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Abstract

The continuous time Bayesian network
(CTBN) enables temporal reasoning by rep-
resenting a system as a factored, finite-state
Markov process. The CTBN uses a tra-
ditional Bayesian network (BN) to specify
the initial distribution. Thus, the complex-
ity results of Bayesian networks also apply
to CTBNs through this initial distribution.
However, the question remains whether prop-
agating the probabilities through time is, by
itself, also a hard problem. We show that
exact and approximate inference in continu-
ous time Bayesian networks is NP-hard even
when the initial states are given.

1 INTRODUCTION

Currently, little theoretical work has been done on the
complexity of inference in CTBNs. Most of what is
known about the complexity of CTBNs is derived from
the fact that a Bayesian network is used to specify the
initial distribution. However, despite the similarity in
the names, inference in CTBNs is different than in-
ference in Bayesian networks because the CTBN must
reason over continuous time. The question becomes
whether this problem of calculating evolving probabil-
ities through time is also NP-hard, independent of the
initial distribution.

The only known exact inference procedure for CTBNs
is exponential in the number of nodes, but this does
not necessarily imply that there does not exist an al-
ternative approach for exact inference that performs in
polynomial time even for the worst case. Furthermore,
what expectations might we have about the various ap-
proximate inference algorithms that have been devel-
oped for CTBNs? Does the accuracy vs. complexity
trade-off of these approximation algorithms avoid the
NP-hardness of their discrete-time counterparts? In

this work, we prove that exact and approximate in-
ference in CTBNs are both NP-hard, even when the
initial states are given. Thus, the complexity is also in
reasoning over the factored Markov process, not just in
reasoning over the Bayesian network for determining
the probabilities for the initial states.

2 BACKGROUND

To place our work in context, we begin by present-
ing background information on Bayesian networks, dy-
namic Bayesian networks, and then CTBNs.

2.1 BAYESIAN NETWORKS

Bayesian networks are probabilistic graphical models
that use nodes and arcs in a directed acyclic graph
to represent a joint probability distribution over a set
of variables (Koller & Friedman, 2009). Let P (X)
be a joint probability distribution over n variables
X1, . . . , Xn ∈ X. A Bayesian network B is a directed,
acyclic graph in which each variable Xi is represented
by a node in the graph. Let Pa(Xi) denote the parents
of node Xi in the graph. The graph representation of
B factors the joint probability distribution as:

P (X) =

n∏
i=1

P (Xi|Pa(Xi)).

2.2 DYNAMIC BAYESIAN NETWORKS

The traditional Bayesian network is a static model.
However, we can introduce the concept of time (or at
least sequence) into the network by assigning discrete
timesteps to the nodes to create a dynamic Bayesian
network.

A dynamic Bayesian network (DBN) is a type of
Bayesian network that uses a series of connected
timesteps, each of which contains a copy of a Bayesian
network Xt indexed by timestep t. The probability



distribution of a variable at a given timestep can be
conditionally dependent on states of that variable or
other variables throughout previous timesteps. For
first-order DBNs, dependence does not go further than
the immediately previous timestep. Therefore, the
joint probability distribution for a first-order DBN of
T timesteps factors as:

P (X0, . . . ,XT−1) = P (X0)

T−1∏
t=0

P (Xt+1|Xt).

2.3 CONTINUOUS TIME BAYESIAN
NETWORKS

As can be seen from the preceding section, the DBN is
restricted to discrete timesteps. The CTBN avoids dis-
cretizing time by using conditional Markov processes
instead of conditional probability tables. We now for-
mally define the CTBN and then survey its inference
algorithms and applications.

2.3.1 CTBN Definition

Let X be a set of Markov processes {X1, X2, . . . , Xn},
where each process Xi has a finite number of discrete
states. A continuous time Bayesian network is a tuple
N = 〈B, C〉. The Bayesian network B has nodes corre-
sponding to X and is used only for determining P (X0),
the initial distribution of the process. Evidence at the
initial time (t = 0) is incorporated by setting evidence
in B and performing Bayesian network inference. The
continuous-time transition model C describes the evo-
lution of the process from this initial distribution and
is specified as:

• A directed (possibly cyclic) graph G with nodes
X1, X2, . . . , Xn, where Pa(Xi) denotes the par-
ents of Xi in G,

• A set of conditional intensity matrices (CIMs)
AX|Pa(X) associated with X for each possible
combination of state instantiations of Pa(X).

Each conditional intensity matrix AX|Pa(X) gives the
dynamics of node X when the states of Pa(X) are
fixed. Each entry ai,j ≥ 0, i 6= j gives the transition
intensity of the node moving from state i to state j,
and each entry ai,i < 0 controls the amount of time
the node remains in state i. With the diagonal entries
constrained to be non-positive, the probability density
function for the node remaining in state i is given by
|ai,i| exp(ai,it), with t being the amount of time spent
in state i, making the probability of remaining in a
state decrease exponentially with respect to time. The
expected sojourn time for state i is 1/ |ai,i|. Each row
is constrained to sum to zero,

∑
j ai,j = 0 ∀ i, meaning

that the transition probabilities from state i can be
calculated as ai,j/ |ai,i| ∀ j, i 6= j.

2.3.2 CTBN Inference Algorithms

The only exact inference algorithm that exists so far
for CTBNs combines all of the conditional intensity
matrices into the single full joint intensity matrix, with
states as the Cartesian product of all of the node’s
states (Fan, Xu, & Shelton, 2010). Thus, the size of
this matrix is exponential in the number of nodes and
the number of states. Because this method ignores
the factored nature of the network, research on CTBN
inference has focused exclusively on approximation al-
gorithms.

Expectation propagation (Nodelman, Koller, & Shel-
ton, 2005; Saria, Nodelman, & Koller, 2007) has been
developed for CTBNs, in which neighboring nodes em-
ploy a message-passing scheme for each interval of ev-
idence. The messages are approximate “marginals,”
a projection of a node’s conditional intensity matrix
onto a single, approximating unconditional intensity
matrix. Messages are continually passed until all of
the nodes have a consistent distribution over the in-
terval of evidence.

There have been a number of sample-based inference
algorithms developed for CTBNs, including impor-
tance sampling (Fan et al., 2010; Fan & Shelton, 2008;
Weiss, Natarajan, & Page, 2013) and Gibbs sampling
(El-Hay, Friedman, & Kupferman, 2008; Rao & Teh,
2013). Importance sampling answers queries from a set
of weighted samples that are generated in conformance
to the evidence. The weight of each sample is the like-
lihood of the sample given the evidence. Gibbs sam-
pling, by contrast, is a sampling procedure that takes
a Markov Chain Monte Carlo (MCMC) approach. For
each variable over each interval of evidence, the states
in the Markov blanket (that is, the node’s parents, chil-
dren, and children’s parents) are held constant and a
random walk is performed on the state of the node.
After sufficient sampling, the distribution of the ran-
dom walk will converge to the true distribution for that
interval of evidence.

Methods using variational techniques, such as mean-
field approximation (Cohn, 2009; Cohn, El-Hay, Fried-
man, & Kupferman, 2009) and belief propagation (El-
Hay, Cohn, Friedman, & Kupferman, 2010) have also
been developed. These methods propagate the prod-
ucts of inhomogeneous Markov processes to approxi-
mate the distribution using systems of ordinary differ-
ential equations.



2.3.3 CTBN Applications

CTBNs have found use in a wide variety of temporal
applications. For example, CTBNs have been used for
inferring users’ presence, activity, and availability over
time (Nodelman & Horvitz, 2003); robot monitoring
(Ng, Pfeffer, & Dearden, 2005); modeling server farm
failures (Herbrich, Graepel, & Murphy, 2007); mod-
eling social network dynamics (Fan & Shelton, 2009;
Fan, 2009); modeling sensor networks (Shi, Tang, &
You, 2010); building intrusion detection systems (Xu
& Shelton, 2010; Xu, 2010; Xu & Shelton, 2008); pre-
dicting the trajectory of moving objects (Qiao et al.,
2010); and diagnosing cardiogenic heart failure and an-
ticipating its likely evolution (Gatti, Luciani, & Stella,
2011; Gatti, 2011).

2.4 PREVIOUS COMPLEXITY RESULTS

As mentioned, most of the complexity theory sur-
rounding CTBNs is derived from the Bayesian net-
work for the initial distribution. However, one com-
plexity result specific to CTBNs arises from the dif-
ference between BN and CTBN structure learning.
In structure learning, it is common to assign a scor-
ing function to arcs in the network that quantifies
how well the network topology matches the training
data. Nodelman (2007) gives a polynomial-time algo-
rithm for finding the highest-scoring set of k parents
for a CTBN node. The corresponding problem in a
Bayesian network has been shown to be NP-hard, even
for k = 2, due to the acyclic constraint of Bayesian net-
works (Chickering, 1996). Essentially, because cycles
are allowed in CTBNs, each node can maximize its
score independently.

Because the CTBN is relatively new, much of the com-
plexity theory surrounding CTBNs has yet to be fully
explored. This work intends to expand the complexity
theory of CTBN inference. The work builds on the
complexity results of BNs, which we now review.

Theorem 2.1. (Cooper, 1990) Exact inference in
Bayesian networks is NP-hard.

Proof. Cooper proved the NP-hardness of Bayesian
network inference via a reduction from 3SAT. The
3SAT problem consists of a set of m clauses C =
{c1, c2, . . . , cm} made up of a finite set V of n Boolean
variables. Each clause contains a disjunction of three
literals over V , for example, c3 = (v2 ∧¬v3 ∧ v4). The
3SAT problem is determining whether there exists a
truth assignment for V such that all the clauses in C
are satisfied.

The 3SAT problem can be reduced to a Bayesian
network decision problem of whether, for a
True(T )/False(F ) node X in the network,

P (X = T ) > 0 or P (X = T ) = 0. We can rep-
resent any 3SAT instance by a Bayesian network
as follows. For each Boolean variable vi in V ,
we add a corresponding True(T )/False(F ) node
Vi to the network such that P (Vi = T ) = 1

2 and
P (Vi = F ) = 1

2 . For each clause Cj , we add a
corresponding True(T )/False(F ) node Cj to the
network as a child of the three nodes corresponding
to its three Boolean variables. Let wj be the clause
corresponding to the state of the three parents of Cj ,
and let eval(wj) be the truth function for this clause.
The conditional probabilities of the node are

P (Cj = T |wj) =

{
1 if eval(wj) = T

0 if eval(wj) = F

Finally, for each clause Ck, we add a
True(T )/False(F ) node Dk. Each Dk is condi-
tionally dependent on Ck and on Dk−1 (except for
D1). The conditional probabilities for D1 are

P (D1 = T |C1) =

{
1 if C1 = T

0 otherwise
.

Similarly, the conditional probabilities for Dk (k > 1)
are

P (Dk = T |Ck, Dk−1) =

{
1 if Ck = T ∧Dk−1 = T

0 otherwise
.

Figure 1 shows the BN topology and conditional prob-
ability tables for determining the satisfiability of the
clause (v1∨v2∨v3)∧ (¬v1∨¬v2∨v3)∧ (v2∨¬v3∨v4).

Importantly, the construction of this Bayesian net-
work is polynomial in the length of the Boolean ex-
pression. For a 3SAT instance of |V | variables and
|C| clauses, the corresponding Bayesian network has
|V | + 2|C| nodes. Furthermore, each node of the
Bayesian network has no more than three parents,
constraining the largest conditional probability table
to have no more than 16 entries, for a maximum of
2|V |+ 16|C|+ 8(|C| − 1) + 4 entries for the entire net-
work.

The probabilities of the V nodes allow for every combi-
nation of truth assignments to the Boolean variables.
From there, the C and D nodes enforce the logical rela-
tions of the clauses using the Bayesian network’s condi-
tional probability tables. As such, the 3SAT instance
is satisfiable if and only if P (Dm = T ) > 0, that is, if
and only if there is a non-zero probability that some
instantiation of the V nodes to T and F will cause all
of the clauses to be satisfied. Thus, if an algorithm ex-
ists that is able to efficiently compute the exact prob-
abilities in arbitrary Bayesian networks, the algorithm



Figure 1: Network with conditional probability tables for example reduction from 3SAT to BN inference.

can efficiently decide whether P (Dm = T ) > 0 for
the specially constructed networks that can represent
arbitrary instances of 3SAT.

Furthermore, it is known that even absolute and rel-
ative approximations in BNs is NP-hard (Dagum &
Luby, 1993). These approximations are defined for-
mally as follows. Suppose we have a real value ε be-
tween 0 and 1, a BN with binary-valued nodes V , and
two nodes X and Y in V instantiated to x and y, re-
spectively.

Definition 2.1. A relative approximation is an esti-
mate 0 ≤ Z ≤ 1 such that

P (X = x|Y = y)

(1 + ε)
≤ Z ≤ P (X = x|Y = y)(1 + ε).

Definition 2.2. An absolute approximation is an es-
timate 0 ≤ Z ≤ 1 such that

P (X = x|Y = y)− ε ≤ Z ≤ P (X = x|Y = y) + ε.

The proof of NP-hardness for relative approximation
follows directly from the proof for exact inference. Sat-
isfiability of the clause is determined whether Z = 0
or Z > 0, which is not influenced by the choice of ε.

Theorem 2.2. (Dagum & Luby, 1993) Absolute ap-
proximate inference in Bayesian networks is NP-hard.

The proof of NP-hardness for absolute approximation
starts with the reduction for exact inference as above,
representing the variables and clauses with the same
network and parameters. This time, one by one a
truth assignment is set for each Boolean variable vi,
and the corresponding node Vi is removed from the

network. The truth assignment for vi is determined
by the higher probability of P (Vi = T |Dm = T ) and
P (Vi = F |Dm = T ). However, if there exists an ef-
ficient approximate BN inference algorithm that can
guarantee to be within ε = 1

2 of the exact probability
on arbitrary Bayesian networks, this algorithm can be
used to efficiently determine satisfying truth assign-
ments to all Boolean variables of an arbitrary instance
of 3SAT. Furthermore, any approximation with ε ≥ 1

2
for a two-state node (the simplest case) is no better
than random guessing.

These proofs are for Bayesian networks, which apply
to the initial distribution of a CTBN. While the CTBN
and DBN are formulated differently, Cohn, El-Hay,
Friedman, and Kupferman (2010) prove that a DBN
becomes asymptotically equivalent to a CTBN as the
interval of time between timesteps approaches zero.
One might be tempted to argue that the Bayesian net-
work complexity proofs therefore apply to the CTBN.
However, it is not always clear that moving from a dis-
crete space to a continuous space preserves the com-
plexity results. For example, take the difference be-
tween linear programming and integer linear program-
ming, the former being solvable in polynomial time
with the latter being NP-hard. Thus, we prove the
complexity results for CTBNs explicitly.

3 EXACT INFERENCE IN CTBNS

We show that exact inference in CTBNs is NP-hard,
even when given the exact initial states, following a
similar reduction as the proof for BNs but using the
conditional intensity matrices of the CTBN instead of
the conditional probability tables. Figure 2 shows the



Figure 2: Network with conditional intensity matrices for example reduction from 3SAT to CTBN inference.

CTBN topology and conditional intensity matrices for
determining the satisfiability of the clause (v1 ∨ v2 ∨
v3) ∧ (¬v1 ∨ ¬v2 ∨ v3) ∧ (v2 ∨ ¬v3 ∨ v4).

Theorem 3.1. Exact inference in Continuous Time
Bayesian Networks is NP-hard even when given the
initial states.

Proof. The CTBN topology matches that of the BN
for representing variables and clauses, but the nodes
are specified differently. For each Boolean variable vi
in V , we add a corresponding three-state node Vi to
the network. The three states in order are True(T ),
False(F ), and Start(S), which is the initial state for
node Vi. We set the unconditional intensity matrix of
Vi to be

AVi =

 0 0 0
0 0 0
c/2 c/2 −c


for some constant c > 0.

For each clause Cj , we add a corresponding
True(T )/False(F ) node Cj to the network as a child
of the three nodes corresponding to its three Boolean
variables. As before, let wj be the clause correspond-
ing to the state of the three parents of Cj , and let
eval(wj) be the truth function for this clause. The
function eval is extended to return False whenever
the clause wj contains a node in state S. The condi-
tional intensity matrices of Cj are

ACj |eval(wj)=T =

(
0 0
c −c

)
and

ACj |eval(wj)=F =

(
0 0
0 0

)
.

We set the initial state of each Cj to be the F state
(the second row of the matrices).

Finally, for each clause Ck, we add a
True(T )/False(F ) node Dk. Each Dk is condi-
tionally dependent on Ck and on Dk−1 (except for
D1). The conditional intensity matrices for Dk are

ADk|eval(Ck∧Dk−1)=T =

(
0 0
c −c

)
and

ADk|eval(Ck∧Dk−1)=F =

(
0 0
0 0

)
.

As with the Cj nodes, we set the initial state of each
Dk to be the F state.

The conditional intensity matrices of the CTBN en-
force the logical constraints of the Boolean expres-
sion, replacing the conditional probability tables of the
Bayesian network. As before, a 3SAT instance of |V |
variables and |C| clauses generates |V |+ 2|C| nodes in
the corresponding CTBN. Each node still has no more
than three parents but now each intensity matrix has
9 or 4 entries, meaning that there is a maximum of
9|V | + 108|C| + 16(|C| − 1) + 8 conditional intensity
matrix entries for the entire network.

Let Dm(t) be the state of Dm at time t. The 3SAT
instance is satisfiable if and only if P (Dm(t) = T ) > 0
for any time t > 0. Assume that the Boolean expres-
sion is satisfiable by some combination of T/F state
assignments to the variables in V . The Vi nodes start
in the S state at time t = 0. The time that each vari-
able remains in S is exponentially distributed, after
which the variables transition to either T or F with
equal probability and remain in that state. There-
fore, there is a non-zero probability for each combi-



nation of T/F states in the Vi’s at t > 0. Whenever
three of these states satisfy a clause Cj , there is a
non-zero probability for Cj to transition from F to T
when t > 0. Likewise, once the parents of Dk are in
T there is a non-zero probability for Dk to transition
from F to T when t > 0. Thus, if the Boolean expres-
sion is satisfiable, there is a non-zero probability that
each each clause is satisfied at t > 0, and therefore
P (Dm(t) = T ) > 0. On the other hand, assume that
the Boolean expression is not satisfiable. Then there
exists some clause Cj that remains in F for all t > 0.
Therefore, Dk will remain in F for all k ≥ j, which
means that P (Dm(t) = T ) = 0 for all t ≥ 0.

4 APPROXIMATE INFERENCE IN
CTBNS

We prove similar results for approximate inference
with CTBNs as well.

Theorem 4.1. Relative approximate inference in
Continuous Time Bayesian Networks is NP-hard even
when given the initial states.

Proof. Because the determination is whether
P (Dm(t) = T ) = 0 or P (Dm(t) = T ) > 0, a
relative approximation for P (Dm(t) = T ) with any
error bound also gives a solution to the satisfiability
of the Boolean expression.

We now turn to the absolute approximation. Be-
cause even approximate inference in BNs is NP-hard,
it seems reasonable to suspect that a similar conclu-
sion also holds for approximate inference in CTBNs.
We now show how an absolute error approximation
algorithm for CTBNs can be used to find a satisfying
assignment to the Boolean expression or to determine
that it is not satisfiable.

Theorem 4.2. Absolute approximate inference in
Continuous Time Bayesian Networks is NP-hard even
when given the initial states.

Proof. We start by assuming that the expression has
at least one satisfying assignment. A satisfying truth
assignment can be found one variable at a time by
choosing t > 0 conditioning on Dm(t) = T . Let t′ ≥ t.

By construction, P (Vi(t
′) = S|Dm(t) = T ) = 0.

This is important, because it ensures that P (Vi(t
′) =

T |Dm(t) = T ) + P (Vi(t
′) = F |Dm(t) = T ) = 1.

Let a ∈ {T, F}, and let P̂ i
a denote the absolute error

approximation with ε for the probability P (Vi(t
′) =

a|Dm(t) = T ). Without loss of generality, assume that
Vi can be satisfied only when a = T . Then P (Vi(t

′) =
T |Dm(t) = T ) = 1 and P (Vi(t

′) = F |Dm(t) = T ) = 0.

Therefore, it must be that P̂ i
T > P̂ i

F whenever ε < 1
2 .

We compute both P̂ i
T and P̂ i

F and change the initial

state of Vi to T if P̂ i
T > P̂ i

F and to F otherwise. This
process continues for i = 1, . . . , |V | to determine truth
assignments for all variables in the Boolean expression.
Therefore, if there exists a polynomial-time approxi-
mation algorithm for CTBN inference with ε < 1

2 that
can condition on evidence, it can be used to solve arbi-
trary instances of 3SAT in polynomial time as well.

5 EMPIRICAL VALIDATION

We can empirically validate these theoretical results by
taking Boolean expressions and performing inference
in the corresponding CTBN. Specifically, we demon-
strate three Boolean expressions, listed as follows.

BE1 = (v1 ∨ v2 ∨ v3) ∧ (¬v1 ∨ ¬v2 ∨ v3)

∧(v2 ∨ ¬v3 ∨ v4)

BE2 = (v1 ∨ v1 ∨ v1) ∧ (¬v2 ∨ ¬v2 ∨ ¬v2)

∧(v3 ∨ v3 ∨ v3)

BE3 = (v1 ∨ v1 ∨ v2) ∧ (v1 ∨ v1 ∨ ¬v2)

∧(¬v1 ∨ ¬v1 ∨ v2) ∧ (¬v1 ∨ ¬v1 ∨ ¬v2)

Note that BE1 is the Boolean expression given as an
example earlier and with the CTBN shown in Figure 2.
A total of 10 out of its 16 possible truth assignments
satisfy the expression. Note that BE2 has a single
satisfying assignment and that BE3 is unsatisfiable.

To determine the satisfiability of each of these expres-
sions using the corresponding CTBN, we performed
forward sampling with 100,000 samples and c = 100
over the interval time [0, 0.2). We queried the propor-
tion of samples with which Dm(t) = T for t = 0 to
t = 0.2 in increments of 0.01. The results are shown
in Figure 3. For the two satisfiable expressions, BE1
and BE2, P (Dm(t) = T ) > 0 for t ≥ 0.01, while for
the unsatisfiable query BE3, P (Dm(t) = T ) = 0 for
all t ∈ [0, 0.2).

Also note the values to which the probabilities are con-
verging. For BE1, the probability ended at an esti-
mated 0.622, whereas the proportion of satisfying as-
signments is 10/16 = 0.625. For BE2, the probability
ended at an estimated 0.127, whereas the proportion
of satisfying assignments is 1/8 = 0.125. As the num-
ber of samples increases, the probabilities converge to
the proportion of satisfying assignments.

Next, we validate the approach through which an ap-
proximation of P (Vi(t) = T |Dm(t) = T ) is able to
determine a satisfying assignment to each Vi. Because
we are conditioning on evidence, we use importance
sampling (Fan et al., 2010) and smooth zero entries in
the unconditional intensity matrices with ±10−6. We



Figure 3: Empirical satisfiability results for the three
Boolean expressions.

Table 1: Empirical results for approximating
P (Vi(0.2) = T |Dm(0.2) = T )

V1 V2 V3 V4

BE1 ≈ 0.50 ≈ 0.60 ≈ 0.60 ≈ 0.60

BE2 1 0 1 -

BE3 NaN NaN - -

ignore samples with infinitesimal weights, as an in-
finitesimal weight implies that the corresponding sam-
ple contains a transition that violates the Boolean ex-
pression. The results with 100,000 samples are shown
in Table 1.

The table shows that the importance sampling al-
gorithm was correctly able to determine a satisfying
truth assignments to each variable or determine that
no truth assignments was possible. For BE1, by set-
ting v2, v3, and v4 to T , the Boolean expression is
satisfied regardless of the value of v1, which is why the
estimate was approximately 0.5, that is, either T or F
is equally probably for satisfying the expression. For
BE2, the importance sampling algorithm determined
the single satisfying truth assignment. For BE3, no
feasible samples could be generated because it is condi-
tioned on an impossible event Dm(0.2) = T , indicating
that the expression is unsatisfiable.

While we showed that we are able to solve these in-
stances of 3SAT by CTBN sampling methods, the
complexity is still exponential in the length of the
Boolean expression. To demonstrate this, we show the
average sample count necessary to determine the sat-
isfiability of the Boolean expression∧

i=1,...,n

(vi ∨ vi ∨ vi)

Figure 4: Sample complexity for CTBN inference.

for n = 2, . . . 9. Each expression has exactly one truth
assignment that satisfies it (all variables set to True).
We count the number of samples generated until we
have the first sample for which Dm(0.2) = T , making
P (Dm(0.2) = T ) > 0 and thus showing that the 3SAT
instance is satisfiable. For each number of variables,
we average the number of samples generated over 100
runs. The average sample counts along with confidence
intervals for α = 0.01 are plotted in Figure 4. The
log2 scale on the y-axis shows that the algorithm is
exponential in the length of the expression.

6 CONCLUSION

We have shown that exact and approximate inference
in CTBNs is NP-hard, even when given the initial
states. Thus, the difficulty of CTBN inference is found
not only in Bayesian network inference for calculating
the initial distribution, but also in accurately propa-
gating the probabilities forward in time. Given the
similar results with Bayesian networks, these results
are not surprising. However, as with Bayesian net-
works, further research may reveal special cases of the
CTBN, whether in their structures or their parame-
ters, which admit polynomial-time algorithms for ap-
proximate or even exact inference.
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