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Abstract
One of the common problems with clustering is
that the generated clusters often do not match
user expectations. This paper proposes a novel
probabilistic framework that exploits supervised
information in a discriminative and transferable
manner to generate better clustering of unlabeled
data. The supervision is provided by revealing
the cluster assignments for some subset of the
ground truth clusters and is used to learn a trans-
formation of the data such that labeled instances
form well-separated clusters with respect to the
given clustering objective. This estimated trans-
formation function enables us to fold the remain-
ing unlabeled data into a space where new clus-
ters hopefully match user expectations. While
our framework is general, in this paper, we fo-
cus on its application to Gaussian and von Mises-
Fisher mixture models. Extensive testing on 23
data sets across several application domains re-
vealed substantial improvement in performance
over competing methods.

1 INTRODUCTION

Presenting structured and organized views of data to users
is crucial for efficient browsing and locating relevant in-
formation. Unsupervised clustering techniques have been
widely used for discovering latent structures in unlabeled
data. Generative clustering models based on Gaussian,
von-Mises and Multinomial distributions have emerged as
the defacto methods for performing probabilistic cluster-
ing.
However, such clustering methods have a fundamental lim-
itation that they do not take into account the user expecta-
tions or preferences over different views of data. For ex-
ample, given a collection of news-stories, one user might
prefer to organize them by subject topics such as Politics,
Sports, Business, etc, while another user might prefer to
see the news-stories grouped by regions such as U.S., India,
China, etc. As another example, in a collection of speech

recordings, it is perfectly reasonable to cluster the record-
ings either by the content of the recording or by the speaker.
In both cases, clustering algorithms cannot tell which type
of clustering is preferable unless the user’s expectation is
effectively communicated to the system. This leads to two
challenging problems in clustering:

1. How can we effectively inject supervised information to
steer the clustering process towards user expectations?

2. If only some clusters identified by the user are available
as supervision, can the learned user expectations be ef-
fectively transferred from the observed clusters to aid in
the discovery of unobserved (new) clusters in data?

The first problem has been partially addressed by some
work in constrained clustering and distance metric learn-
ing, although not in sufficient depth (see Section 2). The
second problem, to our knowledge, has not been addressed
by any work so far. The second problem is particularly
important from a practical point of view because realisti-
cally users can only label a small set of clusters, whereas
the data keeps growing and new clusters are bound to show
up. Using a collection of news-stories as a concrete ex-
ample, if the user identifies three clusters U.S., India, and
China as the supervision, the system should learn that the
user is interested in region-based clustering and partition
the incoming unlabeled data by regions and discover other
new clusters such as Iraq, Japan, etc. In other words, we
want the system to generalize the learned user expectation
by modeling shared properties between the observed and
unobserved clusters.
This paper addresses both challenges by proposing a novel
probabilistic framework that assumes the existence of an
underlying transformation of data (that is common to the
observed and unobserved clusters) which reveals the true
user expectations on clustering. Using the supervision in
the form of labeled instances and true cluster labels for
some subset of groundtruth clusters, we estimate such a
transformation. Specifically, we define the transformation
function G in a discriminative manner that maximizes the
conditional probability of the cluster label given the trans-
formed instance. Once G is learned, we apply it to un-



labeled data for clustering in the next step. Because the
supervised information is propagated by means of a data
transformation we call our framework Transformation-
based Clustering with Supervision (TCS).
Our framework is flexible and can be applied to any proba-
bilistic clustering model as long as an appropriate transfor-
mation function G can be defined. In this paper, we explore
our framework with two widely used probabilistic cluster-
ing models which have different clustering objectives, the
Gaussian Mixture model (GM) (Bishop, 2006) and the von
Mises-Fisher Mixture model (VM) (Banerjee et al., 2006).
For GM, we define G to be a linear transformation whereas
for VM, G is a linear transformation followed by unit nor-
malization. For both the models we develop efficient opti-
mization algorithms to estimate G and related parameters.
We conducted thorough evaluations and tested our frame-
work on 23 data sets from different application domains
such as time-series, text, handwriting recognition, face
recognition, etc. We have observed substantial and consis-
tent improvement in performance (in five clustering met-
rics) over other competing methods.

2 RELATED WORK

There are two primary areas of related work that use su-
pervision to improve clustering of unlabeled data - Proba-
bilistic Constrained Clustering (PCC) and Distance Metric
Learning (DML).
PCC methods (Wagstaff et al., 2001; Basu et al., 2002) try
to inject supervision using a probabilistic generative model
for the instances. The instances X consists of both the la-
beled part XL,the unlabeled part XU and the cluster assign-
ments Z = {ZU ∪ ZL}. The observed cluster assignments
ZL ⊂ Z is used as supervision, i.e., the constraints. The
model parameters θ and the latent cluster assignments ZU
are estimated by maximizing the likelihood under the con-
straints as:

max
θ,ZU

logP (X|ZL,ZU ,θ) (1)

However, when the task is to detect previously unobserved
cluster, this optimization reduces to plain clustering. This
can be seen by rewriting the objective as a sum of the la-
beled objective (which is constant) and the unlabeled ob-
jective (which is just standard clustering) as:

max
θL

logP (XL|ZL,θL) + max
θU ,ZU

logP (XU |ZU ,θU )

Clearly, there is no learning nor transfer of information
from the observed clusters to the unobserved clusters.
There are other works in PCC where supervision is rep-
resented in the form of pairwise constraints instead of clus-
ter labels, i.e. the constraints are defined as whether two
instances should be put in the same cluster or not. These
methods optimize eq (1) with an additional penalty term
if the constraints are not obeyed. The penalty is intro-
duced in the form of priors (Lu and Leen, 2005), (Basu

et al., 2006) or explicitly modeled using some loss function
(Basu et al., 2004), (Bilenko et al., 2004). Despite the dif-
ferent variations in formulating the constraints, PCC meth-
ods (Wagstaff et al., 2001; Basu et al., 2002, 2004, 2006;
Lu and Leen, 2005) have the same fundamental limitation,
i.e., the supervised information from the observed clusters
is not used to reshape the discovery of unobserved clusters.
The clustering of the unlabeled part of the data reduces to
standard unsupervised clustering.
A natural extension of PCC that addresses some of its lim-
itations is to use a more Bayesian approach of sharing pa-
rameters across clusters. For example, one could use a
Gaussian mixture model where each cluster k has its own
mean parameter θk, but all clusters share a common covari-
ance matrix Σ. Here the covariance matrix serves as the
bridge to transfer information from the observed clusters
to the unobserved clusters. One can envision more sophis-
ticated models with common hyperpriors, e.g. a Gaussian
hyperprior for the means and an Inverse Wishart hyperprior
for the covariances. To our knowledge, such Bayesian re-
visions of PCC have not been studied in the context of dis-
covering new clusters in unlabeled data (which is the focus
of this paper). As we will show in our experiments (where
we implemented such a Bayesian PCC model as a base-
line), this way of sharing information is not as effective
as directly fitting for the cluster labels in the transformed
space, which we propose in the TCS framework.
In DML (Blitzer et al., 2005; Xing et al., 2002; Goldberger
et al., 2004) the objective is to learn a distance metric that
respects the supervision which is provided in the form pair-
wise constraints. More specifically, given a set of labeled
clusters, the distance metric is estimated such that it pulls
the within-cluster pairs towards each other and pushes the
cross-cluster pairs away from each other. DML methods
differ from each other in how the loss functions are de-
fined over the pairwise constraints, such as the hinge loss
(Blitzer et al., 2005), Euclidean-distance loss (Xing et al.,
2002), log loss (Goldberger et al., 2004), etc. DML has
been typically used in the context of nearest-neighbor clas-
sification but not in the context of discovering unobserved
clusters. We argue that existing DML methods have two
problems w.r.t to discovering unobserved clusters: Firstly,
DML optimizes for pairwise distances and is therefore ‘un-
aware’ of the clustering criterion (the objective function for
clustering) used. This can lead to overfitting, for example,
even if the data is optimally clustered, DML would still try
to increase inter-cluster distances and decrease intra-cluster
distances. Secondly, optimizing for different loss functions
(e.g., hinge loss or Euclidean loss) do not necessarily yield
a metric that is also optimal for clustering. Explicitly fitting
for the cluster-labels that also achieves the optimal cluster-
ing objective without resorting to surrogate measures like
pairwise constraints is the fundamental difference between
our TCS models and other DML methods.
Indirectly related to this paper are a few works in discrim-



Table 1: Likelihood at Local optimum reached by EM vs Likeli-
hood of ground-truth. The Local optimum is better !

Algorithm→ GM VM

Local optimum -18115 4.09965e+09
Groundtruth -18168 4.09906e+09

inative clustering (Krause et al., 2010), (Xu et al., 2004)
and constrained spectral clustering (Rangapuram and Hein,
2012), (Wang and Davidson, 2010), (Lu and Carreira-
Perpinán, 2008). These former methods use a discrimina-
tive objective like that of SVM for clustering, however, can-
not handle supervision. The latter methods incorporate su-
pervision in a spectral clustering framework, but however,
cannot scale beyond a few thousands of instances, cannot
produce probabilistic cluster memberships and do not di-
rectly optimize for the class-labels. A thorough discussion
of the drawbacks of spectral clustering framework is how-
ever beyond the scope of this paper (see (Nadler and Galun,
2007) and reference therein). It is also worth mentioning
that some other work like (Joulin et al., 2010), (Finley and
Joachims, 2005) reformulate the classification problem as
a clustering one, but however cannot discover previously
unobserved clusters in data.

3 PROPOSED MODEL (TCS)

Any typical clustering task involves making at the least two
assumptions - number of clusters (or the prior parameters
if using Bayesian non-parameterics) and the distance mea-
sure, both of which determine the type of clusters gen-
erated. The distance measure in a probabilistic cluster-
ing framework is determined by the choice of the distri-
bution for e.g. Euclidean corresponds to Gaussian, cosine-
similarity corresponds to von Mises-Fisher etc. Typically,
the user’s subjective choice of the probability distribution
does not match the ground-truth and the generated clusters
do not match user expectations.
To demonstrate this, we ran two popular clustering algo-
rithms - the Gaussian Mixture model (GM) and the von
Mises-Fisher mixture model (VM), which use different
probability distributions and optimize different likelihoods,
on the 20newsgroups dataset 1 with 20 clusters using the
EM algorithm. We compared the likelihoods (the cluster-
ing objective) of the algorithms under two settings,

1. The likelihood at a local optimum reached by EM 2.

2. The likelihood when the true labels are given, i.e.
cluster assignments fixed to the ground-truth.

As table 1 shows, the likelihood obtained at a local opti-
mum is better than groundtruth - the groundtruth is subop-
timal ! The clustering algorithm is optimizing for some-
thing else other than groundtruth. This means that the user
1qwone.com/ jason/20Newsgroups/
2The EM algorithm was intialized with the ground-truth cluster
assignments

expected clusters can never be recovered. This is a clear
case of mismatch between what the user expects and the
user specified probability distribution.
To address this issue, we propose to transform the data into
another space where the instances are indeed distributed ac-
cording to user expectations. We use the supervised infor-
mation to estimate such a transformation i.e. we estimate a
transformation function G in a discriminative manner that
maximizes the likelihood of observing the given labels (not
the data) in the transformed space.
More formally, we are provided supervised training data
from K clusters, S = {xi, ti}Ni=1 where xi ∈ X , ti ∈
{1, 2...K} and unlabeled examples U . For convenience de-
fine yik = I(ti = k). Given a probabilistic generative model
using a mixture of K distributions {f(x|Ck)}Kk=1 where Ck
denotes the parameters of cluster K , we estimate G as,

argmax
G

logP (Y|Cmle(G), G(X))

where Cmle(G) = argmax
C

P (G(X)|C,Y),

P (Y|G(X),Cmle(G)) =

N∏
i=1

K∏
k=1

 f(G(xi)|Cmlek (G))
K∑
k′=1

f(G(xi)|Cmlek′ (G))


yik

Here Cmle denotes the maximum likelihood estimates of
the cluster parameters in the transformed space i.e the clus-
ter parameters that best explain the transformed data. G on
the other hand is estimated by maximizing the conditional
likelihood of the cluster-labels given Cmle i.e. the transfor-
mation that best explains the cluster-labels. Together this
ensures that we learn G such that the optimal cluster pa-
rameters Cmle also optimally fit the cluster-labels Y. The
transformation G is then applied to U thereby folding it
into a space where hopefully the user specified distribution
f(x|C) matches user expectations.
Unlike typical clustering algorithms, our TCS framework
has a learning component as well i.e. we learn how to
discover unobserved clusters from supervision. Since any
learning algorithm has chances of overfitting, we add an
additional regularization term. Together,

[OPT1] max
G,C

logP (Y|C(G), G(X))− γλ(G)

s.t ∂ logP (G(X)|C,Y)

∂C = 0

where γ is the regularization parameter and λ is the regular-
ization function. Note that the second constraint is another
way to say C is the MLE estimate of G(X). In the fol-
lowing subsections, we discuss how to estimate G with two
choices for f(x|Ck) - Gaussian and von Mises-Fisher 3.

3The supplementary material also discusses the extension to
Gamma distributions



3.1 TCS WITH GAUSSIAN MIXTURES

We define a simple mixture of K Gaussians with unit vari-
ance and cluster means {θk}Kk=1 over RP where

f(x|θk) =
1√
2π

exp(−‖x− θk‖2)

The transformation function is defined as G(x) = Lx, a
linear transformation using matrix L ∈ RP×P . The param-
eters {θk}Kk=1 and transformation L is estimated by solving
OPT1. Note that the constraint in OPT1 can be written in
closed form,

[OPT1] max
G,C

logP (Y|θ, LX)− γλ(G)

s.t θk =
1

nk

N∑
i=1

yikLxi ∀k

where nk denotes the number of instances assigned to clus-
ter k. If mk denotes the mean of instances assigned to clus-
ter k, then OPT1 can be rewritten as,

[OPT1] max
G,C

logP (Y|θ, LX)− γλ(G)

s.t θk = Lmk ∀k

The conditional probability of yik given the transformed
instance Lxi is,

P (yik = 1|θk, Lxi) =
e−

1
2
(Lxi−θk)>(Lxi−θk)

K∑
k′=1

e−
1
2
(Lxi−Lθk′ )>(Lxi−Lθk′ )

Letting θk = Lmk and defining dik = xi −mk,

P (yik = 1|θk, Lxi) =
e−

1
2
dikL

>Ldik

K∑
k′=1

e−dik′L>Ldik′

By reformulating OPT14 as an optimization problem in
terms of A = L>L, we have a convex semidefinite pro-
gram,

min
A

F (A) = γλ(A) +

N∑
i=1

K∑
k=1

yik
2
d>ikAdik +

N∑
i=1

log

(∑
k′

e−
1
2
d>
ik′Adik′

)
s.t A � 0 where dik = (xi −mk)

We tried different choices for λ(A),

1. ‖A− I‖2 (Frobenius Norm from Identity)

2. ‖A‖22 (Frobenius Norm from zero)

3. ‖A‖∗ (Nuclear Norm)

4. trace(A)− log(det(A)) (Log-det divergence)

5. ‖A− I‖1 (Entrywise-L1 Norm)

4Due to the lack of space, we defer the detailed derivations to the
supplementary material.

Algorithm 1 Accelerated gradient descent for TCS-GM.
1: Input: {X,Y}, step-length sequence St
2: Initialize: Define Ht = I, βt = 1

3: while not converged do
4: At = PSD(Ht − st∇F (Ht))

5: βt+1 =
1+
√

1+4β2
t

2

6: Ht+1 = At +
βt−1
βt

(At −At−1)

7: end while
8: Output: At
9: PSD denotes projection to the positive semidefinite

cone

Different regularizers favor different kinds of linear trans-
formations, for e.g., Nuclear norm (Ma et al., 2011) favours
lower rank solutions, Entrywise-L1 norm favours sparser
transformations, the log-det regularlizer also prefers lower
rank solutions but penalizes sum of log of eigenvalues in-
stead (Davis et al., 2007) etc.
For differentiable regularizers, the optimization can be
solved using projected gradient descent where we take
a step along the direction of the negative gradient (with
the stepsize determined by backtracking line search) and
then project the update back into the positive semidefinite
cone. We observed that we could significantly improve
the speed by using accelerated gradient descent (Beck
and Teboulle, 2009) instead (Algorithm 1). For the non-
differentiable regularizers we can use projected subgradi-
ent instead. These algorithms provably converge to the op-
timal solution if the step size is appropriately set (Boyd and
Vandenberghe, 2004). The gradient of the objective can be
succintly written as,

∇F (A) = γλ′(A) +

N∑
i=1

K∑
k=1

(yik − pik(A))dikd>ik

where pik(A) = P (yik|Lxi, θk)

We found that our customized parallel solver using accel-
erated projected gradient descent worked much faster than
existing SDP solvers. The solution in A recovers L upto
any rotation matrix. This is because A = L>L can always
be rewritten using A = L>(Q>Q)L, for any rotation ma-
trix Q−1 = Q>. However rotating the data corresponds to
changing the basis and does not affect the clustering algo-
rithm.
Note that A is very different from the seemingly similar
covariance matrix of a Gaussian distribution. Firstly, unlike
the covariance matrix, A is not parameter of the distribution
and does not make the distribution sum to 1. Secondly,
covariance matrices are typically estimated by maximizing
P (X|Y), this includes supervised versions such as linear
discriminant analysis (LDA) and Fisher LDA (Hastie et al.,
2009). The transformation matrix A on the other hand, is
optimized to fit the labels P (Y|LX, θ). Unlike LDA,A does
not have a closed form solution.



Algorithm 2 Optimizing L, {µk}Kk=1 for TCS-VM.
1: Input: {X,Y}, T iterations
2: Initialize: L
3: for t = 1, ..T do

4: update µk =

N∑
i=1

yikni

‖
N∑

i=1
yikni‖

where ni =
Lxi
‖Lxi‖

5: update L = argminL

γλ(L)+
N∑
i=1

K∑
k

yik

[
x>i L

>µk

‖Lxi‖
− log

(
K∑
j=1

exp(
x>i L

>µj

‖L>xi‖
)

)]
6: end for

3.2 TCS WITH VON-MISES FISHER MIXTURES

The von Mises-Fisher (vMF) distribution defines a proba-
bility density over points on a unit-sphere. It is parameter-
ized by mean parameter µ and concentration parameter κ,
the former defines the direction of the mean and the latter
determines the spread of the probability mass around the
mean. The density function over X ≡ {x : ‖x‖ = 1, x ∈
RP }, is given by

f(x|µ, κ) = κ(.5P−1)

(2π).5P I.5P−1(κ)
exp(κµ>x)

where Iν(a) is the modified bessel function of first kind
with order ν and argument a.
As in the Gaussian mixtures case, we consider a mixture of
K vMF distributions with mean parameters {µk}Kk=1 and a
single concentration parameter κ. Since the support of vMF
is only over the unit-sphere, any transformation function
should ensure the transformed space still lies on the unit-
sphere. Therefore we define the transformation function
G as a linear transformation with matrix L ∈ RP×P with
normalization,

G(x) =
Lx

‖Lx‖

With this transformation function, the optimization prob-
lem OPT1 is a non-convex function in L. Note that the clus-
ter mean parameters {µk}Kk=1 have a closed form expres-
sion for the MLE estimate in terms of L and X. However
unlike the GM case, we do not recommend substituting it
into the objective of OPT1 as it leads to computationally
intensive expressions. We instead resort to an alternating
optimization between µk’s and L as shown in Algorithm 2.
The optimization step in line 5 is nonconvex in L and can
solved using gradient descent to converge to a locally op-
timal solution. We found that in practice it worked fine.

4 EXPERIMENTS

4.1 METHODS FOR COMPARISON

We conducted an extensive empirical study of our proposed
framework against several competing methods. We tested,

1. GM The simple Gaussian Mixture where the data is as-
sumed to be generated from a mixture of K Gaussians
with individual means and a single common variance
parameter. All parameters are estimated using EM algo-
rithm. Note that this model is unsupervised and cannot
use supervision.

2. TCS-GM Our proposed TCS using Gaussian mixture
model (section 3.1) and ‖A − I‖2 regularization, fol-
lowed by GM on the linearly transformed unlabeled
data.

3. TCS-GM-L2 Our proposed TCS using Gaussian mix-
ture model and plain ‖A‖2 regularization, followed by
GM on the linearly transformed unlabeled data.

4. LMNN (Weinberger and Saul, 2009) One of the most
popular local distance metric learning methods that uses
hingeloss to push and pull target neighbors. To ensure
competitive performance, the number of target neigh-
bors was set to high value - 50. This is followed by GM
on the linearly transformed unlabeled data. Note that
LMNN is a stronger baseline than other DML methods
like Relevant Component Analysis (Shental et al., 2006),
Neighborhood Component Analysis (Goldberger et al.,
2004), Linear Discriminant Analysis (Fisher, 1936), etc.

5. PCC (Bilenko et al., 2004) A popular probabilistic con-
strained clustering framework. We used a common co-
variance matrix for all clusters to ensure transfer of in-
formation from known to unknown clusters.

6. Bayesian We implemented a Bayesian Gaussian mix-
ture model as an additional baseline, where all the clus-
ter means are drawn from a Normal hyperprior and all
clusters share a single covariance matrix. We also tried
other variants such as cluster-specific covariance matri-
ces with a shared Inverse Wishart hyperprior, but it did
not yield any appreciable improvements. We used the
familiar constrained EM algorithm (Basu et al., 2002) to
derive point estimates for the unknown parameters.

7. CSP (Wang and Davidson, 2010) A representative spec-
tral clustering method that can handle supervision in the
form of constraints. We use the author recommended
method of representing the unlabeled instances with top
k (where k is the number of clusters) dimensions gener-
ated by the algorithm followed by GM.

We also tested the vMF-based models but due to lack of
space we discuss only a part of the results in Section 5.2.1.
We defer the complete set of vMF-based results to the sup-
plementary material.

4.2 DATASETS

We tested our framework on 23 datasets (Table 2) from var-
ious application domains including timeseries, text, speech,
images,etc. A thorough description of the datasets and the
details of the feature extraction process is given in the sup-
plementary material.



Table 2: A list of datasets used along with their characteristics.
Domain Dataset #Instances #Dimension #Classes

Time-series Australian Signs (Aussign) 2565 352 95
Character Trajectory (Char) 2858 192 20
Digital Sports Activity (DSPA) 152 1440 19
Libras 360 90 15

Text CNAE 1079 856 9
K9 2340 21839 20
TDT4 622 8895 34
TDT5 6355 20733 125

Handwritten Characters Penbased Recognition (Penbased) 10992 16 10
Letter Recognition (Letter) 20000 16 26
USPS 9298 1984 10
Binary Alpha Digits (Binalpha) 1404 2480 36
Optical Recognition (Optrec) 5620 496 10
MNIST 70000 6076 10

Faces AT&T faces 400 19964 40
UMIST 575 10304 20
Faces96 3016 19375 151
Labeled Faces in Wild (LFW) 29791 4324 158

Speech Isolet 7797 617 26
Wall Street Journal (WSJ) 34942 25 131

Other datasets Image 2310 18 7
Vowel 990 10 11
Leaves 1599 192 100

As in any matrix learning method, for high dimensional
datasets, learning (or even storing) a full matrix L is com-
putationally intensive. Previous literature have identified
three ways to tackle this issue,

1. Learn a diagonal L instead of full matrix L. This drasti-
cally improves the scalability, but at the cost of flexibil-
ity in the set of transformations (Weinberger and Saul,
2009).

2. Directly learn a low rank transformation, i.e. L ∈ Rr×P

where r � P instead of a full rank matrix. However, the
optimization problem now becomes nonconvex in terms
of this low rank L (see (Journée et al., 2010)).

3. Reduce the dimension of the data using Singular Value
Decomposition (SVD), followed by learning a full rank
matrix on the low dimensional data.

In our experiments, we found that solution (3) worked best.
Specifically, dimension reduction using SVD actually im-
proved the clustering performance on multiple datasets
since it removes the intrinsic noise in the data. This is
agreement with several observations in practice (Zha et al.,
2001), (Drineas et al., 2004) and in theory (Ding and He,
2004),(Kannan et al., 2004). Therefore, on datasets with
more than 200 dimensions, we used SVD to fold the data
into a 30 dimensional space. Refer supplementary material
(sec 9.1) for detailed experiments on how SVD improves
clustering.

4.3 EXPERIMENTAL SETTINGS

For all the experiments, we consider the class-labels as-
sociated with the data to be the user expected groundtruth
clusters. We randomly partitioned the classes into three sets
- training, validation and testing. The methods TCS-GM,
TCS-GM-L2 and LMNN use the validation set for tuning
the regularization parameter. Note that CSP could not scale
on datasets with more than 5000 instances. All the results
are reported only on the test-set.
We assume the number of clusters in the unlabeled data is
always known, if not, well established techniques like AIC
or BIC can be used (finding the right number of clusters is
a separate problem that we will not focus on).
We used five clustering metrics for evaluations - Normal-
ized Mutual Information (NMI), Mutual Information (MI),
Rand Index (RI), Adjusted Rand Index (ARI) and Purity
(refer supplementary material for definitions). All results
are averaged over 50 different restarts with Kmeans++ ini-
tialization (Arthur and Vassilvitskii, 2007).

5 RESULTS

We present three sets of results that answer the following
questions,

1. Does supervision help in clustering better ?
2. By how much do the different methods exploit this

supervision ?
3. How does the amount of supervision affect the quality
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Figure 1: (a) Data from of a mixture of six bimodal Gaussians, (b) Clusters generated by GM on raw data. The generated
clusters do not match ground-truth. (c) Clusters generated by TCS-GM. The generated clusters match ground-truth

of clusters generated ?

5.1 ANALYSIS ON SYNTHETIC DATA

First, we show how supervision can be helpful using a
small synthetic dataset. We generated data from a mix-
ture of six clusters, where each cluster is a bimodal Gaus-
sian distribution. The clusters lie along the x-axis, where as
the modes of the Gaussians are stretched out on the Y-axis
(Figure 1a). These are the clusters the user expects to see
in the data.
Consider the task of clustering the raw data from first 3
clusters - the darkblue, cyan and purple clusters. Without
any supervision, using unsupervised GM results in a clus-
tering show in Figure 1b. Clearly there is confusion be-
tween clusters 2 and 3 and the user expectations are not
met. On the other hand, if we use TCS-GM with clusters
4, 5, 6 as supervision, we learn a transformation that suc-
cessfully captures user expectations i.e. the transformation
simply collapses all points to the X-axis. When we apply
this learnt transformation to the raw data and cluster using
GM, we can accurately recover the ground-truth (Fig 1c)

5.2 PERFORMANCE ON REAL-WORLD DATA

Due to lack of space, we report the results only using the
NMI metric (the supplementary material contains detailed
results using all metrics). Table 3 reports the results of the
all supervised and unsupervised models. We defer the re-
sults of the vMF-based methods to Section 5.2.1. The re-
sults show that our proposed TCS-GM and TCS-GM-L2
achieve the best performance in 19 out of the 23 datasets.
We now discuss the results from each domain.
In the time-series domain, Aussign and Libras are sign-
language datasets where each instance represents hand-
movement over time, DSPA is a human activity recogni-
tion dataset where each instance is a human performing
one of many predefined actions such as walking, running,
etc, Char is a handwriting recognition dataset where the
instances are (x, y) co-ordinates of pen-tip velocity over
time. For all these datasets, the instances are represented
as a sequence of vectors (sensor measurements) over time

and the goal is to cluster the instances by the associated
classes i.e. handsign (Aussign, Libras) or activity (DSPA)
or character (Char). To represent each instance as a fixed
dimesional vector, we used fast fourier transform to extract
the first several high-frequency components of each feature
and concatenated them. In this domain TCS-GM-L2 per-
forms the best by showing a 14.2% average improvement
over unsupervised GM, followed by TCS-GM with a 9.6%

average improvement.
CNAE, K9, TDT4, TDT5 are popular text datasets for clas-
sification and clustering (Banerjee et al., 2006). We used
the standard bag-of-words with ‘ltc’ term-weighting 5. On
all datasets, only TCS-GM and CSP show any improve-
ment at all. The rest are mostly negatively impacted by
supervision. The improvement of TCS-GM is higher than
that of CSP.
In the handwritten characters domain (Penbased, Letter,
USPS, Binalpha, Optrec and MNIST) each instance is an
image-representation of a single character and the task is
to cluster the instances characterwise. For feature repre-
sentation, on the latter four datasets, we used histogram
of oriented gradients (HOG) (Srikantan et al., 1996) rep-
resentation with a patchsize of 2 across 9 different ori-
entations. Penbased and Letter datasets have predefined
set of features such as mean pixel value, edgewise mean,
etc. Performance wise, TCS-GM and TCS-GM-L2 achieve
the best performance, TCS-GM seems to be more suited
to HOG-based features whereas TCS-GM-L2 works better
with pixel-based statistical features.
In the face clustering tasks (AT & T, Umist, Faces96 and
LFW) each instance is an image of a single person’s face
and the task is to cluster the instances by faces. We rep-
resented each instance using HOG features extracted from
the image in 9 orientations and varying patchsizes. Both
TCS-GM-L2 and LMNN show competitive performance in
this task. However, we believe that all datasets except LFW
are highly contrived - the images on these other datasets
were taken in ideal lighting and posing conditions. The

5http://nlp.stanford.edu/IR-book/html/htmledition/
document-and-query-weighting-schemes-1.html



Table 3: The NMI of the various supervised and unsupervised methods on unnormalized data. The percentage improvement
over the unsupervised GM baseline is given in paranthesis. The results of the significance tests between the best method
against the other methods on each dataset is denoted by a † for significance at 1% level. NS denotes the method could not
be scaled to the dataset.
Domain Dataset Supervised Learning Method Unsupervised

TCS-GM TCS-GM-L2 LMNN PCC BP CSP GM
Time series Aussign 0.89† (8.9%) 0.93† (13.2%) 0.94 (14.7%) 0.78† (-5.1%) 0.84† (2.6%) 0.71† (-13.5%) 0.82†

Char 0.75† (9.5%) 0.75 (9.8%) 0.67† (-2.3%) 0.69† (0.4%) 0.74† (7.3%) 0.59† (-14.5%) 0.69†

DSPA 0.69† (1.0%) 0.73 (8.3%) 0.60† (-11.9%) 0.67† (-1.5%) 0.64† (-5.3%) 0.71† (4.6%) 0.68†

Libras 0.61† (18.7%) 0.64 (25.4%) 0.50† (-2.7%) 0.60† (17.0%) 0.59† (15.6%) 0.45† (-11.7%) 0.51†

Avg Improvement 9.5% 14.2% -0.6% 2.7% 5.0% -8.04%

Text CNAE 0.61 (25.4%) 0.24† (-50.7%) 0.31† (-35.3%) 0.43† (-11.1%) 0.48† (-0.8%) 0.59† (21.7%) 0.48†

K9 0.58 (3.6%) 0.41† (-27.8%) 0.38† (-33.2%) 0.56† (0.2%) 0.51† (-9.1%) 0.58 (3.4%) 0.56†

TDT4 0.91 (0.8%) 0.69† (-23.3%) 0.90 (0.2%) 0.89† (-0.8%) 0.89† (-0.4%) 0.87† (-2.7%) 0.90†

TDT5 0.70 (0.6%) 0.69 (0.4%) 0.68† (-2.5%) 0.69† (0.0%) 0.69 (0.3%) NS 0.69

Avg Improvement 7.6% -25.3% -17.7% -2.9% -2.5% -

Handwritten Penbased 0.56† (6.5%) 0.60 (15.7%) 0.57† (9.4%) 0.40† (-23.2%) 0.49† (-6.7%) NS 0.52†

Characters Letter 0.48† (36.2%) 0.50 (43.6%) 0.43† (23.6%) 0.27† (-24.5%) 0.37† (6.3%) NS 0.35†

USPS 0.84 (3.7%) 0.46† (-44.2%) 0.79† (-3.7%) 0.81† (-1.0%) 0.79† (-3.6%) NS 0.81†

Binalpha 0.79 (10.4%) 0.70† (-2.2%) 0.70† (-2.2%) 0.72† (0.8%) 0.68† (-5.4%) 0.67† (-7.2%) 0.72†

Optrec 0.94 (2.6%) 0.73† (-20.3%) 0.91† (-0.8%) 0.86† (-5.3%) 0.91† (0.2%) NS 0.91†

MNIST 0.84 (1.4%) 0.70† (-15.5%) 0.72† (-13.6%) 0.55† (-33.4%) 0.74† (-10.7%) NS 0.83†

Avg Improvement 10.1% -3.8% 2.1% -14.4% -3.3% -

Faces AT & T 0.84† (1.1%) 0.88 (5.4%) 0.84† (1.0%) 0.82† (-1.4%) 0.85† (2.2%) 0.78† (-6.1%) 0.83†

Umist 0.59† (6.1%) 0.74† (33.4%) 0.79 (43.0%) 0.57† (2.7%) 0.56† (1.6%) 0.48† (-13.2%) 0.55†

Faces96 0.92† (4.1%) 0.93† (4.9%) 0.94 (6.0%) 0.89† (0.1%) 0.89† (0.9%) 0.81† (-8.4%) 0.89†

LFW 0.39† (36.1%) 0.41 (45.6%) 0.33† (16.1%) 0.31† (9.5%) 0.30† (4.2%) NS 0.28†

Avg Improvement 11.9% 22.3% 16.5% 2.7% 2.2% -

Speech Isolet 0.83 (2.2%) 0.80† (-2.5%) 0.81† (-0.5%) 0.75† (-8.5%) 0.83† (1.6%) NS 0.82†

WSJ 0.81 (46.5%) 0.81† (46.1%) 0.81† (45.9%) 0.52† (-6.1%) 0.71† (27.4%) NS 0.56†

Avg Improvement 24.3% 21.8% 22.7% -7.3% 14.5% -

Other datasets Image 0.84 (7.2%) 0.40† (-48.8%) 0.49† (-36.5%) 0.60† (-22.9%) 0.70† (-10.4%) 0.75† (-4.5%) 0.78†

Vowel 0.41 (63.6%) 0.39† (55.7%) 0.35† (36.8%) 0.14† (-46.6%) 0.23† (-7.1%) 0.22† (-13.2%) 0.25†

Leaves 0.82† (5.9%) 0.82† (5.7%) 0.85 (9.5%) 0.77† (-1.4%) 0.81† (4.8%) 0.73† (-6.4%) 0.78†

Avg Improvement 25.6% 4.2% 3.2% -23.7% -4.2% -4.2%

LFW dataset, on the other hand, represents a more realistic
distribution of images as found on the web. On this dataset,
TCS-GM-L2 works best with a 45.6% improvement.
In the speech domain, we tested on two datasets Isolet,
WSJ. In Isolet the task is to cluster the instances by the con-
tent of the speech (more specifically the letter uttered) and
in WSJ the task is to cluster by the speaker. The instances
are represented using well known audio features such as
MFCC’s. On both datasets TCS-GM achieves the best per-
formance. The results on WSJ particularly highlight the
importance of having supervision with a 46% improvement
over unsupervised GM.
Image, Vowel and Leaves are other popularly used classi-

fication datasets. The instances in Image and Leaves are
pictures of outdoor scenes and leaves, whereas in Vowel
the instances are various utterances of different vowels. On
two out of the three datasets, TCS-GM achieves the best
results.
To further validate our results, we conducted two-sided
significance tests using paired t-test between the best-
performing method against the rest of the methods on each
dataset. The NMI on the 50 different restarts are consid-
ered as observed samples. The null hypothesis is that there
is no significance difference between the methods. The re-
sults of the testing (Table 3) show that almost all the results
are significant.



Table 4: The NMI of TCS-VM with other supervised and unsupervised methods on normalized data. The results of the
significance tests between the best method against the other methods on each dataset is denoted by a † for significance at
1% level.
Domain Dataset Supervised Learning Method Unsupervised

TCS-VM TCS-GM TCS-GM-L2 LMNN PCC BP CSP VM GM
Text CNAE 0.905 0.678† 0.678† 0.692† 0.557† 0.462 † 0.588† 0.857† 0.669†

K9 0.638 0.621† 0.443† 0.485† 0.617† 0.584† 0.589† 0.615† 0.616†

TDT4 0.933 0.916† 0.755† 0.929† 0.914† 0.911† 0.870† 0.930† 0.915†

TDT5 0.781 0.750† 0.746† 0.707† 0.750† 0.756† - 0.766 † 0.755 †
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Figure 2: Effect of amount of supervision on the quality
of clusters. We plot the improvement in NMI achieved by
TSC-GM over baseline GM as we increase the number of
training clusters.

5.2.1 PERFORMANCE OF vMF-BASED
METHODS

Due to lack of space we present the results of vMF-based
models only in the text domain. Normalization to a unit
sphere has often shown to work very well for text data, es-
pecially vMF-based models have been particularly effec-
tive in generating good clusters (Banerjee et al., 2006). We
compare the following vMF-based methods on text data,

1. VM A mixture ofK vMF distributions with individual
means and a single common concentration parame-
ter. All parameters are estimated using EM algorithm.
Note that this model like GM is unsupervised and can-
not use supervision.

2. TCS-VM Our proposed TCS using vMF mixture
model (section 3.2) and ‖A − I‖2 regularization, fol-
lowed by VM on the transformed unlabeled data.

For data representation, we used the bag-of-words with
‘ltc’ term-weighting and svd-based dimension reduction to
30 dimensions, followed by a normalization to unit-sphere.
The results are shown in Table 4. For an informative com-
parison we also included the results of the other methods -
TCS-GM, TCS-GM-L2, LMNN, PCC, BP, CSP and GM.
On all text datasets the proposed TCS-VM model performs
best. In the complete set of results for all domains for nor-
malized data (presented in the supplementary material), our

proposed TCS models achieve the best performance in 20
out of the 23 datasets.

5.3 EFFECT OF AMOUNT OF SUPERVISION

We analyze how the quality of clusters generated depend
on the amount of supervision provided. We used a subset
of the WSJ dataset with 25 training and 25 testing clusters
for this task.
Figure 2 plots the improvement in NMI achieved by TCS-
GM over baseline GM as we increase the number of train-
ing clusters. Initially there is no improvement in perfor-
mance, but as training clusters increase, there is a gradual
improvement in performance, until it reaches a saturation
level. This shows that (a) there is some minimum amount
of supervision needed to see any improvement (b) provid-
ing more supervision does not increase performance indef-
initely but saturates at certain level. This kind of curve is
typical of most machine learning algorithms.

6 CONCLUSION

In this paper we proposed a novel framework that can ex-
ploit supervision to generate better clustering of unlabeled
data. By learning a common underlying transformation
function, our framework is able to successfully generalize
the observed clusters to discover new clusters that match
user expectations. We explored two instantiations of our
framework with Gaussian and von Mises-Fisher mixture
models. For both the models we developed fast optimiza-
tion alorithms to estimate the model parameters. Our ex-
tensive testing on 23 datasets provide strong empirical sup-
port in favour of our proposed framework. In future, we
would like to adapt our framework to spectral clustering
based methods.
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