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Abstract

Bisimulation is a notion of behavioural equiva-
lence on the states of a transition system. Its defi-
nition has been extended to Markov decision pro-
cesses, where it can be used to aggregate states.
A bisimulation metric is a quantitative analog
of bisimulation that measures how similar states
are from a the perspective of long-term behavior.
Bisimulation metrics have been used to establish
approximation bounds for state aggregation and
other forms of value function approximation. In
this paper, we prove that a bisimulation metric
defined on the state space of a Markov decision
process is the optimal value function of an opti-
mal coupling of two copies of the original model.
We prove the result in the general case of con-
tinuous state spaces. This result has important
implications in understanding the complexity of
computing such metrics, and opens up the possi-
bility of more efficient computational methods.

1 INTRODUCTION

Markov decision processes (MDPs) are a popular mathe-
matical model for sequential decision-making under uncer-
tainty (Puterman, 1994; Sutton & Barto, 2012). Many stan-
dard solution methods are based on computing or learning
the optimal value function, which reflects the expected re-
turn one can achieve in each state by choosing actions ac-
cording to the optimal policy. In finite MDPs, the optimal
value function is guaranteed to be unique, and has at least
one deterministic optimal policy associated with it.

A major challenge is how to deal with large, possibly con-
tinuous, state spaces, known more colourfully as the curse
of dimensionality or the state-space explosion problem.
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Briefly, the number of parameters necessary to represent
the value function scales exponentially with the number
of state variables. In response to this issue, a number of
researchers have advocated the use of metrics, which can
be used to determine similarity between states, and cluster
them accordingly. Ideally, one would like such a cluster-
ing to reflect similarity among states in terms of the value
function, which reflects the long-term cumulative reward.

In the formal verification community, a similar problem
arises in the analysis of transition systems, in which one
wants to establish long-term properties (e.g., the probabil-
ity that the system may enter a faulty state, or that a cer-
tain trajectory would terminate). Many researchers advo-
cate tackling such problems by using approximation met-
rics based on strong probabilistic bisimulation. Bisimu-
lation is a conservative behavioural equivalence between
states: states that are bisimilar will have the same long-
term behaviour (Larsen & Skou, 1991; Givan et al., 2003).
Corresponding metrics are useful in order to measure state
similarity, and are used both to directly aggregate system
states and more generally to assess the quality of an approx-
imation. Abate (2012) surveys historical and more recent
developments in this area.

In the context of MDPs, such metrics - henceforth known
as bisimulation metrics - were developed in (Ferns et al.,
2004; Ferns et al., 2005; Ferns et al., 2011) based on
the work of Desharnais et al. (2002; 2001a) for a related
Markov transition system. In (Ferns et al., 2006), the au-
thors experimentally compared several methods for esti-
mating these metrics on small finite MDPs, with a Monte
Carlo approach outperforming the others. However, the
analyses therein were limited, lacking, for example, any
sample complexity results.

The purpose of this work is to strengthen and unify theo-
retical and practical results for bisimulation metrics on a
given MDP by showing that they are in fact the optimal
value functions of an optimal coupling of that MDP with
itself (Theorem 3.3). We establish this result in the gen-
eral setting of continuous-state MDPs. To our knowledge,
this is an original result, which both improves our under-



standing of bisimulation metrics in general, and opens up
avenues of attack for more efficient computation.

The paper is organized as follows. In Section 2, we pro-
vide a brief summary of MDPs, optimal control theory, and
bisimulation metrics on continuous spaces. In Section 3,
we use a measurable selection theorem to prove the main
result, and in Section 4 we relate the results we present to
existing work within the artificial intelligence and formal
verification communities. Finally, in Section 5, we discuss
the implications of our result and directions for future re-
search.

2 BACKGROUND

Since we deal primarily with uncountably infinite state
spaces, we must take into account the tension between im-
posing the right amount of structure on a space for gen-
eral theoretical usefulness and imposing the right amount
of structure for useful practical applications. For that rea-
son, much of the work on Markov processes has been cast
in the setting of Polish spaces. The introductory chapter
of (Doberkat, 2007) contains a self-contained exposition of
probabilities on Polish spaces in the context of computer
science. A more comprehensive mathematical description
can be found in (Srivastava, 2008). By contrast, a gentler
introduction to probabilities on continuous spaces can be
found in the first four chapters of (Folland, 1999). We refer
the reader to these three sources for the basic mathematical
definitions that we present throughout.

2.1 PROBABILITIES ON METRIC SPACES

A Polish metric space is a complete, separable metric
space. A Polish space is a topological space that is homeo-
morphic to a Polish metric space. A standard Borel space
is a measurable space that is Borel isomorphic to a Polish
space.

If (X, τ) is a topological space, then Cb(X) is the set
of continuous bounded real-valued functions on X . If
(X,BX) is a standard Borel space then we denote by
Bb(X) the space of bounded measurable real-valued func-
tions onX , and by P(X) the set of probability measures on
X; note that the latter is also a standard Borel space (Giry,
1982).

2.2 DISCOUNTED MARKOV DECISION
PROBLEMS

Let (X,BX) and (Y,BY ) be standard Borel spaces. A
Markov kernel is a Borel measurable map from (X,BX) to
(P(Y ),BP(Y )). Equivalently, K is a Markov kernel from
X to Y iff K(x) is a probability measure on (Y,BY ) for
each x ∈ X , and x 7→ K(x)(B) is a measurable map for
each B ∈ BY .

Remark 1. The use of the term kernel here should not
be confused with the usual meaning, that being the set of
points in the domain of a real-valued function that send
the function to 0. We will refer to kernel in both senses
throughout, with the meaning clear from the context.

We will denote the set of all Markov kernels from X to
Y by [[X → P(Y )]] and simply write “K is a Markov ker-
nel on X” when it is implicitly assumed that Y = X . If
I is an index set and K = (Ki)i∈I is an I-indexed col-
lection of Markov kernels on X , we will say that “K is a
labelled Markov kernel on X”. Such kernels play the role
of transition relations in stochastic transition systems with
continuous state spaces.

A Markov decision process (MDP) is a tuple
(S,BS , A, (Pa)a∈A, r), where (S,BS) is a standard
Borel space, A is a finite set of actions, r : A × S → R is
a bounded measurable reward function, and for a ∈ A, Pa
is a Markov kernel on S.

For each a ∈ A, we denote by ra : S → R the function
defined by ra(s) = r(a, s), and for each a ∈ A and s ∈ S.
We use functional notation for integration with respect to
Pa(s), i.e. the integral of f ∈ Bb(S) with respect to Pa(s)
will be written as Pa(s)(f).

A Markov decision process along with an optimality crite-
rion is known as a Markov decision problem. In this work,
we focus on Markov decision problems with the expected
total discounted reward optimality criterion, which we now
briefly describe based on (Hernández-Lerma & Lasserre,
1996) and especially Section 8.3 of (Hernández-Lerma &
Lasserre, 1999). We rely on these sources instead of oth-
ers who may be more familiar to the AI audience because
they treat the infinitely uncountable state space setting. We
direct the reader to these sources for full details.

Fix an MDP M = (S,BS , A, (Pa)a∈A, r) and a dis-
count factor γ ∈ (0, 1). Let t ∈ N. Then Ht, the
family of histories up to time t, is defined by H0 = S
and Ht+1 = Ht × (A × S) for t ∈ N. An element
ht = (s0, a0, . . . , st−1, at−1, st) ∈ Ht is called a t-history.
A randomized control policy is a sequence of Markov ker-
nels π = (πt)t∈N such that πt ∈ [[Ht → P(A)]] for all
t ∈ N. The set of all policies is denoted by Π. A policy
π = (πt)t∈N is said to be a randomized stationary policy
if there exists a Markov kernel ϕ ∈ [[S → P(A)]] such that
πt(ht) = ϕ(st) for all ht ∈ Ht, t ∈ N, and a determin-
istic stationary policy if there exists a measurable selector
f for S × A such that πt(ht) is the Dirac measure at the
point f(st) ∈ A for all ht ∈ Ht, t ∈ N. We denote the sets
of randomized stationary policies and deterministic station-
ary policies by ΠRS and ΠDS respectively and note that
ΠDS ⊆ ΠRS ⊆ Π.

Let π ∈ Π be a policy on M. The γ-discounted
value function for π, Vγ(π), is defined by Vγ(π)(s) =



Eπs [
∑∞
t=0 γ

tr(at, xt)] for all s ∈ S, where Eπs is the ex-
pectation taken with respect to the system dynamics when
starting in state s and following policy π. The goal of
this Markov decision problem is to find a policy whose
value function dominates all others. Toward that end, one
defines the γ-discounted optimal value function, V ∗γ , by
V ∗γ (s) = supπ∈Π Vγ(π)(s) for all s ∈ S, and the Bell-
man operator with respect to γ, Tγ : Bb(S) → Bb(S), by
Tγ(v)(s) = maxa∈A[ra(s) + γ · Pa(s)(v)] for all s ∈ S.
The following can be found within Theorem 8.3.6 and
its preceding remarks in (Hernández-Lerma & Lasserre,
1999).

Theorem 2.1 (Value Iteration). Define (vn)n∈N ⊆ Bb(S)
by v0(s) = 0 for all s ∈ S and vn+1 = Tγ(vn) for
all n ∈ N. Then the optimal value function V ∗γ is the
unique solution in Bb(S) to the Bellman optimality equa-
tion v = Tγ(v); (vn)n∈N converges uniformly to V ∗γ with
‖vn − V ∗γ ‖ ≤ γ−n(1− γ) for all n ∈ N and where ‖ · ‖ is
the uniform norm; and there exists a deterministic station-
ary optimal policy π∗ ∈ ΠDS such that V ∗γ = Vγ(π∗).

We note that although Theorem 2.1 implies it is sufficient
to search ΠDS for an optimal policy, in practice it is often
useful to work with the larger class ΠRS . On the other
hand, for more general theoretical considerations, e.g. other
optimality criteria, we may need to consider all of Π.

2.3 BISIMULATION

We present bisimulation for MDPs as outlined in (Ferns
et al., 2011).

Given an equivalence relation R on a measurable space
(S,Σ), a subset X of S is said to be R-closed if X is a
union of R-equivalence classes. We write Σ(R) for the set
of those Σ-measurable sets that are also R-closed.

Let (S,BS , A, (Pa)a∈A, r) be an MDP. An equivalence
relation R on S is a bisimulation relation if it satisfies
sRs′ ⇐⇒ for every a ∈ A, ra(s) = ra(s′) and for
every X ∈ Σ(R), Pa(s)(X) = Pa(s′)(X). Bisimilarity is
the largest of the bisimulation relations.

2.4 THE KANTOROVICH METRIC

In order to define bisimulation metrics for MDPs, we first
need to recall the definition and properties of the Kan-
torovich metric between distributions, which can be found
in (Villani, 2003).

Definition 1 (Kantorovich Metric). Let S be a Polish
space, h a bounded pseudometric on S that is lower semi-
continuous on S × S with respect to the product topology,
and let Lip(h) be the set of all f ∈ Bb(S) that satisfy the
Lipschitz condition f(x)− f(y) ≤ h(x, y) for every x, y ∈
S. Let P,Q ∈ P(S). Then the Kantorovich metric K(h) is
defined by K(h)(P,Q) = supf∈Lip(h)(P (f)−Q(f)).

The Kantorovich metric is an infinite linear program and
has a dual described in terms of couplings of probability
measures.

Definition 2 (Coupling). Let (X,BX) and (Y,BY ) be
standard Borel spaces, and let (X × Y,BX ⊗ BY ) be
the product space. Let µ ∈ P(X), ν ∈ P(Y ), and
λ ∈ P(X×Y ). Then λ is a coupling of µ and ν if and only
if its marginals on X and Y are µ and ν, respectively. We
denote the set of all couplings of µ and ν by Λ(µ, ν), i.e.,
λ ∈ Λ(µ, ν) ⇐⇒ λ(E × Y ) = µ(E) and λ(X × F ) =
ν(F ) for all E ∈ BX , F ∈ BY .

The following is found within Section 1.1.1 of (Villani,
2003).

Lemma 2.2. LetX and Y be Polish spaces and let µ and ν
belong to P(X) and P(Y ), respectively. Then λ ∈ Λ(µ, ν)
if and only if for every (ϕ,ψ) ∈ Cb(X)× Cb(Y )∫

X×Y
[ϕ(x) + ψ(y)]λ(dx, dy)

=

∫
X

ϕ(x)µ(dx) +

∫
Y

ψ(y)ν(dy).

In Section 3, we’ll make use of the following simple
lemma.

Lemma 2.3. Let X and Y be Polish spaces and let µ and
ν belong to P(X) and P(Y ), respectively. Then Λ(µ, ν) is
a closed subset of P(X × Y ).

Proof. Let (λn)n∈N ⊆ Λ(µ, ν) be a sequence converging
to some λ ∈ P(X×Y ) in the weak topology. Let (ϕ,ψ) ∈
Cb(X)× Cb(Y ). Then∫

X×Y
[ϕ(x) + ψ(y)]λ(dx, dy)

= lim
n→∞

(∫
X×Y

[ϕ(x) + ψ(y)]λn(dx, dy)

)
= lim
n→∞

(

∫
X

ϕ(x)µ(dx) +

∫
Y

ψ(y)ν(dy))

=

∫
X

ϕ(x)µ(dx) +

∫
Y

ψ(y)ν(dy).

Here we have used the definition of weak convergence, as
well as Lemma 2.2 for each λn. It follows from the same
lemma that λ ∈ Λ(µ, ν).

The following can be found in Theorem 1.3 and the proof
of Theorem 1.14 in (Villani, 2003).

Theorem 2.4 (Kantorovich-Rubinstein Duality Theorem).
Assume the conditions of Definition 1. Then K(h)(P,Q) is
equal to

sup
f∈Lip(h,Cb(S))

(P (f)−Q(f)) = inf
λ∈Λ(P,Q)

λ(h)



where Lip(h,Cb(S)) denotes functions on S that are con-
tinuous and bounded, 1-Lipschitz with respect to h, and
have range [0, ‖h‖]. Moreover, the supremum and infimum
are attained.

2.5 BISIMULATION METRICS

The following can be found in Theorem 3.12 of (Ferns
et al., 2011) and Corollary 3 of (Ferns et al., 2014).
Theorem 2.5. Let M = (S,BS , A, (Pa)a∈A, r) be an
MDP and let c ∈ (0, 1) be a discount factor. Assume that
the image of r is contained in [0, 1]. Then there exists a
Polish topology τ generating BS such that for all a ∈ A,
ra is continuous with respect to τ and Pa is weakly contin-
uous with respect to τ . Define θc : A× (S×S)→ [0, 1] by
θca(x, y) = (1 − c)|ra(x) − ra(y)|. Furthermore, let lscm
be the set of bounded pseudometrics on S that are lower
semicontinuous on S × S endowed with the product topol-
ogy induced by τ . Define Fc : lscm → lscm by setting
Fc(ρ)(s, s′) equal to

max
a∈A

[
θca(s, s′) + c · K(ρ)(Pa(s), Pa(s′))

]
Then Fc has a unique 1-bounded fixed-point pseudometric
ρ∗c ∈ Cb(S × S) whose kernel is bisimilarity.

We call such a metric a bisimilarity metric, and more gen-
erally a bisimulation metric if its kernel is a bisimulation
relation (but not necessarily the largest). The following re-
sult, Theorem 3.20 in (Ferns et al., 2011), relates the opti-
mal values of states to their similarity as measured by the
bisimulation metric.
Theorem 2.6. Assume the setup and result of Theorem 2.5.
Let γ ∈ (0, c] be a reward discount factor and let V ∗γ be the
optimal value function defined in Theorem 2.1. Then V ∗γ
is Lipschitz continuous with respect to ρ∗c with Lipschitz
constant (1− c)−1, i.e., for all s, s′ ∈ S,

|V ∗γ (s)− V ∗γ (s′)| ≤ (1− c)−1ρ∗c(s, s
′)

Since bisimulation is a behavioural equivalence, this result
implies that the closer two states are in bisimilarity dis-
tance, the more likely they are to share the same optimal
actions, and hence optimal policies, for achieving the same
optimal values.

3 A BISIMULATION VALUE FUNCTION

LetM = (S,BS , A, (Pa)a∈A, r) be an MDP with the im-
age of r contained in [0, 1] and let c ∈ (0, 1) be a discount
factor. The goal of this section is to show that the bisimilar-
ity metric ρ∗c given by Theorem 2.5 can be expressed as the
optimal value function of some MDP. In order to do so, let
us first extend the definition of a coupling of two probabil-
ity measures to a coupling of two labelled Markov kernels
in the obvious way.

Definition 3. Let (X,BX) and (Y,BY ) be standard Borel
spaces, and let (X×Y,BX⊗BY ) be the product space. Let
I be an index set, and let K = (Ki)i∈I , L = (Li)i∈I , and
M = (Mi)i∈I be labelled Markov kernels on X , Y , and
X × Y , respectively. Then M is a coupling of K and L if
and only if for each i ∈ I , x ∈ X , and y ∈ Y , Mi(x, y) is
a coupling of Ki(x) and Li(y) in the sense of Definition 2.
We denote the set of all couplings of K and L by Λ(K,L).

Recall that ρ∗c is the unique solution to the fixed-point equa-
tion

ρ∗c(x, y) = max
a∈A

[θca(s, s′) + c · K(ρ∗c)(Pa(x), Pa(y))].

Here is the crucial fact: Theorem 2.4 remarkably not
only provides a statement of duality for each Kantorovich
linear program K(ρ∗c)(Pa(x), Pa(y)), but guarantees the
existence of minimizers in the minimization linear pro-
gram as well. Therefore, for every a ∈ A and
x, y ∈ S there exists λaxy ∈ Λ(Pa(x), Pa(y)) such that
K(ρ∗c)(Pa(x), Pa(y)) = λaxy(ρ∗c). Suppose for every
a ∈ A the map from S × S to P(S × S) that sends (x, y)
to λaxy is measurable. Then ρ∗c would satisfy the Bell-
man optimality equation defined in Theorem 2.1 for the
optimal value function with discount factor c for the MDP
(S × S,BS×S , A, (λa)a∈A, θ

c) where λa(x, y) = λaxy .
Remark that such a λ = (λa)a∈A is a coupling of P with
P , where P = (Pa)a∈A. Thus, if we can find a mea-
surable way of selecting the minimizers amongst all the
Kantorovich linear programs appearing in the definition of
ρ∗c , we will have shown that the bisimilarity metric is actu-
ally the optimal value function of an MDP whose labelled
Markov kernel is a coupling of two copies of the labelled
Markov kernel of the original model. This is our goal.

3.1 MEASURABLE SELECTORS AND SECTIONS

The following results can be found in Section 1.4
of (Doberkat, 2007) and Section 5 of (Srivastava, 2008).

Let X and Y be sets. A multifunction from X to Y is a set-
valued map R : X → 2Y such that for all x ∈ X , R(x) is
a nonempty subset of Y . A multifunction R from X to Y
can equivalently be viewed as a relation between X and Y .

Given a multifunction R between measurable spaces X
and Y , one usually seeks to measurably select a member
of R(x) for each x ∈ X . Here, we recount one way of
doing so.

Let R be a multifunction from X to Y , and let G ⊆
Y . The weak inverse of G with respect to R is the set
∃R(G) = {x ∈ X | ∃y ∈ G such that (x, y) ∈ R}
= {x ∈ X | R(x) ∩G 6= ∅}. The importance of the weak
inverse lies in trying to utilise the property of measurability
for a multifunction R. A measurable function requires the
preimage of every measurable set to be measurable. Here,
we need only consider the preimages of compact sets.



Suppose R is a multifunction between a measurable space
X and a Polish space Y . Let G ⊆ Y . If ∃R(G) is
measurable whenever G is compact then R is called a C-
measurable relation on X × Y .

Assume X is a measurable space, Y is Polish, R is a mul-
tifunction from X to Y and for each x ∈ X , R(x) is a
non-empty closed subset of Y . Then a measurable map
f : X → Y is called a measurable selector for R if and
only if f(x) ∈ R(x) for all x ∈ X .

The following measurable selection result can be found as
Proposition 1.57 and Proposition 1.58 in (Doberkat, 2007).
Proposition 3.1. Assume that X is a measurable space,
Y is a Polish space, and R is a C-measurable relation on
X × Y . Then there exists a measurable selector f forR.

Finally, the following appears in Proposition 2.34 of (Fol-
land, 1999), and will be used in conjunction with the pre-
ceding measurable selection theorem to establish our main
result.
Proposition 3.2. Suppose that (X,BX), (Y,BY ), and
(Z,BZ) are measurable spaces and that f : X × Y → Z
is a product-measurable function. Let x ∈ X . Define the
X-section of f at x, fx : Y → Z, to be the function defined
by fx(y) = f(x, y) for all y ∈ Y . Then fx is measurable.

3.2 BISIMILARITY AS A VALUE FUNCTION

Theorem 3.3. Let us assume the setup and result of The-
orem 2.5. Let K = (Ka)a∈A ∈ Λ(P, P ), where P =
(Pa)a∈A. Define the coupling ofM with itself through K
to be the MDPM(K) = (S × S,BS×S , A, (Ka)a∈A, θ

c).
Let V ∗c (K) denote its optimal value function with respect
to c, as defined in Theorem 2.1. Then there exists a K∗ ∈
Λ(P, P ) such that ρ∗c = V ∗c (K∗) = minK∈Λ(P,P ) V

∗
c (K).

In order to prove Theorem 3.3, we will need to make use of
the following result, which can be found within the proof
of Lemma 3.14 in (Ferns et al., 2011).
Lemma 3.4. Assume the setup and result of Theorem 2.5.
Then for each a ∈ A, the map sending (s, s′) to
K(ρ∗c)(Pa(s), Pa(s′)) is continuous on S × S.

Proof of Theorem 3.3. In order to prove the existence of
K∗, we follow the method of part 3 of the proof of
Lemma 4.9 in (Doberkat, 2007). First, however, we appeal
to Theorem 2.5 to assert the existence of a Polish topology
τ on S making each ra continuous and each Pa weakly
continuous for all a ∈ A. Let X = A × S × S and
Y = P(S×S). The setA is a Polish space since it is finite,
and X is a Polish space since it is a finite product of Polish
spaces. Additionally, Y is also a Polish space (Giry, 1982).
Define R : X → 2Y by setting R(a, x, y) to be the set of
all λ ∈ Λ(Pa(x), Pa(y)) such thatK(ρ∗c)(Pa(x), Pa(y)) =
λ(ρ∗c). Theorem 2.4 implies that each R(a, x, y) is non-
empty. Suppose (λn)n∈N ⊆ R(a, x, y) converges to λ ∈

Y . By Lemma 2.3, λ ∈ Λ(Pa(x), Pa(y)). Theorem 2.5
implies that ρ∗c ∈ Cb(S × S), so that by weak convergence
λ(ρ∗c) = limn→∞ λn(ρ∗c) = K(ρ∗c)(Pa(x), Pa(y)). There-
fore, λ ∈ R(a, x, y), i.e.R(a, x, y) is closed.

Next, let G ⊆ Y be compact, hence, closed. We will
show that ∃R(G) is closed, and hence measurable. Let
(an, xn, yn)n∈N ⊆ ∃R(G) be a sequence converging to
some (a, x, y) ∈ X . So there exists (λn)n∈N ⊆ G such that
λn ∈ R(an, xn, yn) for all n ∈ N. SinceG is compact, it is
also sequentially compact and therefore there exists a sub-
sequence (λkn)n∈N converging to some λ ∈ G. Remark
that since A is finite, the sequence (an)n∈N is eventually
constant, i.e. there exists N ∈ N such that (an, xn, yn) =
(a, xn, yn) for all n ≥ N . Let (ϕ,ψ) ∈ Cb(S) × Cb(S).
Then ∫

S×S
[ϕ(s) + ψ(s′)]λ(ds, ds′)

= lim
n→∞

(∫
S×S

[ϕ(s) + ψ(s′)]λkn(ds, ds′)

)
= lim
n→∞

(

∫
S

ϕ(s)Pakn
(xkn)(ds)

+

∫
S

ψ(s′)Pakn
(ykn)(ds′))

= lim
n→∞

(

∫
S

ϕ(s)Pa(xkn)(ds)

+

∫
S

ψ(s′)Pa(ykn)(ds′))

=

∫
S

ϕ(s)Pa(x)(ds) +

∫
S

ψ(y)Pa(y)(ds′)

so that λ ∈ Λ(Pa(x), Pa(y)). Here we have used the
weak convergence of (λkn)n∈N to λ, (Pa(xkn))n∈N to
Pa(x), and of (Pa(ykn))n∈N to Pa(y), and the repeated
use of Lemma 2.2. Moreover, by weak convergence and
Lemma 3.4

λ(ρ∗c) = lim
n→∞

λkn(ρ∗c)

= lim
n→∞

K(ρ∗c)(Pa(xkn), Pa(ykn))

= K(ρ∗c)(Pa(x), Pa(y)),

whence it follows that λ ∈ R(a, x, y). Therefore,
R(a, x, y) ∩ G 6= ∅, (a, x, y) ∈ ∃R(G), and ∃R(G) is
closed and hence measurable. By definition, R is a C-
measurable relation on X × Y . Applying Proposition 3.1
there exists a measurable selector f : X → Y for R. Fi-
nally, set K∗ = (K∗a)a∈A where K∗a(x, y) = f(a, x, y) ∈
R(a, x, y) for all a ∈ A, x, y ∈ S. For each a ∈ A,
K∗a is simply the A-section of f at a, so that by Propo-
sition 3.2, each K∗a ∈ [[S × S → P(S × S)]]. Therefore,
ρ∗c = V ∗c (K∗), the optimal value function forM(K∗).

Clearly infK∈Λ(P,P ) V
∗
c (K) ≤ V ∗c (K∗). To establish the

reverse inequality, let K = (Ka)a∈A ∈ Λ(P, P ). Then for



any a ∈ A and x, y ∈ S,

θca(x, y) + c ·K∗a(x, y)(ρ∗c)

= θca(x, y) + c · K(ρ∗c)(Pa(x), Pa(y))

= θca(x, y) + c · inf
λ∈Λ(Pa(x),Pa(y))

λ(ρ∗c)

≤ θca(x, y) + c ·Ka(x, y)(ρ∗c).

By taking the maximum over all a ∈ A and noting that
the result holds for all x, y ∈ S, we then obtain ρ∗c ≤
Tc(K)(ρ∗c), where Tc(K) is the Bellman optimality op-
erator for the MDP M(K). Therefore, it follows that
V ∗c (K∗) ≤ V ∗c (K) for any K ∈ Λ(P, P ), and finally that
V ∗c (K∗) ≤ infK∈Λ(P,P ) V

∗
c (K).

Thus, we can interpret every discounted bisimulation met-
ric as the optimal value function of some MDP; moreover,
that MDP is optimal in the sense that it is the best cou-
pling of the transition structure of the original MDP with
itself when one seeks to minimize the expected total dis-
counted absolute difference in rewards coming from the
original model.

An immediate consequence is that we can now interpret
the topology of convergence with respect to a bisimula-
tion metric in terms of MDP optimality criteria. Con-
versely, when examining behavioural equivalence for the
state space of a given MDP it no longer suffices to con-
sider the structural model alone; one must take into account
the full Markov decision problem, i.e. its intended use by
means of an optimality criterion. This is yet another ad-
vantage of the pseudometric approach over that of exact
equivalences. We discuss this further in Section ??.

Practical implications are less immediate, but no less im-
portant, particularly in regard to determining what might
be effective in attempting to calculate or estimate the dis-
tances. Consider a finite MDP. If we adjoin one new ab-
sorbing state with no immediate rewards then it is not hard
to show that the bisimulation distance from that state to an-
other state is the optimal value of the latter state. So com-
puting a bisimulation metric is at least as hard as comput-
ing an optimal value function. On the other hand, we have
just shown that computing a bisimulation metric amounts
to computing an optimal value function - albeit, with the
caveat that this amounts to a search over possibly infinitely
many couplings. If one could restrict this search to poly-
nomially many couplings, then it would follow that com-
puting bisimulation metrics and computing optimal value
functions belong to the same polynomial-time complexity
class - and we conjecture that this is so. At first glance,
this is a disappointing result; if one followed the naive ap-
proach, one would be attempting to solve for an optimal
value function by solving for another optimal value func-
tion over a quadratically larger MDP. However, comput-
ing a bisimulation metric is of interest in its own right;
the value function formulation allows for state-of-the-art

reinforcement learning techniques (Sutton & Barto, 2012;
Pazis & Parr, 2013) to be applied in its computation while
at the same time informing us of what methods are unlikely
to work well in practice for truly large systems.

A better practical approach would be to find more eas-
ily computable similarity metrics that are related in some
meaningful way to the bisimulation metric. In that case,
one would have a practical similarity measure with the
theoretical guarantees given by bisimulation, as in Theo-
rem 2.6. Our value function formulation permits a very
natural way to do this, through the use of couplings.

Definition 4. Let f : X × X → [0,∞) be a func-
tion on a set X . Define the function %(f) : X × X →
[0,∞) by %(f)(x, y) = inf{

∑m
j=1 ω(f)(aj−1, aj)}, where

ω(f)(u, v) = min{f(u, v), f(v, u)} and the infimum is
taken over all m ∈ N and (aj)

m
j=0 ⊆ X such that a0 = x

and am = y. Then %(f) is the largest pseudometric less
than f .

Notice that ifX is finite and f is computable then the prob-
lem of computing %(f) is the All-Pairs Shortest Paths prob-
lem.

Corollary 3.5. Assume the setup and result of Theo-
rem 3.3. For π ∈ Π defined over S × S we let Vc(K)(π)
denote the value function ofM(K) with respect to π and
c and we let V ∗c (K) denote its optimal value function with
respect to c, as defined in Theorem 2.1. Then

1. ∀K ∈ Λ(P, P ), ρ∗c ≤ %(V ∗c (K)) ≤ V ∗c (K).

2. ∀π ∈ Π, %(Vc(K
∗)(π)) ≤ Vc(K∗)(π) ≤ ρ∗c .

Corollary 3.5 allows us to easily bound the bisimulation
metric from above for any coupling K ∈ Λ(P, P ). For ex-
ample, the product coupling P ⊗ P defined in the obvious
way (and assuming measurability) by (P ⊗ P )a(x, y) =
Pa(x)⊗Pa(y) should provide a trivial upper bound. Corol-
lary 3.5 also provides a lower bound but only in the case
where we know the optimal coupling K∗ beforehand. Po-
tentially more interesting is the case where we combine the
two, i.e. for an arbitrary coupling K ∈ Λ(P, P ) and an
arbitrary policy π ∈ Π defined onM(K), does the equiv-
alence induced by %(Vc(K)(π)) lead to something that is
more easily computable but that still provides good theo-
retical guarantees?

4 RELATED WORK

This work lies at the intersection of artificial intelligence
and formal verification, and owes much to both. The con-
cept of bisimulation has been in use within the uncer-
tainty in artificial intelligence community for some time
now. Indirectly in (Boutilier et al., 2000) and directly
in (Givan et al., 2003), the notion of bisimulation had



been transferred from the theory of concurrent processes
to MDP model minimization and the reinforcement learn-
ing paradigm. These papers work directly with factored or
structured representations, which is an advantage over our
approach for problems where such structure in the environ-
ment exists and is known explicitly. On the other hand, they
deal only with discrete MDPs, exhibit the brittleness inher-
ent in using exact equivalences for numerical systems, and
lack theoretical guarantees on the size of a fully minimal
system. In earlier work, Dean et al. (1997) actually con-
sider an approximate version of bisimulation. For a small
positive parameter ε they consider equivalence relations
satisfying the property that immediate rewards and stochas-
tic transitions to equivalence classes differ by at most ε.
However, the disadvantages already mentioned still apply.
More generally, (Li et al., 2006) provide a comprehensive
survey and classification of various state abstractions for fi-
nite MDPs, including methods based on bisimulation (such
as our bisimulation metrics).

Bisimulation metrics have been more extensively studied
in the formal verification community. In that setting, the
work closest in spirit to our own is (Chen et al., 2012),
wherein the authors investigate the complexity of comput-
ing bisimilarity and metric bisimilarity for labelled Markov
chains. In particular, Theorem 8 in that work relates an
undiscounted bisimulation metric to optimal couplings of a
given labelled Markov chain. Aside from considering only
finite state systems, they allow for states to have differing
sets of permissible actions but omit the reward parameter;
hence, their work lies outside of the optimal control theory
framework on which we focus.

Abate (2012) surveys various approximation metrics for
probabilistic bisimulation over Markov processes with gen-
eral state and action spaces, though here too Markov reward
processes are mostly neglected. The author does conclude
that a bridge needs to be made between techniques based
on computing distances between Markov kernels and tech-
niques based on sampling trajectories from processes under
consideration; we believe the current work can help provide
that bridge.

A very promising approach appears in (Desharnais et al.,
2013) where the authors propose a general algorithm for
estimating divergences, distance functions that may fail
to satisfy the symmetry and triangle inequality axioms of
a pseudometric. They consider divergences that general-
ize equivalences on probabilistic systems based on tests
and observations. In particular, they define a new family
of testable equivalences called k-moment equivalences; 1-
moment equivalence is trace equivalence, as k grows larger
k-moment equivalence becomes finer, and all k-moment
equivalences as well as their limit equivalence are strictly
weaker than bisimilarity. The exciting feature of their work
is that the algorithm for estimating a divergence corre-
sponding to a fixed equivalence is based on defining an

MDP whose optimal value function is that divergence, and
then using reinforcement learning techniques (Sutton &
Barto, 2012) to solve for the optimal value function. While
conceptually similar in spirit to our value function repre-
sentation of bisimulation metrics, this approach differs sig-
nificantly in how the MDP representing the metric is de-
fined.

5 CONCLUSIONS AND FUTURE WORK

We have shown that the bisimulation metric defined
in (Ferns et al., 2011) for an MDP is actually the optimal
value function of an optimal coupling of the MDP with it-
self. This latter formulation is perhaps a more natural con-
ception of distance for MDPs. In any case, all theoretical
and practical results from optimal control theory concern-
ing optimal value functions for MDPs can be carried over
(based on this result)to the study of bisimulation metrics.

Perhaps the most intriguing implication of Theorem 3.3
is that examining other optimal control theory criteria
may lead to different classes of bisimulation metrics per-
haps better suited to those optimality tasks. Consider
the undiscounted case. What does ρ∗c represent when c
tends to 1? We could set c = 1 in Theorem 2.5, as in
Theorem 4 of (Chen et al., 2012). The resultant func-
tional F1 : lscm → lscm defined by F1(ρ)(s, s′) =
maxa∈AK(ρ)(Pa(s), Pa(s′)) has a least fixed-point ρ∗1
given by the Knaster-Tarski fixed-point theorem. In fact, in
this case the least fixed-point is the everywhere zero pseu-
dometric - unsurprising since in our current setup all ac-
tions are allowable in all states and the reward parameter
is the only feature that distinguishes states. But how might
we interpret such a result more generally? In fact, there is
some relation to the infinite-horizon average reward opti-
mality criterion.

Let M = (S,BS , A, (Pa)a∈A, r) be an MDP with the
image of r contained in [0, 1] and recall the terminology
of Section 2.2. The following definitions can be found
in Chapter 5 of (Hernández-Lerma & Lasserre, 1996).
Let π ∈ Π be a policy on M. Let n ∈ N. The
n-stage value function for π is defined by Jn(π)(s) =

Eπs [
∑n−1
t=0 r(at, xt)] for all s ∈ S, the average cost value

function for π by J(π)(s) = lim supn→∞
1
nJn(π)(s) for

all s ∈ S, and the average reward optimal value function
by J∗(s) = supπ∈Π J(π)(s) for all s ∈ S. The solution
to the average reward Markov decision problem is a policy
π∗ such that J(π∗) = J∗.

Let us assume that M is finite, i.e., S is finite. The fol-
lowing can be found in Chapter 8 of (Feinberg & Shwartz,
2002), in particular Theorem 8.1, listed below as Theo-
rem 5.1. A policy π ∈ Π is said to be Blackwell optimal if
and only if there exists γ0 ∈ (0, 1) such that π is γ-optimal
for all γ ∈ (γ0, 1).



Remark 2. A stationary Blackwell optimality policy is
also average reward optimal, and for such a policy π∗,
limγ↑1(1− γ)Vγ(π∗) = J(π∗).

Theorem 5.1. In a finite MDP there exists a stationary
Blackwell optimal policy.

Let K ∈ Λ(P, P ) and V ∗c (K) be the optimal value func-
tion for the MDPM(K) defined in Section 3 with the re-
ward parameter θc scaled by (1 − c)−1. Then there ex-
ists a K∗c ∈ Λ(P, P ), depending on c, such that ρ∗c =
(1 − c)V ∗c (K∗c ). It follows that limc↑1 ρ

∗
c = limc↑1(1 −

c)V ∗c (K∗c ) ≤ limc↑1(1 − c)V ∗c (K) ≤ J∗(K) for any
K ∈ Λ(P, P ). Thus, limc↑1 ρ

∗
c ≤ infK∈Λ(P,P ) J

∗(K).
It remains to be seen whether or not the inequality is strict.

In the general case, the situation is much more complicated.
For example, under a variety of conditions not listed here,
Lemma 10.4.3 of (Hernández-Lerma & Lasserre, 1999)
states the following.

Lemma 5.2. There exists a constant α such that α =
lim supγ↑1(1− γ)V ∗γ ≤ J∗.

It follows that under the same conditions lim supc↑1 ρ
∗
c ≤

α ≤ infK∈Λ(P,P ) J
∗(K). If equality were to hold in

this case, then we would have for some x ∈ S, α =
lim supc↑1 ρ

∗
c(x, x) = 0, so that limc↑1 ρ

∗
c exists and is ev-

erywhere zero, i.e. the resulting equivalence would identify
all states. Aside from the unspecified conditions, the dis-
tinction with the finite case is that limc↑1 ρ

∗
c need not exist

to begin with.

Similarly, consider the expected total reward criterion.
Here we might take the set of lower semicontinuous pseu-
dometrics on S as in Theorem 2.5, but this time bounded
with respect to a weighted supremum norm ‖ · ‖w for some
weight function w : S × S → [1,∞). Thus, an unbounded
function f that has a bounded norm with respect to w has
its rate of growth bounded by w. Define the functional F
by

F (ρ)(s, s′) = max
a∈A

[θ0
a(s, s′) +K(ρ)(Pa(s), Pa(s′))].

Then if conditions are imposed so that the set ofw-bounded
lower semicontinuous pseudometrics on S is closed under
F , it will have a least fixed-point (extended) pseudometric
again corresponding to some expected total reward optimal
value function. This line of research is very preliminary.

The major concern of this work along with (Ferns et al.,
2014) is to clarify and unify results about the theory of
bisimulation metrics in order to provide new avenues of
attack for practical applications. An ongoing research goal
is to find a more easily computable equivalence than that
given by the current bisimulation metrics while maintain-
ing as much as possible the theoretical guarantees. As far
as estimating the given family of bisimulation metrics, the
current interpretation as optimal value functions suggests

that the most promising approaches involve Monte Carlo
techniques, as in (Ferns et al., 2006), (Ferns et al., 2011),
and most recently in (Comanici et al., 2012), or advanced
approximate linear programming techniques as in (Pazis &
Parr, 2013). More to the point, our strong intuition is that
state-of-the-art methods for efficient reinforcement learn-
ing can be leveraged to develop state-of-the-art methods for
efficient bisimulation metric computation, and vice versa.
Very interesting recent work in this direction have been
done by Bacci et al. (2013), who use greedy heuristics and
decomposition techniques to speed up the computation of
bisimulation metrics for MDPs. Computational approaches
of this flavour should be further investigated.

In order for this approach to be really useful in practice,
however, a few topics need to be further addressed by future
work.

First, this work is highly dependent on couplings and the
coupling method, though we have only just touched upon
the subject. The study of couplings in theory and in practice
is vast, and a proper discussion is beyond the scope of this
work. A good source for the theory of couplings is (Lind-
vall, 2002). Moreover, as noted in (Chen et al., 2012), it is
already known in the discrete case that the set of couplings
(called matchings in that work) for two probability func-
tions forms a polytope; and that optimizing a linear func-
tion over it amounts to optimizing over the finitely many
vertices of the polytope (as is done in computing the dis-
crete Kantorovich metric). We hope that this structure can
be exploited to improve our theoretical result.

Additionally, we mentioned that the initial applications of
bisimulation to MDPs exploited factored or structured rep-
resentations. It would be fruitful to explore whether or not
bisimulation metric reasoning principles can be applied to
factored representations without having to flatten the state
space. More generally, applying bisimulation metrics to the
problem of constructing function approximators for MDP
value functions is a very promising future direction, recent
work (Comanici & Precup, 2012) has leveraged such met-
rics to tackle the problem of automatically generating fea-
tures for function approximation.

Lastly, let us consider the problem of knowledge transfer
between MDPs. Suppose MX = (X,BX , A, PX , r(X))
andMY = (Y,BY , A, PY , r(Y )) are two MDPs with re-
wards in the unit interval and that c ∈ (0, 1) is a dis-
count factor. For K ∈ Λ(PX , PY ), consider the coupled
MDP M = (X × Y,BX×Y , A,K, θ) where θa(x, y) =
(1 − c)|ra(X)(x) − ra(Y )(y)| for all x ∈ X and y ∈ Y .
Does infK∈Λ(PX ,PY ) V

∗
c (K)(x, y) measure the bisimilar-

ity of states x and y? Clearly, there is much work to be
done to answer this question.
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