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Abstract

Given a set of n elements and a corresponding
stream of its subsets, we consider the problem
of selecting k elements that should appear in
at least d such subsets arriving in the “near”
future with high probability. For this min-d-
occur problem, we present an algorithm that
provides a solution with the success proba-

bility of at least 1 − O
(
kd logn
D + 1

n

)
, where

D is a known constant. Our empirical obser-
vations on two streaming data sets show that
this algorithm achieves high precision and re-
call values. We further present a sliding win-
dow adaptation of the proposed algorithm to
provide a continuous selection of these ele-
ments. In contrast to the existing work on
predicting trends based on potential increase
in popularity, our work focuses on a setting
with provable guarantees.

1 Introduction

Consider a set Sn of n elements. When different
sets St ⊆ Sn are being observed at time t and may
not be analyzed at a later time, we refer to these
sets as streaming sets. This formulation of stream-
ing sets is ubiquitous at least in the analysis of net-
work traffic (Edwards et al., 1997), query logs (Gol-
bandi et al., 2013), and social media (Mathioudakis
and Koudas, 2010), where these sets arrive rapidly.
Analyzing these streaming sets to identify historical
patterns and predict future trends has been exten-
sively studied for diverse applications including de-
tection of intrusions (Lee et al., 2000), disease out-
break (Achrekar et al., 2011), and viral content (Weng
et al., 2013). These works primarily focus on the recall
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and the earliness of these predictions. As a result, they
are useful for detecting outliers and arranging for pre-
ventive measures (Lamb et al., 2013). However, with-
out any lower bound on the obtained precision values,
these approaches are ineffective when the false posi-
tives may have significant cost associated with them.

Precise predictions are necessary for several planning
applications such as resource allocation. For instance,
accurate estimates of future traffic may help optimize
routing to reduce network latency (Padmanabhan and
Mogul, 1996). Similarly, accurate estimates of search
query volume may help advertisers optimize marketing
budget while bidding for key phrases on a search en-
gine (Jansen and Mullen, 2008). To this end, we study
the problem of making these predictions only when we
can guarantee a minimum probability of success before
the time horizon ∆. We define this problem formally
as follows.

Definition 1. Min-d-occur. Given a stream of sets
St ⊆ Sn arriving at time t, min-d-occur(Sn,∆,k) se-
lects at most k elements {y1, y2, . . . , yk} ∈ Sn at time
τ such that each of these yj appears at least d number
of times in {Sτ+1, · · · , S∆} with probability close to 1.

Note that a solution to this problem may select fewer
than k elements when the criterion for the probabilistic
guarantee is not met. The constant ∆ depends on the
requirements of the application domain, which can be
understood through an illustrative example as follows.
Consider a stream of queries issued to a search engine
that may be arriving at a rate of one million queries
per second. Choosing ∆ close to 100K would corre-
spond to making the predictions about occurrences in
the next 100 milliseconds. The choice of the parameter
d depends on the characteristics of the stream of sets
and determines the effectiveness of the solution. For
the stream of queries, let us assume that we wish to
track a set of 50 popular queries (i.e., n = 50), which
cover approximately 1% of the incoming stream. In
other words, 99% of the stream would be composed of
empty sets, making the solution likely to be effective



only when d ≤ 1% of ∆. Since these domain-specific
stream characteristics are external to our problem for-
mulation, we ignore the empty sets hereafter.

In the absence of any other assumptions about the
stream characteristics, the min-d-occur problem is ill-
posed. In fact, if there is a sudden drop in the fre-
quency of the queries from the set Sn in the query
stream (in the above example), there may not exist
a solution set for an algorithm to predict. Using an
appropriate selection of the set Sn and an assumption
about the continuity of the stream statistics in the
given time horizon ∆, it might be fair to assume that
at least k queries will appear at least D = 100 times
in the next 100 milliseconds. Under this additional
assumption, the above min-d-occur problem becomes
more useful for d ≤ D. Using this constant integer D,
we define a constrained variant as follows.

Definition 2. Constrained-min-d-occur. Given
that there exist at least k elements in Sn that appear
D number of times in {S1, · · · , S∆}, constrained-min-
d-occur(Sn,D,∆,k) solves min-d-occur(Sn,∆,k).

Below we present a randomized algorithm for the
constrained-min-d-occur problem. We show that the
probability of a successful prediction from this algo-
rithm is high when d < D

3 logn and k = o(n/ log n).
This theoretical result is further validated using ex-
periments on two streaming data sets: search query
logs and hash-tags in tweets. In both of these data
sets, this algorithm achieved high precision and recall
values for predictions. Interestingly, this algorithm is
empirically effective for larger values of d even when a
corresponding lower-bound is not computed. We also
present a sliding-window based adaptation of our al-
gorithm to accommodate a practical setting where the
predictions need to be updated only at regular inter-
vals of time.

Contributions. There are two main theoretical con-
tributions in this paper. First, we present a novel
problem formulation – constrained min-d-occur – for
making guaranteed predictions of future occurrences
in streaming data. Second, we present a randomized
algorithm for making predictions under this formula-
tion and derive an effective lower-bound on its perfor-
mance. These theoretical contributions are supported
by empirical observations on two real, streaming data
sets i.e., Twitter hash-tags and query logs of a search
engine.

2 Related Work

Our problem formulation is related to online coverage
problems. In the online set cover problem, Alon et al.
(2009) assume that a collection of sets is known be-

forehand but they arrive in an online fashion. An algo-
rithm then selects k sets from this collection that solves
the max-cover problem for the sets that are already ob-
served. Whereas our setup requires predictions to be
made for the sets arriving in future. Another related
coverage problem is set-streaming maximum coverage
proposed by Saha and Getoor (2009). They assume an
orthogonal set up where the collection of sets remain
static but their elements are streaming. Their algo-
rithm is not applicable in our setting because we need
to choose the elements that are present in maximum
number of sets, and not the sets that cover maximum
number of elements. Another similar problem formula-
tion has appeared in the operating systems literature.
Awerbuch et al. (1996) studied the problem of allocat-
ing jobs to workstations to ensure a timely, successful
completion of the given jobs. They presented an al-
gorithm that performs a sequential prediction of these
allocations and allows at most one job to be running
at any time. That is, the second job is allocated only
after the completion (not allocation) of the first job.
It is non-trivial to adapt their algorithm to perform k
simultaneous allocations, although we have borrowed
useful concepts from their lower-bound analysis in the
development of our solution.

There exists significant literature on statistical trend
prediction in streaming data, most notably for the
Twitter data. There has also been some work on track-
ing topics and events in these streams (Ardon et al.,
2013) through an appropriate adaptation of statistical
topic models (AlSumait et al., 2008), and for detecting
bursts or spikes in topics (Diao et al., 2012). Goorha
and Ungar (2010) study the spiking behavior of ele-
ments in an input set of elements. Their algorithm can
only handle a small set of elements, thereby limiting
its utility in a general practical setting. Cataldi et al.
(2010) modeled the streaming elements as a graph,
and employed page-rank algorithm along with an aging
theory to predict the spiking elements. Mathioudakis
and Koudas (2010) analyzed the sudden change in fre-
quency patterns of these elements in conjunction with
a reputation model for the origin of the streaming ele-
ments to make these predictions. Becker et al. (2011)
discussed an online setting to identify events and the
related tweets, but they did not make predictions for
future. Similarly, there has also some work on analyz-
ing trends in user comments (Jain and Galbrun, 2013)

Most of these algorithms are optimized for a specific
application, and require significant modification to be
applicable to a different setting. These algorithms are
evaluated empirically using measures such as the per-
plexity, recall, and earliness of the predictions. Since
these approaches do not formally specificy the (im-
plicit) assumptions made about the stream character-



Sn set of elements {e1, . . . , en}
n number of possible elements in the global set
k number of elements to choose
xte Score of the element e at time t
yt Solution set constructed at time t
N window size
wte window data structure for element e at time t

Table 1: Notation used in this paper
.

istics, it if challenging to assess their utility across dif-
ferent related settings, e.g., our current formulation.
Also, lower-bound analyses for the prediction accuracy
even for the original problem settings do not exist. In
this work, we address both of these issues. We for-
mally stated the assumptions of our prediction setting
in the previous section. In the next section, we present
a randomized algorithm to obtain a solution for this
setting. A lower-bound analysis of the performance of
this algorithm is described in the subsequent section.

3 Algorithm

Here we present a randomized algorithm that provides
the constrained-min-d-occur (as defined above). In
other words, this algorithm selects k elements (from
Sn) that are likely to appear at least d number of
times in the given future ∆ occurrences. As we
show below, the probability of a successful prediction
from this algorithm is high when: D > 3d log n and
k = o(n/ log n). Later, in Section 6, we demonstrate
that these assumptions hold in several practical set-
tings for streaming data.

Algorithm 1 describes the different steps of our ap-
proach. We maintain a score xte for each element
e ∈ Sn at every time time t. At time t, a new set
St is presented to the algorithm. For each element e
present in the St that has already not been selected, we

toss a coin with probability of getting heads = n
3xt

i
D

−2

d .
If a head is observed, we add e to the selection set y.
We update the score xte and continue till k elements
have been selected. The set y represents the selected
k elements.

4 Analysis

Here we prove that each of the k elements
{y1, y2, . . . , yk} selected by our algorithm has a high
probability of occurring at least d times in future (gov-
erned by the horizon ∆). We show this probability to
be greater than 1−O(kd logn

D ).

We approach this proof by constructing a subspace

Algorithm 1 k Min-d-occur Prediction

Require: set of elements Sn, integer k, stream
{S1, · · · , S∆}

1: n← |Sn|.
2: ∀e ∈ Sn, x0

e ← 0.

3: y ← {φ}.
4: j = 1
5: for t = 1 to ∆ do
6: βt ← St \ y
7: for e ∈ βt do
8: xte ← xt−1

e + 1.

9: choose u ∼ Bernoulli
(
n(3xt

e−2D)/D

d

)
.

10: if u = 1 then
11: yj ← e.
12: j ← j + 1.
13: if j>k then
14: return y.
15: end if
16: end if
17: end for
18: end for

Su of probabilistic outcomes of coin-toss experiments
(as illustrated in Figure 1). In this subspace, 0 denotes
the absence of an element in the set arriving at a given
time. Whereas the presence of a particular element is
denoted by the probabilistic outcome, i.e., the toss of
the coin as H (head) or T (tail). In other words, there
will be one coin toss for each pair (t, i) if and only if
ei ∈ St \ yt. The element ei∗ is selected as the jth

prediction at time t∗ if and only if:

• (t∗, i∗) toss is H,

• for t < t∗ and ei /∈ yt, (t, i) toss is T ,

• for t = t∗ and i < i∗, (t, i) toss is T .

Let So ⊆ Su be the subspace where each of the k
selected elements occur in d sets after choosing them.
We refer to this subspace as the solution space. In
this subspace, one H appears in each of the k different
values of i (in different columns) and there are at least
d such sets. Each element would appear in at least d
sets after their respective coin tosses are heads.

To show that Pr[So] is close to 1, we first choose an in-
termediate subspace Si ⊆ S for which the correspond-
ing probability, i.e., Pr[Si], is close to 1. This interme-
diate subspace is selected such that we can construct
a useful injection from Si to So. To this end, we define
Si to consist of sample points for which there are at
least k heads for different elements and for which the
first d flips for each element are tails.



(a) Universal space Su (b) Intermediate space Si (c) Solution space So

Figure 1: Illustration of the probabilistic subspace for n = 7. Each row represents a set α, where the absence
of an element is denoted by 0; the outcome of the coin-toss for each of the other elements is shown as a tuple
(1, H) or (1, T ).

From the columns of Su, only those elements are kept
for which the first d tosses are tails to form the sub-
space Si. The mapping from Si to So has also been
shown where the (xte − d)th and xte outcomes of coin
toss are flipped depending upon the factors explained
later. We start by proving a basic result about the
universal space Su.

Lemma 1. The probability of getting tails for all coin
tosses in Su ≤ e−n/2.

Proof. The probability of getting tails for all elements
is the product of probability of getting tails for each
element. The latter probability is less than the proba-
bility of getting tails for an element that is present in
at least D sets. This upper bound probability is the
same as the probability that there are no heads among
the last d flips for the element that is available for D
steps, which is at most(

1− n
3(D−d)

D −2

d

)d
≤
(

1− n

2d

)d
≤ e−n/2 (1)

because D ≥ 3d log n.

The probabilistic subspace Si consists of observation
sets such that there are at least k heads for different
elements and for which the first d flips for each ele-
ment are tails. Now we lower bound the probability
associated with this subspace.

Lemma 2. Pr[Si] ≥ 1- O(1/n).

Proof. We found the probability of the complement of
Si, denoted by S̄i, to be easier to compute than for the
subspace Si. This probability is decomposed as a sum
of two terms P1 and P2 defined below. The term P1

denotes the probability of getting a head among the
first (at most) d × n flips for each xti ≤ d. Since the

probability of observing an H is at most n
3d
D

−2

d ,

P1 ≤ dn

(
n

3d
D −2

d

)
≤ 2/n. (2)

Let P2 denote the probability of observing at most k−1
heads, i.e.,

P2 =

k−1∑
i=0

Pri[H], (3)

where Pri[H] is the probability of observing a total
i occurrences of H. Assuming i.i.d. observations for
coin-tosses, we have

P2 =

k−1∑
i=0

(
n

i

)
Pr1[H]iPr1[T ]n−1 (4)

≤
k−1∑
i=0

(
n

i

)
Pr1[T ]n−i, (5)

since Pr1[H] ≤ 1. Keeping only those elements for
which we get tails and they appear in at least D sets,
we have

P2 ≤
k−1∑
i=0

(
n

i

)
Pr1[T ]k−i (6)

≤ k ×max

((
n

i

)
× (e−n/2)k−i

)
. (7)

For k < n/2,
(
n
i

)
×(e−n/2)k−i is an increasing function

with respect to i; the maximum value is obtained for
i = k − 1. Therefore

P2 ≤ k

(
n

k − 1

)
×
(
e−n/2

)k−(k−1)

(8)

= k

((
n

k − 1

)
× e−n/2

)
. (9)

Also, since
(
n
k

)
≤ nk,

P2 ≤ k × nk−1e−n/2 ≤ 1/n, (10)



if k ≤
(

n
2 logn − 1

)
. Finally, combining Equation 2

and 10

Pr[Si] = 1− (P1 + P2) (11)

= 1− (O(2/n) +O(1/n)) (12)

= 1−O(1/n). (13)

For each of the members of the above intermediate
subspace, we construct a member of the solution space.
We ensure that the probabilities of occurrences of both
of these instances are similar. The next lemma pro-
vides the similarity in the probabilities of these two
subspaces.

Lemma 3. Pr[So] ≥ (1−O(kd logn
D ))Pr[Si].

Proof. We construct an injection f : Si → So such
that ∀s′ ∈ Si,

Pr[f(s′)] ≥
(

1−O
(
kd log n

D

))
Pr[s′]. (14)

Consider an instance s′ ∈ Si. Let {ei1 , ei2 , . . . , eik} be
the elements for which the flips are the first heads in
s′. Let xij denote the number of sets in which eij has
been present and includes the set where the jth heads
occurred for j ∈ {1, 2, . . . , k}. By definition of Si, xij
> d. Let us define

z′ij = n
3xij
D −2/d (15)

and

zij =
n

3(xij
−d)

D −2

d
= n

−3d
D z′ij (16)

=

(
1−O

(
d log n

D

))
z′ij . (17)

Let p refers to the sets considered in a sample space.
Using these notation, we define the injection f(s′) as
follows. If z′ij ≥ 1/2 then all of the (p, ij) pairs of f(s′)

are made identical to the respective (p, ij) of s′. Next,
the (xij−d)th flip of eij is changed from tails to heads.

If z′ij ≤ 1/2 then all of the (p, ij) pairs of f(s′) are

similar to (p, ij) of s′ except that the (xij − d)th flip
of eij is changed from tails to heads and xthij flip of eij
is changed from heads to tails.

The above process generates f(s′) ∈ So. Without loss
of generality, let us assume that for j ∈ {1, 2, . . . , r}
the value of z′ij ≥ 1/2. For j ∈ {r+ 1, r+ 2, . . . , k}, let

us assume z′ij ≤ 1/2 where r is an integer 1 ≤ r ≤ k.

Using this notation, the ratios of probabilities in the
two subspaces is given by:

Pr[f(s′)]

Pr[s′]
=

r∏
ij=1

zij
1− zij

·
k∏

ij=r+1

zij
1− zij

1− z′ij
z′ij

(18)

For z′ij ≥ 1/2, using Equation 17, we get

zij
1− zij

=

(
1−O

(
d logn
D

))
z′ij

1−
(

1−O
(
d logn
D

))
z′ij

(19)

≥
1/2−O

(
d logn
D

)
1/2 +O

(
d logn
D

) (20)

= 1−O
(
d log n

D

)
. (21)

For z′ij ≤ 1/2, using Equation 17, we get(
zij

1− zij

)(
1− z′ij
z′ij

)
(22)

≥
(

1−O
(
d log n

D

))
1− z′ij

1− z′ij +O
(
d logn
D z′ij

)
≥ 1−O

(
d log n

D

)
. (23)

Using Equation 21 and Equation 23, the Equation 18
reduces to the following.

Pr[f(s′)]

Pr[s′]
≥

k∏
ij=1

(
1−O

(
d log n

D

))
(24)

≥ 1−O
(
kd log n

D

)
. (25)

Theorem 3. Pr[So] ≥ 1−O
(
kd logn
D + 1

n

)
.

Proof. Using Lemma 2 and Lemma 3.

Corollary 4. For k = 1, we obtain a 2/3 approxima-
tion, i.e., Pr[So] ≥ 2/3 since D > 3d log n.

5 Sliding Window Approach

In a practical setting, the predictions about future
occurrences are made continuously as the streaming
sets continue to arrive. Alternatively, the predictions
are updated at regular intervals of time using the
sets arriving within a sliding time window of size W .
The algorithm described above would require a re-
computation of the frequency counts of the elements



as the window is updated. To reduce the computa-
tional cost of this update, we employ a data structure
proposed by Datar et al. (2002) that maintains count
statistics for a stream using buckets of different sizes.
Using the binary representation for the presence of an
element in a streaming set, we use this data structure
to calculate the approximate number of 1’s in a given
window. For each of these buckets, the time-stamp of
the most recent 1 and the total count of 1’s appear-
ing in that bucket are maintained. As a new binary
element arrives the following steps are taken.

• The time stamp of each bucket is increased by
one.

• If the time stamp of a bucket exceeds the window
size, the bucket is dropped.

• If the arriving element is 0, we proceed to the next
element.

• If the arriving element is 1, then we create a new
bucket with size 1 (this operation is referred to as
add bucket operation).

• if there exists m/2 + 2 buckets of same size, the
oldest two buckets are merged. Here m is a pre-
defined integer that is inversely proportional to
the maximum permissible relative error ε, i.e.,
m = d1/εe.

In this data structure, the total number of elements
in each bucket is equal to the number of 1’s in the
window (referred to as window score). Datar et al.
(2002) show that this data structure gives an estimate
of the number of 1’s in the window of size W with
a relative error of at most ε using at most

(
m
2 + 1

)(
log
(

2W
m + 1

)
+ 1
)

buckets. log W + log logW bits
are used per bucket and each new element is processed
in O(log W ) worst case time. At each instant, this data
structure provides a count estimate in O(1) time.

Algorithm 2 use add bucket and window score to
present the sliding window adaptation of Algorithm
1. In our problem formulation, sets {S1, S2, . . . , SW }
arrive in the window W . Let there be x elements in
the union of these sets, then the input stream for the
above data structure would be a permutation of x 1’s
and (n − x) 0’s. For this stream, we create n buckets
at the beginning of the stream and update them as
above when a new element arrives.

6 Experiments

The above analysis ensures a high probability of suc-
cessful predictions from our algorithm. To understand

Algorithm 2 k Min-d-occur Prediction over a sliding
window
Require: Sn, integer k, window size W .
1: ∀e ∈ Sn, x0

e ← 0.

2: j = 1
3: for t = 1 to ∆ do
4: βt ← St \ y
5: for e ∈ βt do
6: wte ← add bucket(wt−1

e )
7: xte ← window score(xt−1

e , wte).

8: choose u ∼ Bernoulli
(
n(3xt

e−2D)/D

d

)
.

9: if u = 1 then
10: yj ← e.
11: j ← j + 1.
12: if j > k then
13: return y.
14: end if
15: end if
16: end for
17: end for

its effectiveness in practical settings, we performed ex-
periments on two real-world collections of streaming
data: query logs from a commercial search engine and
hash-tags appearing in tweets.

A näıve approach based on selecting the most frequent
elements could be considered as a baseline approach.
However, such comparisons would be unfair to the
baseline approaches because they would not be directly
optimizing the criterion our problem setup mandates.
More importantly, such comparisons would risk the
clarity in the distinction of the proposed problem for-
mulation and the traditional setup for statistical trend
prediction. That said, the results for a naive approach
were indeed empirically inferior to ours.

6.1 Search queries

We considered a data set comprising of one month
of anonymized search logs that is made public under
the Yahoo Webscope program1. We only consider the
anonymized query identifiers in our experiments, ig-
noring other information – i.e., document identifiers,
relevance judgments, etc. – present in this data set.
We randomly sample 100K queries and use their re-
spective timestamp to simulate the arrival of these
queries as a stream. Each of these queries corresponds
to a singleton, streaming set in our formulation. Fig-
ure 3 shows the frequency distribution of the result-
ing 603 unique queries in this data set. We select all
of these unique queries to construct the set Sn (i.e.,

1The L18 data set available from
http://webscope.sandbox.yahoo.com
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Figure 2: Results on search queries. Each of the four plots show different evaluation metrics for different values
of k and d and D = 200. These metrics are averaged over 200 iterations of our algorithm on random sub-streams
of the original data stream. (Best seen in color).

n = 603). There are 140 queries that appear at least
200 times in the entire stream, therefore the assump-
tion required for the constrained-min-d-occur problem
clearly holds for D = 200 and k ≤ 10. We ran our algo-
rithm for different values of d and report our observa-
tions in Figure 2. Even though we do not have a valid
lower-bound on the prediction accuracy for d > D, we
examine if the algorithm is still able to make predict
queries with larger number of future occurrences.
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Figure 3: Frequency distribution of search queries.

The precision and recall metrics shown in these plots
are computed by comparing the set of predicted
queries against the queries that actually occur d times
in the stream remaining after the prediction is made.
For d = 150, the predicted queries were 100% accu-

rate for k ≤ 10. On average, the algorithm was able to
make predictions for k = 10 after observing about 7500
queries. In the remaining stream, about 60 unique
queries appeared more that 150 times. Therefore, the
recall of our algorithm is around 0.16.

As we increase d, the probability of observing heads
in a coin-toss decreases (see Section 4), making the
algorithm take longer to make the predictions. Outside
the provably correct range d < D

3 logn , the precision
is also observed to be adversely affected in a similar
manner. For larger values of k, the algorithm takes
more time to make predictions, and the performance
degrades outside the provably correct range. In the
provably correct range, the recall values for k = 2 is
nearly twice the value for k = 1, because the number
of predictions made are twice in the former case and
all of the predictions are accurate; the minor deviation
is attributed to the difference in the stopping point in
the two experiments.

6.2 Twitter hash tags

We used the Twitter’s public REST API2 to obtain
150K tweets from the month of November 2013. We

2https://dev.twitter.com/docs/api/1.1
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(a) Average Number of correct predictions
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(b) Number of streaming subsets observed before making a
prediction
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(c) Precision
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(d) Recall

Figure 5: Results on Twitter hash-tags. Each of the four plots show different evaluation metrics for different
values of k and d and D = 200. These metrics are averaged over 200 iterations of our algorithm on random
sub-streams of the original data stream. (Best seen in color).
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(a) D=200

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d

p
r
e
c
i
s
i
o
n

 

 

k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8
k=9
k=10

(b) D=400

Figure 6: Comparison of precision curves for different choices of D on Twitter hash-tags.

consider all of the hash-tags appearing in each of these
tweets to compose the respective streaming set. We
selected the 1K most frequent hash-tags in this col-
lection to construct Sn. Figure 4 shows the frequency
distribution of the unique hash-tags in this data set.
Considering the skew in this distribution, we selected
a larger value of D = 200 for this data set.

The overall observations for this data sets are similar
to those for the previous data set. However, the drop in
performance is gradual over a bigger range of values of
d. For k = 1, the algorithm continued to make almost

accurate predictions till d = 10∗D = 2000. For k = 10,
around 70% precision was observed while predicting
1000 future occurrences. The algorithm only observed
30K tweets to make these predictions. Assuming an
estimated arrival rate of 150K tweets per minute, our
algorithm can start predicting these ten tags with 70%
accuracy in less than a minute.

The parameter D has a trade-off associated with it.
On one hand, a larger value of D reduces the time
taken to make a prediction and increases the prov-
ably useful range of values of d. On the other hand,
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(a) D=100
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(b) D=200

Figure 7: Results for the sliding-window approach on Twitter hash-tags. The window size is set of 20K. The
average number of correct predictions(Accuracy) made for D = 100 and 200 for different values of k and d.
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Figure 4: Frequency distribution of unique hash-tags

we may have to increase the size of the stream to en-
sure that the related assumption for constrained-min-
d-occur holds. Figure 6 shows a comparison of the
observed precision values for two different choices of
D = {200, 400}. In both of these plots for most val-
ues of k, the precision is close to 1 for almost identical
range of d, but the precision drops faster for smaller
value of D. Also, the graphs for D = 400 are noisy,
which suggests a large variance to be associated with
their precision estimates. For this reason, we postu-
late that useful conclusions could not be derived for
D > 400 in this data set.

6.3 Sliding window

Figure 7 shows the precision curves obtained using
the sliding window adaptation of our algorithm (de-
scribed in Section 5) with window size W = 20K. For
D = 200, the graphs validate two hypothesis about
the correctness of our window-based algorithm. First,
for k = 10, the stopping point (see Figure 5) is greater
than the window size. Therefore, the window-based al-
gorithm should fail to make predictions for most values
of d. Second, the stopping points for k < 10 are less
than the window size for almost all of the values of
d. Hence, the window-based algorithm should obtain
similar performance as the original algorithm without
the window. Similar observations were made when a

window size W = 10K was considered. Similar obser-
vations were made for D = 100. The relative difference
between the performances for D = 100 and D = 200
can be explained similar to the discussion for Figure 6.
These observations confirm that sliding window adap-
tation of the original algorithm well approximates the
desired solution. This approximate algorithm is better
suited for a practical setting where predictions need to
be made at regular intervals of time.

7 Discussion

We presented a new problem formulation, constrained
min-d-occur, for studying algorithms that guarantee
a minimum number of future occurrences in stream-
ing data. For this formulation, we presented a ran-
domized algorithm and derive a lower-bound on the
probability of successful predictions obtained from this
algorithm. To our knowledge, any prior theoretical re-
sults for this problem does not exist. The theoretical
result is further validated using experiments on two
real-world data sets: search query logs and hash-tags
in tweets. In both of these data sets, the proposed al-
gorithm achieved high precision and recall values for
predictions. We studied the performance of this al-
gorithm for different choices of parameters. We also
presented a sliding-window based adaptation of our
algorithm to accommodate a practical setting where
the predictions need to be updated only at regular in-
tervals of time. Interestingly, these algorithms were
found to be effective for larger values of d for which
a useful lower-bound is not computed. Studying the
tightness of our current lower-bound would be a useful
extension of this work.
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