np∑
n=1

w(xp,n)

(
ln
p̂(zp,n)

q̂(zp,n)
− ln

p̂(xp,n)

q̂(xp,n)

)
Np∑
n=1

w(xp,n) = 1, w(xp,n) ≥ 0,

where w(x) is the weight function and the constraint∑
n w(xn) = 1 is induced by the fact that

lim
Np→∞

Np∑
n=1

w(xp,n) = lim
Np→∞

1

Np

Np∑
n=1

c(xp,n)

p(xp,n)

= Ep(x)

[
c(x)

p(x)

]
=

∫
c(x)

p(x)
p(x)dx = 1.

To obtain the density estimates p̂, q̂, we use the k-nearest-
neighbor (KNN) based estimator (Loftsgaarden and Que-
senberry, 1965). Let the f(z) be the d-dimensional density
function to be estimated and Z = {zn}n=1,...,N ∈ Rd be
samples from f(z). Then the density estimate at the point



z′ is
f̂(z′) =

k

Nc1(d)φdZ,k(z
′)
, (7)

where c1(d) is the volume of the unit ball in the d-
dimensional space, and φZ,k(z

′) denotes the distance from
z′ to its kth nearest neighbor in Z (if z′ is already in Z then
it is excluded). This estimator is chosen over other options
such as the kernel density estimation because it is simple,
fast, and leads to a provably convergent estimator as shown
below.

By plugging in (7) into (6), we can get the following esti-
mator for GCD:

ĜCDw (p(z)||q(z)) (8)

=

Np∑
n=1

w(xp,n)

(
d ln

φGq,k(zp,n)

φGp,k(zp,n)
− dx ln

φGq,k(xp,n)

φGp,k(xp,n)

)
,

where dx is the dimensionality of the x. We can see that
the resulting estimator has a simple form and can be cal-
culated based only on the KNN statistics φ, which are effi-
cient to compute using space-dividing trees or even approx-
imate KNN algorithms such as (Muja and Lowe, 2009).
Also note that even though the estimator (8) is obtained us-
ing the density estimator (7), its final form only involves
simple combinations of the log-KNN-statistics lnφ. Thus,
this GCD estimator effectively avoids explicit density es-
timation which is notoriously difficult, especially in high
dimensions.

More importantly, the GCD estimator (8) has stronger
convergence properties than the density estimator from
which it is derived. Standard convergence results have that
the density estimator (7) is statistically consistent only if
k/n → 0, k → ∞ simultaneously. However, for esti-
mator (8) convergence can be achieved even for a fixed
finite k. This means that we can always use a small k to
keep the nearest neighbor search fast and still get good es-
timates. Specifically, following the work of (Wang et al.,
2009; Póczos and Schneider, 2011), the following theorem
can be proved:

Theorem 1. Suppose the density function pairs
(p(z), q(z)) and (p(x), q(x)) are both 2-regular (as
defined in (Wang et al., 2009)). Also suppose that the
weight function satisfies limNp→∞ w(xp,n) = 0,∀n. Then
the estimator (8) is L2 consistent for any fixed k. That is

lim
Np,Nq→∞

E
[
ĜCDw(p(z)||q(z))− GCDw(p(z)||q(z))

]2
= 0

The proof of Theorem 1 is similar to what was used
in (Wang et al., 2009). The condition lim

Np→∞
w(xp,n) = 0

ensures that the weight function does not concentrate on
only a few points. We omit the detailed proof here. Note

that the convergence of GCD does not carry to CD (4) be-
cause the weight function w(xp,n) =

c(xp,n)
p̂(xp,n)

is no longer
deterministic. However, empirically we found that (4) ex-
hibits the behavior of a consistent estimator and produces
satisfactory results.

4 CHOOSING c(x)

To use CD, we have to choose the appropriate c(x) orw(x).
When learning from point sets, it is preferable to use the
same c(x) to compute the CDs between all pairs of sets, so
that they have a common basis to compare. However, this is
not always necessary or possible. Even though the choice
of c(x) and w(x) can be arbitrary, we consider 3 options
below.

First, we can let c(x) ∝ 1 so that w(xp,n) ∝ p−1(xp,n)
to treat every value of x equally. The disadvantage is that
p−1(xp,n) has to be estimated, which is error prone. We
can also use c(x) = p(x) and w(xp,n) ∝ 1, leading to (3).
In this case, different pairs of sets can have different c(x)’s.
When the sampling bias is small, these differences might
be acceptable considering the possible errors in w(x) oth-
erwise. Thirdly, c(x) ∝ p(x)q(x) and w(xp,n) ∝ q(xp,n)
puts the focus on regions where both p(x) and q(x) are
high. It means that we should put larger weights in dense
regions and avoid scarce regions to get reliable estimates.

One caveat is that the weight function and the log-density-
ratios in CD should not use the same density estimate, oth-
erwise the estimation errors will correlate and cause sys-
tematic overestimations. Using different estimators can
help decouple the errors and avoid accumulation. In prac-
tice, we use the estimator (7) with a different k.

Some extreme cases of sampling biases are when whole
segments of the distribution are missing from the sample
and therefore unobserved. Two sets can even have dis-
joint supports of x. With the CD, we can choose c(x) ∝
p(x)q(x) or c(x) ∝ I(p(x)q(x) > 0), where I(·) is the
indicator function, and only compare two sets in their over-
lapping regions. The resulting quantity may not be accu-
rate with respect to the true unbiased divergence, but it is
still a valid measurement of the differences between con-
ditional distributions. When f(y|x) only weakly depends
on x, this estimate can be an adequate approximation to
the original divergence. If f(y|x) varies drastically for dif-
ferent x’s without any regularity then only comparing the
overlapping regions might be the best we can do.

When two sets have disjoint supports in x, no useful infor-
mation can be extracted and the corresponding divergence
has to be regarded as missing without further assumptions.
Nevertheless, in our settings where a large number of point
sets are available, it is likely that each set will share its sup-
port in x with at least some others to provide a few reliable
divergence estimates. We might be able to infer the diver-



gence between disjoint sets using the idea of triangulation.
We shall leave this possibility for future investigation.

5 DISCUSSION

In CD, c(x) conveys prior knowledge about the importance
of different x’s. It should be carefully chosen based on the
data, and poor results can happen when the assumptions
made in c(x) are not valid. For example, c(x) ∝ 1 as-
sumes that all the x’s are equally important. This could be
a bad assumption when the supports of two sets do not over-
lap, because at some x’s one of the densities will be zero,
making the conditional densities f(y|x) not well-defined.
Similar problems might occur in regions where one of the
densities is very low. Numerically the estimator can still
work but usually produces poor results. In this scenario,
c(x) ∝ p(x)q(x) suits the data better.

The CD estimator (8) relies on the KNN statistics φ which
is the distance between nearest neighbors. Usually we
use Euclidean distance to measure the difference between
points and find nearest neighbors. However, the estimator
does not prevent the use of other distances. In fact, (Lofts-
gaarden and Quesenberry, 1965) shows that alternative dis-
tances can be used and the consistency results will gener-
ally still hold. A common choice of adaptive distance mea-
sure is the Mahalanobis distance (Bishop, 2007), which is
equivalent to applying a linear transformation to the ran-
dom variables. It is even possible to learn the distance met-
ric for φ in a supervised way to maximize the learning per-
formance. We leave this possibility as future work.

The estimated conditional divergences can be used in many
learning algorithms to accomplish various tasks. In this
paper, we use kernel machines to classify point sets as in
(Póczos et al., 2011, 2012). Having the divergence es-
timates, we convert them into Gaussian kernels and then
use SVM for classification. When constructing kernels,
all the divergences are symmetrized by taking the aver-
age µ(p, q) = d(p||q)+d(q||p)

2 . The symmetrized diver-
gences µ are then exponentiated to get the Gaussian kernel
k(p, q) = exp (−γµ(p, q)) and the kernel matrix K, where
γ is the width parameter. Unfortunately, K usually does not
represent a valid Mercer kernel because the divergence is
not a metric and random estimation errors exist. As a rem-
edy, we discard the negative eigenvalues from the kernel
matrix K to convert it to its closest positive semi-definite
(PSD) matrix K̃. This K̃ then is a valid kernel matrix and
can be used in an SVM for learning.

6 EXPERIMENTS

We examine the empirical properties of the conditional di-
vergences and their estimators. The tested divergences are
listed below.

• Full D: Divergence between full unbiased sets as the
groundtruth.

• D: Divergence between biased sets.

• D-DV: Divergence between biased sets while ignoring
the i.v..

• CD-P,CD-U,CD-PQ: conditional divergences with
c(x) ∝ p(x), c(x) ∝ 1, c(x) ∝ p(x)q(x) respectively
between biased sets.

Full D, D, D-DV are estimated using the KL divergence
estimator proposed by (Wang et al., 2009). Unless stated
otherwise, we use k = 3 for GCD estimation using (8),
and use k values between 30 and 50 to compute the weight
function.

We consider two types of sampling biases. The first type
creates different f(x)’s for different sets, yet they still share
the same support of x as the original unbiased data. Based
on the first type, the second type of sampling bias is more
extreme and can hide certain segments of the true distribu-
tions, and thus causes different sets to have different sup-
ports of x. We call the resulting test sets from these two
sampling biases uneven sets and partial sets respectively.

In order to evaluate the quality of the bias correction by
the CDs, we use controlled sampling biases in our experi-
ments. The original point set data are collected from real
problems without any sampling bias. Then we resample
each set to create artificial sampling biases. By doing this,
we can compare the results using the biased sets to the di-
vergences using the unbiased data which is the groundtruth.

An SVM is used to classify the point sets using the method
described in Section 5. When using the SVM, we tune the
width parameter γ and the slack penalty C by 3-fold cross-
validation on the training set.

6.1 SYNTHETIC DATA

6.1.1 Estimation Accuracy

We generate synthetic data to test the accuracy of the pro-
posed conditional divergence estimators. The data set con-
sists of 2-dimensional (one as i.v. and one as d.v.) Gaus-
sian noise along two horizontal lines as the two classes, as
shown in Figure 2 and 3. The Gaussians have fixed spher-
ical covariance, and the mean of the blue class is slightly
higher than the red class, resulting in an analytical KL di-
vergence of 0.5. Then the i.v. (x axis) is resampled to
create sampling bias and the red and blue curves show the
resulting marginal densities fred(x), fblue(x). The task is
to recover the true divergence value 0.5 from this biased
sample. We vary the sample size to see the empirical con-
vergence, and the results of 10 random runs are reported.
The shortcut for this problem is to ignore the i.v., but we do
not let the estimators take it and force them to recover from
the sampling bias.



Figure 2 shows the results on the uneven sets. As expected,
the joint divergences are corrupted by the sampling bias
and are far from the truth. The three CDs all converge to
the true value. Figure 3 shows the results on the partial sets.
The joint divergence diverges in this case. CD-P and CD-
U are closer but not converging to the correct value, and
the reason is that the non-overlapping supports violate the
assumptions made by them. CD-PQ successfully achieved
the true value. This shows the advantage of only measuring
CD within the overlapping region in this example. Overall,
the CDs are effective against sampling bias and the estima-
tors converge to the true values.
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Figure 2: Divergences on the uneven synthetic data.
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Figure 3: Divergences on the partial synthetic data.

6.1.2 Handling Point Sets

Here we test the estimators using a large number of point
sets. The full data of two classes are shown in Figure 5a. To
create partial sets, we use a sliding window, whose width
is half of the data’s span, to scan the full data and at each
position put the points within the window together as a set.
The uneven sets are then created by combining the partial
sets with a small number of random samples from the orig-
inal data. 100 sets are created for each class and each set
contains 200− 300 points.

This data set is more challenging: the marginal distribution
of d.v. cannot differentiate the two classes; the conditional
distributions f(y|x) are dependent on x; near the center of
the data the conditional distributions of the two classes are
very close. The different divergence matrices on the uneven
sets are shown in Figure 4, in which we sorted the sets ac-
cording to their classes and window positions to show the
structures. We see that the joint divergence is severely af-
fected by the sampling bias, while the CDs are quite in-
sensitive. The result of CD-U is especially impressive: the
similarity structure of the original data is perfectly recov-
ered. Figure 5 shows the results on the partial sets. The
joint divergence is now dominated by the sampling bias.
CDs again are able to recover from this severe disruption
and achieve reasonable results. The result of CD-PQ is the
cleanest on this data set.

(a) Original data.

D CD−P CD−U CD−PQ CD−P−C CD−U−C CD−PQ−C CD−PQ−SSC

(b) Divergences

Figure 5: Divergences on the partial sets. The goal is to
recover the “Full D” result shown in Figure 4.

6.2 SEASON CLASSIFICATION

In this section we use the divergences in SVM to classify
real world point sets generated by sensor networks. We
gathered the data from the QCLCD climate database at
NCDC 1. We use a subset of QCLCD that contains daily
climatological data from May 2007 to May 2013 measured
by 1, 164 weather stations in the continental U.S. Each of
these weather station produces various measurements such

1http://www.ncdc.noaa.gov

http://www.ncdc.noaa.gov


Full D D−DV D CD−P CD−U CD−PQ

Figure 4: Divergences on the uneven sets. The goal is to recover the “Full D” given only the biased sets.

as the temperature, humidity, precipitation, etc, at its lo-
cation. We aggregate these data into point sets, so that
each set contains the measurements from all stations in one
week.

We consider the problem of predicting the season of a set
based on the average temperature measurement. Specifi-
cally, we want to know if a set corresponds to Spring or Fall
based on the average temperatures over the U.S. Note that
classifying Summer and Winter would be too easy, while
differentiating Spring and Fall can be challenging since
they have similar average temperatures. Nevertheless, it
is still possible based on the geographical distribution of
the temperatures. Figure 6 shows the temperature maps in
a first week of March and a first week of November.

Again, we create uneven and partial sets based on the orig-
inal data by randomly positioning a full-width window
whose height is 20% of the data’s vertical span, as shown in
Figure 6. This injection of sampling bias is simulating the
scenario where we only have a sensoring satellite orbiting
parallel to the equator. In this problem, the location is the
i.v. and the temperature is the d.v.. This procedure gives us
160 3-dimensional (latitude, longitude, temperature) point
sets with sizes around 2, 000.

(a) Mar (b) Mar - Uneven

(c) Nov (d) Nov - Uneven

Figure 6: Example temperature maps of the U.S. from the
QCLCD. (a) and (c) are the original data. (b) and (d) are
the artificially created uneven data.

In each run, 20% of the random point sets are used for train-
ing and the rest are used for testing. Classification results
of 10 runs are reported in Figure 7. On the uneven sets, we
see that both CD-U and CD-PQ are able to recover from the
sampling bias and achieve results that are only 3% worse

than the full divergence. On the partial sets, however, the
performance CD-U dropped significantly. This indicates
that it can be risky to apply CD in regions where two sets
do not overlap. It is interesting to see that D-DV, which
ignores the locations, barely does better than random since
Spring and Fall indeed have similar temperatures. Yet by
considering the geographical distribution of temperatures
we can achieve 70% accuracy.
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(a) QCLCD, uneven.
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(b) QCLCD, partial.

Figure 7: Season classification results on the QCLCD
weather data.

6.3 IMAGE CLASSIFICATION

We can also use CDs to classify scene images. We con-
struct one point set for each image, where each point de-
scribes one patch including its location (i.v.) and the fea-
ture (d.v.). The OT (A.Oliva and Torralba, 2001) scene im-
ages are used, which contain 2, 688 grayscale images of
size 256× 256 from 8 categories. The patches are sampled
densely on a grid and multiscale SIFT features are extracted
using VLFeat (Vedaldi and Fulkerson, 2008). The points
are reduced to 20-dimensions using PCA, preserving 70%



of variance.

Again, we create both uneven and partial point sets by ran-
domly positioning a full-width window whose height is
60% of the image. By doing this, the injected sampling
bias forces a set to focus on a specific horizontal part of the
scene. For instance in a beach scene, the biased observer
focuses either on the sky or the sand, and only see a small
part of the rest of the scene. After the above processing, the
full data set contains 2, 688 sets of 20-dimensional points,
and the sets’ sizes are around 1, 600. In the biased data,
each partial set has about 950 points and each uneven set
has about 1, 100. In each run, we randomly select 50 im-
ages per class for training and another 50 for testing.

Results of 10 random runs are shown in Figure 8. In these
results, CDs again successfully restore the accuracies to a
high level even in the face of harsh sampling biases. We see
that CD-U impressively beats the other methods by a large
margin on the uneven sets, and is only 1% worse than the
full divergence. CD-PQ is the best on partial sets. These
results show the CDs’ corrective power when the correct
assumptions are made about the sampling biases.

We also observe that CD-U and CD-P did not perform well
on the partial sets, which is expected since their assump-
tions were invalid on the data. In general, the impact of
sampling bias on this data set is small (less than 10% de-
crease in accuracies) because the patch features (d.v.) only
weakly depend on the patch locations (i.v.). In fact, many
patch-based image analyses such as (Li and Perona, 2005)
do not include the locations. This might explain why both
D-DV and D-P did reasonably well in this task and the cor-
rected results by CD-PQ are only slightly better.

7 CONCLUSION

In this paper we described various aspects of dealing with
sampling bias when learning from point sets. We proposed
the conditional divergence (CD) to measure the difference
between point sets and alleviate the impact of sampling
bias. An efficient and convergent estimator of CD was pro-
vided. We then discussed how to deal with various types of
sampling biases using CD. In the experiments we show that
these methods are effective against sampling bias on both
synthetic and real data.

Several directions can be explored in the future. We can
extend the definition of conditional divergence from KL di-
vergence to the more general Rényi divergences. The gen-
eralized conditional divergences provide the possibility of
learning the weights of the density ratios in a supervised
ways in order to maximize the discriminative power of the
resulting divergences. The distance between points used in
estimating the CDs could also be learned. Finally for ex-
treme cases that cause missing divergences, we may infer
them by exploiting the relationships among the sets using
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(a) Image, uneven.
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(b) Image, partial.

Figure 8: Image classification results on OT.

matrix completion techniques.
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