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Abstract

The term “CoRE kernel” stands for correlation-
resemblance kernel. In many real-world applica-
tions (e.g., computer vision), the data are often
high-dimensional, sparse, and non-binary. We
propose two types of (nonlinear) CoRE kernels
for non-binary sparse data and demonstrate the
effectiveness of the new kernels through a clas-
sification experiment. CoRE kernels are sim-
ple with no tuning parameters. However, train-
ing nonlinear kernel SVM can be costly in time
and memory and may not be always suitable
for truly large-scale industrial applications (e.g.,
search). In order to make the proposed CoRE
kernels more practical, we develop basic proba-
bilistic hashing (approximate) algorithms which
transform nonlinear kernels into linear kernels.

1 INTRODUCTION

The use of high-dimensional data has become popular in
practice, especially in search, natural language processing
(NLP), and computer vision. For example, Winner of 2009
PASCAL image classification challenge [27] used 4 million
(non-binary) features. [5, 25, 28] mentioned datasets with
billions or even trillions of features.

For text data, the use of extremely high-dimensional
representations (e.g., n-grams) is the standard practice. In
fact, binary representations for text data could be sufficient
if the order of n-grams is high enough. On the other hand,
in current practice of computer vision, it is still more
common to use non-binary feature representations, for
example, local coordinate coding (LCC) [29, 27]. It is
often the case that in practice high-dimensional non-binary
features might be appropriately sparsified without hurting
the performance of subsequent tasks (e.g., classification).
However simply binarizing the features will often incur
loss of accuracies, sometimes significantly so. See Table 1
for an illustration of such a phenomenon.

Our contribution in this paper is the proposal of two types
of (nonlinear) “CoRE” kernels, where “CoRE” stands for
“correlation-resemblance”, for non-binary sparse data. In-
terestingly, using CoRE kernels leads to improvement in
classification accuracies (in some cases significantly so) on
a variety of datasets (see Table 2).

For practical large-scale applications, naive implementa-
tions of nonlinear kernels may be too costly (in time and/or
memory), while linear learning methods (e.g., linear SVM
or logistic regression) are extremely popular in industry.
The proposed CoRE kernels would be facing the same chal-
lenge. To address this critical issue, we also develop basic
hashing algorithms which approximate the CoRE kernels
by linear kernels. These new hashing algorithms allow us
to take advantage of highly efficient (batch or stochastic)
linear learning algorithms, e.g., [15, 24, 1, 8].

In the rest of this section, we first review the definitions
of correlation and resemblance, then we provide an exper-
imental study to illustrate the loss of classification accura-
cies when sparse data are binarized.

1.1 Correlation

We assume a data matrix of size n×D, i.e., n observations
in D dimensions. Consider, without loss of generality, two
data vectors u, v ∈ RD. The correlation is simply the nor-
malized inner product defined as follows

ρ = ρ(u, v) =

∑D
i=1 uivi√∑D

i=1 u
2
i

∑D
i=1 v

2
i

=
A

√
m1m2

, (1)

where A =

D∑
i=1

uivi, m1 =

D∑
i=1

u2
i , m2 =

D∑
i=1

v2i

It is well-known that ρ(u, v) constitutes a positive definite
and linear kernel, which is one of the reasons why correla-
tion is very popular in practice.



1.2 Resemblance

For binary data, the resemblance is commonly used:

R = R(u, v) =
a

f1 + f2 − a
, (2)

where f1 =
D∑
i=1

1{ui ̸= 0}, f2 =
D∑
i=1

1{vi ̸= 0},

a =
D∑
i=1

1{ui ̸= 0}1{vi ̸= 0}

It was shown in [22] that the resemblance defines a type of
positive definite (nonlinear) kernel. In this study, we will
combine correlation and resemblance to define two new
types of nonlinear kernels.

1.3 Linear SVM Experiment

Table 1 lists the datasets, which are non-binary and sparse.
The table also presents the test classification accuracies us-
ing linear SVM on both the original (non-binary) data and
the binarized data. The results in the table illustrate the no-
ticeable drop of accuracies by using only binarized data.1

Available at the UCI repository, Youtube is a multi-view
dataset, and we choose the largest set of features (audio) for
our experiment. M-Basic, M-Rotate, and MNIST10k were
used in [18] for testing abc-logitboost and abc-mart [17]
(and comparisons with deep learning [16]). For RCV1, we
use a subset of the original testing examples (to facilitate
efficient kernel computation later needed in the paper).

Table 1: Classification accuracies using linear SVM (LI-
BLINEAR [8]) on sparse non-binary data. As we always
normalize data to unit norm, the correlation kernel ρ is
naturally used in our study. We experiment with the l2-
regularized linear SVM (with a regularization parameter
“C”) and report the best test accuracies from a wide range
of C values. Using binarized data (i.e., the last column),
the test accuracies drop very noticeably in most datasets.

Dataset #Train #Test Linear Lin. Bin.
M-Basic 12,000 50,000 90.0% 88.9%
MNIST10k 10,000 60,000 90.0% 88.8%
M-Rotate 12,000 50,000 48.0% 44.4%
RCV1 20,242 60,000 96.3% 95.6%
USPS 7,291 2,007 91.8% 87.4%
Youtube 11,930 97,934 47.6% 46.5%

Figure 1 provides more detailed classification accuracy re-
sults for a wide range of C values, where C is the usual
l2-regularization parameter in linear SVM.

1For all datasets except USPS, we used “0” as the threshold
to binarize the data. For USPS, since it contains many very small
entries, we used a threshold which is slightly different from zero.
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Figure 1: Test classification accuracies for both the original
(non-binary, solid) and the binarized (dashed) data, using
l2-regularized linear SVM with a regularization parameter
C. We present results for a wide range of C values. The
best (highest) values are summarized in Table 1.

While linear SVM is extremely popular in industrial prac-
tice, it is often not as accurate. Our proposed CoRE kernels
will be able to produce noticeably more accurate results.

2 CORE KERNELS

We propose two types of CoRE kernels, which combine
resemblance with correlation, for sparse non-binary data.
Both kernels are positive definite. We will demonstrate
the effectiveness of the two CoRE kernels using the same
datasets in Table 1 and Figure 1.

2.1 CoRE Kernel, Type 1

The first type of CoRE kernel is basically the product of
correlation ρ and the resemblance R, i.e.,

KC,1 = KC,1(u, v) = ρR (3)

Later in the paper we will express KC,1 as an (expectation
of) inner product, i.e., KC,1 is obviously positive definite.

If the data are fully dense (i.e., no zero entries), then R = 1
and KC,1 = ρ. On the other hand, if the data are binary,
then ρ = a√

f1f2
and KC,1 = a√

f1f2

a
f1+f2−a . See (2) for

the definitions of f1, f2, a.



2.2 CoRE Kernel, Type 2

The second type of CoRE kernel perhaps appears less intu-
itive than the first type:

KC,2 = KC,2(u, v) = ρ

√
f1f2

f1 + f2 − a
=

ρR

a/
√
f1f2

(4)

If the data are binary, then KC,2 = R. We will, later in the
paper, also write KC,2 as an expectation of inner product
to confirm it is also positive definite.

2.3 Kernel SVM Experiment

Figure 2 presents the classification accuracies on the same
6 datasets as in Figure 1 and Table 1, using nonlinear ker-
nel SVM with three different kinds of kernels: CoRE Type
1, CoRE Type 2, and resemblance. We can see that re-
semblance (which only uses binary information of the data)
does not perform as well as CoRE kernels.
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Figure 2: Test classification accuracies using nonlinear
kernel SVM and three types of kernels: CoRE Type 1,
CoRE Type 2, and resemblance. We use the LIBSVM pre-
computed kernel functionality. Compared with the results
of linear SVM in Figure 1, we can see CoRE kernels and
resemblance kernel perform better (or much better, espe-
cially on M-Rotate dataset). The best results (highest points
on the curves) are summarized in Table 2.

The best results in Figure 2 are summarized in Table 2.
It is interesting to compare them with the test accuracies
of linear SVM in Table 1 and Figure 1. We can see that
CoRE kernels perform very well, without using additional

tuning parameters. In fact, if we compare the best results
in [16, 18] (e.g., RBF SVM, abc-boosting, or deep learn-
ing) on MNIST10k, M-Rotate, and M-Basic, we will see
that CoRE kernels (with no tuning parameters) can achieve
the same (or similar) performance.

Table 2: Best test classification accuracies (in %) for five
different kernels. The first two columns (i.e., “linear” and
“linear binary”) are already shown in Table 1.

Dataset Lin. Lin. Bin. Res. CoRE1 CoRE2
M-Basic 90.0 88.9 95.9 97.0 96.5
MNIST10k 90.0 88.8 95.5 96.6 96.0
M-Rotate 48.0 44.4 80.3 87.6 86.2
RCV1 96.3 95.6 96.5 97.0 96.9
USPS 91.8 87.4 92.5 95.5 95.2
Youtube 47.6 46.5 51.1 53.1 53.2

We shall mention that our experiments can be fairly easily
reproduced because all datasets are public and we use stan-
dard SVM packages (LIBSVM and LIBLINEAR) without
any modifications. We also provide the results for a wide
range of C values in Figure 1 and Figure 2. Note that,
because we use pre-computed kernel functionality of LIB-
SVM (which consumes very substantial memory to store
the kernel matrix), we only experiment with training data
of moderate sizes, to ensure repeatability (by other re-
searchers without access to machines with large memory).2

2.4 Challenges with Nonlinear Kernel SVM

[2, Section 1.4.3] mentioned three main computational is-
sues of kernels summarized as follows:

1. Computing kernels is very expensive.

2. Computing a full kernel matrix is wasteful, because
not all pairwise kernel values are used during training.

3. The kernel matrix does not fit in memory. The cost of
storing the full kernel matrix in the memory is O(n2),
which is not realistic for most PCs even for merely
105, while the industry has used training data with bil-
lions of examples. Thus, kernel evaluations are often
conducted on the fly, which means the computational
cost is dominated by kernel evaluations.

In fact, evaluating kernels on-demand would encounter an-
other serious (and often common) issue if the dataset itself
is too big for the memory.

All these crucial issues motivate us to develop hashing al-
gorithms to approximate CoRE kernels by linear kernels.

2At the time this paper was written, the implementation of
LIBSVM restricted the maximum size of the kernel matrix. The
LIBSVM team recently has made effort on this issue and it is ex-
pected such a restriction will be removed in the new release. We
highly appreciate Dr. Chih-Jen Lin and his team for the efforts.



2.5 Benefits of Hashing

Our goal is to develop good probabilistic hashing algo-
rithms to (approximately) transform our proposed nonlin-
ear CoRE kernels into linear kernels. Once we have the
new data representations (i.e., the hashed data), we can use
highly efficient batch or stochastic linear methods for train-
ing SVM (or logistic regression) [15, 24, 1, 8].

Another benefit of hashing would be in the context of ap-
proximate near neighbor search because probabilistic hash-
ing provides a (often good) strategy for space partitioning
(i.e., bucketing) which will help reduce the search time
(i.e., no need to scan all data points). Our proposed hashing
methods can be modified to become an instance of locality
sensitive hashing (LSH) [13] in the space of CoRE kernels.

At this stage, we will focus on developing hashing algo-
rithms for CoRE kernels based on the standard random pro-
jection and minwise hashing methods. There will be plenty
of room for improvement which we leave for future work.

We first provide a review of the two basic building blocks.

3 REVIEW OF RANDOM PROJECTIONS
AND MINWISE HASHING

Typically, the method of random projections is used for
dense high-dimensional data, while the method of minwise
hashing is very useful for sparse (often binary) data. The
proposed hashing algorithms for CoRE kernels combine
random projections and minwise hashing.

3.1 Random Projections

Consider two vectors u, v ∈ RD. The idea of random pro-
jection is simple. We first generate a random vector of i.i.d.
entries ri, i = 1 to D, and then compute the inner products
as the hashed values:

P (u) =
D∑
i=1

uiri, P (v) =
D∑
i=1

viri (5)

For the convenience of theoretical analysis, we adopt the
choice of ri ∼ N(0, 1), which is a typical choice in the
literature. Several variants of random projections like [21,
28] are essentially equivalent, as analyzed in [22].

In this study, we always assume the data are normalized,
i.e.,

∑D
i=1 u

2
i =

∑D
i=1 v

2
i = 1. Note that computing

the l2 norms of all the data points only requires scanning
the data once which is anyway needed during data col-
lection/processing. For normalized data, it is known that
E [P (u)P (v)] = ρ. In order to estimate ρ, we need to use
k random projections to generate Pj(u), Pj(v), j = 1 to k,
and estimate ρ by 1

k

∑k
j=1 Pj(u)Pj(v), which is also an in-

ner product. This means we can directly use the projected
data to build a linear classifier.

3.2 Minwise Hashing

The method of minwise hashing [3] is very popular for
computing set similarities, especially for industrial appli-
cations, for example, [3, 9, 12, 26, 14, 7, 11, 23, 4].

Consider the space of the column numbers: Ω =
{1, 2, 3, ..., D}. We assume a random permutation π :
Ω −→ Ω and apply π on the coordinates of both vec-
tors u and v. For example, consider D = 4, u =
[0, 0.45, 0.89, 0] and π : 1 → 3, 2 → 1, 3 →
4, 4 → 2. Then the permuted vector becomes π(u) =
[0.45, 0, 0, 0.89]. In this example, the first nonzero col-
umn of π(u) is 1, and the corresponding value of the coor-
dinate is 0.45. For convenience, we introduce the following
notation:

L(u) = location of first nonzero entry of π(u) (6)
V (u) = value of first nonzero entry of π(u) (7)

In this example, we have L(u) = 1 and V (u) = 0.45.

The well-known collision probability

Pr (L(u) = L(v)) = R(u, v) = R (8)

can be used to estimate the resemblance R. To do so, we
need to generate k permutations πj , j = 1 to k.

4 HASHING CORE KERNELS

The goal is to develop unbiased linear estimators of CoRE
Kernels KC,1 and KC,2. Linear estimators can be written
as inner products. We assume that we have already con-
ducted random projections and minwise hashing k times.
In other words, for each data vector u, we have the hashed
values Pj(u), Lj(u), Vj(u), j = 1 to k. Recall the defini-
tions of Pj , Lj , Vj in (5), (6), and (7), respectively.

4.1 Hashing Type 1 CoRE Kernel

Our proposed estimator of KC,1 is

K̂C,1(u, v) =
k∑

j=1

Pj(u)Pj(v)1{Lj(u) = Lj(v)} (9)

The following Theorem 1 shows K̂C,1 is an unbiased esti-
mator and provides its variance.

Theorem 1

E
(
K̂C,1

)
= KC,1 (10)

V ar
(
K̂C,1

)
=

1

k

{(
1 + 2ρ2

)
R− ρ2R2

}
(11)

Proof: See Appendix A. �



A simple argument can show that K̂C,1 could be written
as an inner product and hence KC,1 is positive definite.
Although this fact is obvious since KC,1 is a product of
two positive definite kernels, we would like to present a
constructive proof because the construction is basically the
same procedure for expanding the hashed data before feed-
ing them to a linear SVM solver.

Recall, Lj is the location of the first nonzero after minwise
hashing. Basically, we can view Lj(u) equivalently as a
vector of length D whose coordinates are all zero except
the Lj(u)-th coordinate. The value of the only nonzero
coordinate will be Pj(u). For example, suppose D = 4,
Lj(u) = 2, Pj(u) = 0.1. Then the equivalent vector would
be [0, 0.1, 0, 0]. With k projections and k permutations,
we can have k such vectors. This way, we can write K̂C,1 as
an inner product of two D× k-dimensional sparse vectors.

Note that the input data format of standard SVM packages
is the sparse format. For linear SVM, the cost is essentially
determined by the number of nonzeros (in this case, k), not
much to do with the dimensionality (unless it is too high).
If D is too high, then we can adopt the standard trick of
b-bit minwise hashing [22] by only using the lowest b bits
of Lj(u). This will lead to an efficient implementation.

4.2 Hashing Type 2 CoRE Kernel

Our proposed estimator for Type 2 CoRE Kernel is

K̂C,2 =

√
f1f2
k

k∑
j=1

Vj(u)Vj(v)1{Lj(u) = Lj(v)} (12)

Recall that we always assume the data (u, v) are normal-
ized. For example, if the data are binary, then we have
ui = 1√

f1
, vi = 1√

f2
. Hence the values Vj(u) and Vj(v)

are small (and we need the term
√
f1f2).

This estimator is again unbiased. Theorem 2 proves the
mean the variance of K̂C,2.

Theorem 2

E
(
K̂C,2

)
= KC,2 (13)

V ar
(
K̂C,2

)
(14)

=
1

k

f1f2
f1 + f2 − a

 D∑
i=1

u2
i v

2
i −

(∑D
i=1 uivi

)2

(f1 + f2 − a)


Proof: See Appendix B. �

Once we understand how to express K̂C,1 as an inner prod-
uct, it should be easy to see that K̂C,2 can also be written
as an inner product. Again, suppose D = 4, Lj(u) = 2,
and Vj(u) = 0.05. We can consider an equivalent vector

[0, 0.05
√
f1, 0, 0]. In other words, the difference between

K̂C,1 and K̂C,2 is what value we should put in the nonzero
location. Compared to K̂C,1, one advantage of K̂C,2 is that
it only requires the permutations and thus eliminates the
cost for conducting random projections.

As one would expect, the variance of K̂C,2 would be
large if the data are heavy-tailed. However, when the
data are appropriately normalized (e.g., via the TF-IDF
transformation, or simply binarized), V ar

(
K̂C,2

)
is ac-

tually quite small. Consider the extreme case when the
data are binary, i.e., ui = 1√

f1
, vi = 1√

f2
, we have

V ar
(
K̂C,2

)
= 1

k

(
R−R2

)
, which is (considerably)

smaller than V ar
(
K̂C,1

)
= 1

k

{(
1 + 2ρ2

)
R− ρ2R2

}
.

4.3 Experiment for Validation

To validate the theoretical results in Theorem 1 and The-
orem 2, we provide a set of experiments in Figure 3. Two
pairs of word vectors are selected: “A–THE” and “HONG–
KONG”, from a chuck of web crawls. For example, the
vector “HONG” is a vector whose i-th entry is the number
of occurrences of the word “HONG” in the i-th document.
For each pair, we apply the two proposed hashing algo-
rithms to estimate KC,1 and KC,2. With sufficient repeti-
tions (i.e., k), we can empirically compute the mean square
errors (MSE = Var + Bias2), which should match the theo-
retical variances if the estimators are indeed unbiased and
the variance formulas, (11) and (14), are correct.
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Figure 3: Mean square errors (MSE = Var + Bias2) on two
pairs of word vectors for validating Theorems 1 and 2. The
empirical MSEs (solid curves) essentially overlap the the-
oretical variances (dashed curves), (11) and (14). When
using the raw counts (left panels), the MSEs of K̂C,2 is sig-
nificantly higher than the MSEs of K̂C,1. However, when
using binarized data (right panels), the MSEs of K̂C,2 be-
come noticeably smaller, as expected.



The number of word occurrences is a typical example of
highly heavy-tailed data. Usually when text data are used
in machine learning tasks, they have to be appropriately
weighted (e.g., TF-IDF) or simply binarized. Figure 3
presents the results on the original data (raw counts) as well
as the binarized data, to verify the formulas in Theorem 1
and Theorem 2, for k = 1 to 1000.

Indeed, the plots show that the empirical MSEs essentially
overlap the theoretical variances. In addition, the MSEs
of K̂C,2 is significantly larger than the MSEs of K̂C,1 on
the raw data, as expected. Once the data are binarized, the
MSEs of K̂C,2 become smaller, also as expected.

5 HASHING CORE KERNELS FOR SVM

In this section, we provide a set of experiments for using
the hashed data as input for a linear SVM solver (LIBLIN-
EAR). Our goal is to approximate the (nonlinear) CoRE
kernels with linear kernels. In Section 4, we have explained
how to express the estimators K̂C,1 and K̂C,2 as inner prod-
ucts by expanding the hashed data. With k permutations
and k random projections, the number of nonzeros of the
expanded data is precisely k. To reduce the dimensionality,
we use only the lowest b bits of the locations [22]. In this
study, we experiment with b = 1, 2, 4, 8.

Figure 4 presents the results on the M-Rotate dataset. As
shown in Figure 1 and Table 1, using linear kernel can
only achieve a test accuracy of 48%. This means, if we
use random projections (or the variants, e.g., [21, 28]),
which approximate inner products, then the best accuracy
we can achieve would be about 48%. For this dataset, the
performance of CoRE kernels (and resemblance kernel) is
astonishing, as shown in Figure 2 and Table 2. Thus, we
choose this dataset to demonstrate our proposed hashing
algorithms combined with linear SVM can also approach
the performance of (nonlinear) CoRE kernels.

To explain the procedure, we use the same examples as in
Section 4. Suppose we apply k minwise hashing and k
random projections on the data and we consider without
loss of generality the data vector u. For the j-th projection
and j-th minwise hashing, suppose Lj(u) = 2, Vj(u) =
0.05, Pj(u) = 0.1. Recall Lj and Vj are, respectively,
the location and the value of the first nonzero entry after
minwise hashing. Pj is the projected value obtained from
random projection.

In order to use linear SVM to approximate kernel SVM
with Type 1 CoRE kernel, for the above example, we ex-
pand the j-th hashed data as a vector [0, 0.1, 0, 0] if b = 2,
or [0, 0.1] if b = 1. We then concatenate k such vectors to
form a vector of length 2b × k (with exactly k nonzeros).
Before we feed the expanded hashed data to LIBLINEAR,
we normalize the vectors to have unit norm. The experi-
mental results are presented in the left panels of Figure 4.

To approximate Type 2 CoRE kernel, we expand the j-
th hashed data of u as [0, 0.05

√
f1, 0, 0] if b = 2, or

[0, 0.05
√
f1] if b = 1, where f1 is the number of nonzero

entries in the original data vector u. Again, we concatenate
k such vectors. The experimental results are presented in
the middle panels of Figure 4.

To approximate resemblance kernel, we expand the j-th
hashed data of u as [0, 1, 0, 0] if b = 2 or [0, 1] if b = 1
and we concatenate k such vectors.

The results in Figure 4 are exciting because linear SVM
on the original data can only achieve an accuracy of 48%.
Our proposed hashing methods + linear SVM can achieve
> 86%. In comparison, using only the original b-bit
minwise hashing, the accuracy can still reach about 80%.
Again, we should mention that other hashing algorithms
which aim at approximating the inner product (such as ran-
dom projections and variants) can at most achieve the same
result as using linear SVM on the original data. This is the
significant advantage of CoRE kernels.

6 DISCUSSIONIS

There is a line of related work called Conditional Ran-
dom Sampling (CRS) [19, 20] which was also designed for
sparse non-binary data. Basically, the idea of CRS is to
keep the first (smallest) k nonzero entries after applying
one permutation on the data. [19, 20] developed the trick
to construct an (essentially) equivalent random sample for
each pair. CRS is naturally applicable to non-binary data
and is capable of estimating any (linear) summary statistics,
in static as well as dynamic (streaming) settings. In fact, the
estimators developed for CRS can be (substantially) more
accurate than the estimator for minwise hashing.

The major drawback of CRS is that the samples are not ap-
propriately aligned. Consequently, CRS is not suitable for
training linear SVM (or other applications which require
the input data to be in a metric space). Our method has
overcome this drawback. Of course, CRS can still be used
in important scenarios such as estimating similarities dur-
ing the re-ranking stage in LSH.

Why do we need to two types of CoRE kernels? While
hashing Type 2 CoRE kernel is simpler because it requires
only the random permutations, Table 2 shows that Type 1
CoRE kernel can often achieve better results than Type 2
CoRE kernel. Therefore, we develop hashing methods for
both CoRE kernels, to provide users with more choices.

There are many promising extensions. For example, we
can construct new kernels based on CoRE kernels (which
currently do not have tuning parameters), by using the ex-
ponential function and introducing an additional tuning pa-
rameter γ, just like RBF kernel. This will allow more flex-
ibility and potentially further improve the performance.
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Figure 4: Test classification accuracies on the M-Rotate dataset using our proposed hashing methods and linear SVM
(LIBLINEAR). The red (if color is available) dot curves are the results of kernel SVM on the original data (i.e., the same
curves from Figure 2), using Type 1 CoRE kernel (left panels), Type 2 CoRE kernel (middle panels), and resemblance
kernel (right panels), respectively. We apply both b-bit minwise hashing (with b = 1, 2, 4, 8) and random projections k
times and feed the (expanded) hashed data to linear SVM.



Another interesting line of extensions would be applying
other hashing algorithms on top of our generated hashed
data. This is possible again because we can view our es-
timators as inner products and hence we can apply other
hashing algorithms which approximate inner products on
top of our hashed data. The advantage is the potential fur-
ther data compression. Another advantage would be in the
context of sublinear time approximate near neighbor search
(when the target similarity is the CoRE kernels).

For example, we can apply another layer of random projec-
tions on top of the hashed data and then store the signs of
the new projected data [6, 10]. These signs, which are bits,
provide good indexing & space partitioning capability to
allow sublinear time approximate near neighbor search un-
der the framework of locality sensitive hashing (LSH) [13].
This way, we can search for near neighbors in the space of
CoRE kernels (instead of the space of inner products).

In addition, we expect that our work will inspire new re-
search on the development of more efficient (b-bit) min-
wise hashing methods when the size of the space (i.e., D)
is not too large and the data are not necessarily extremely
sparse. Traditionally, minwise hashing has been used as a
data size/dimensionality reduction tool, typically for very
large D (e.g., 264). Readers perhaps have noticed that, in
our paper, (b-bit) minwise hashing could be utilized as a
data expansion tool in order to apply efficient linear algo-
rithms. When D is not very large, many aspects of the al-
gorithms such as pseudo-random number generation would
be quite different and new research may be necessary.

7 CONCLUSION

Current popular hashing methods, such as random pro-
jections and variants, often focus on approximating in-
ner products and large-scale linear classifiers (e.g., lin-
ear SVM). However, linear kernels often do not achieve
good performance. In this paper, we propose two types of
nonlinear CoRE kernels which outperform linear kernels,
sometimes by a large margin, on sparse non-binary data
(which are common in practice). Because CoRE kernels
are nonlinear, we accordingly develop basic hash meth-
ods to approximate CoRE kernels with linear kernels. The
hashed data can be fed into highly efficient linear classi-
fiers. Our experiments confirm the findings. We expect this
work will inspire a new line of research on kernel learning,
hashing algorithms, and large-scale learning.
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A Proof of Theorem 1

To compute the expectation and variance of the estimator
K̂C,1 = 1

k

∑k
j=1 Pj(u)Pj(v)1{Lj(u) = Lj(v)}, we need

the first two moments of Pj(u)Pj(v)1{Lj(u) = Lj(v)}.
The first moment is

E [Pj(u)Pj(v)1{Lj(u) = Lj(v)}]
=E [Pj(u)Pj(v)]Pr (Lj(u) = Lj(v)) = ρR

which implies that E
(
K̂C,1

)
= KC,1 = ρR. The second

moment is

E
[
P 2
j (u)P

2
j (v)1{Lj(u) = Lj(v)}

]
=E

[
P 2
j (u)P

2
j (v)

]
Pr (Lj(u) = Lj(v))

=
(
1 + 2ρ2

)
ρR

Here, we have used the result in the prior work [21]:
E
[
P 2
j (u)P

2
j (v)

]
= 1 + 2ρ2. Therefore, the variance is

V ar
(
K̂C,1

)
=

1

k

{(
1 + 2ρ2

)
R− ρ2R2

}
This completes the proof.

B Proof of Theorem 2

We need the first two moments of the estimator K̂C,2 =
1
k

∑k
j=1 Vj(u)Vj(v)1{Lj(u) = Lj(v)}

√
f1f2

Because

E [Vj(u)Vj(v)1{Lj(u) = Lj(v)}]
=E [Vj(u)Vj(v)1{Lj(u) = Lj(v)}|Lj(u) = Lj(v)]

×Pr (Lj(u) = Lj(v))

=

∑D
i=1 uivi
a

R = ρ
1

f1 + f2 − a

we know

E
(
K̂C,2

)
=

1

k

k∑
j=1

ρ

√
f1f2

f1 + f2 − a
= KC,2

and

E
[
V 2
j (u)V

2
j (v)1{Lj(u) = Lj(v)}

]
=E

[
V 2
j (u)V

2
j (v)

]
Pr (Lj(u) = Lj(v))

=

∑D
i=1 u

2
i v

2
i

a
R =

∑D
i=1 u

2
i v

2
i

f1 + f2 − a

Therefore,

V ar
(
K̂C,2

)
=
1

k

f1f2
f1 + f2 − a

 D∑
i=1

u2
i v

2
i −

(∑D
i=1 uivi

)2

(f1 + f2 − a)


This completes the proof.
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