
Closed-form Solutions to a Subclass of Continuous Stochastic Games via
Symbolic Dynamic Programming

Shamin Kinathil
ANU and NICTA

Canberra, ACT, Australia
shamin.kinathil@anu.edu.au

Scott Sanner
NICTA and ANU

Canberra, ACT, Australia
ssanner@nicta.com.au

Nicolás Della Penna
ANU and NICTA

Canberra, ACT, Australia
nicolas.della-penna@anu.edu.au

Abstract

Zero-sum stochastic games provide a formal-
ism to study competitive sequential interactions
between two agents with diametrically oppos-
ing goals and evolving state. A solution to
such games with discrete state was presented by
Littman (Littman, 1994). The continuous state
version of this game remains unsolved. In many
instances continuous state solutions require non-
linear optimisation, a problem for which closed-
form solutions are generally unavailable. We
present an exact closed-form solution to a sub-
class of zero-sum continuous stochastic games
that can be solved as a parameterised linear pro-
gram by utilising symbolic dynamic program-
ming. This novel technique is applied to calcu-
late exact solutions to a variety of zero-sum con-
tinuous state stochastic games.

1 INTRODUCTION

Modelling competitive sequential interactions between
agents has important applications within economic and
financial decision-making. Stochastic games (Shapley,
1953) provide a convenient framework to model sequen-
tial interactions between non-cooperative agents. In zero-
sum stochastic games, participating agents have diametri-
cally opposing goals. A reinforcement learning solution
to discrete state zero-sum stochastic games was presented
by Littman (Littman, 1994). Closed-form solutions for the
continuous state case remain unknown, despite the gen-
eral importance of this formalism — zero-sum continu-
ous state stochastic games provide a convenient framework
with which to model robust sequential optimisation in ad-
versarial settings including domains such as option valua-
tion on derivative markets.

The difficulty of solving zero-sum continuous state
stochastic games originates from the need to calculate a

Nash equilibrium for every state, of which there are in-
finitely many. In this paper we make the following key
contributions:

• We characterise a subclass of zero-sum continuous
state stochastic games with restricted reward and tran-
sition functions that can be solved exactly via param-
eterised linear optimisation.

• We provide an algorithm that solves this subclass of
stochastic games exactly and optimally using Sym-
bolic Dynamic Programming (SDP) (Boutilier et al.,
2001; Sanner et al., 2011; Zamani & Sanner, 2012)
for arbitrary horizons.

This paper is organised as follows: In Section 2 we de-
scribe Markov Decision Processes (MDPs) (Howard, 1960)
and value iteration (Bellman, 1957), a widely used dynamic
programming method for solving MDPs. In Sections 3 and
4, we present zero-sum stochastic games with discrete and
continuous states, respectively, as game-theoretic generali-
sations of the MDP framework. Following this, in Section
5, we introduce SDP, and show how it can be used to calcu-
late the first known exact solution to a particular subclass of
zero-sum continuous state stochastic games. In Section 6
we calculate exact solutions to three empirical domains: a
continuous state generalisation of matching pennies, binary
option valuation and robust energy production. In Sec-
tion 7, we survey the related literature. We conclude in
Section 8 and identify interesting directions for future re-
search.

2 MARKOV DECISION PROCESSES

A Markov Decision Process (MDP) (Howard, 1960) is de-
fined by the tuple 〈S,A, T,R, h, γ〉. S and A specify a
finite set of states and actions, respectively. T is the tran-
sition function T : S × A → S, which defines the ef-
fect of an action on the state. R is the reward function
R : S × A → R, which encodes the preferences of the
agent. The horizon h represents the number of decision

steps until termination and the discount factor γ ∈ [0, 1)
is used to discount future rewards. In general, an agent’s
objective is to find a policy, π : S → A, which maximises
the expected sum of discounted rewards over horizon h.

Value iteration (VI) (Bellman, 1957) is a general dynamic
programming algorithm used to solve MDPs. VI is based
on the set of Bellman equations, which mathematically ex-
press the optimal solution of an MDP. They provide a recur-
sive expansion to compute: (1) V ∗(s), the expected value
of following the optimal policy in state s; and (2) Q∗(s, a),
the expected quality of taking a in state s, then following
the optimal policy. The key idea of VI is to successively
approximate V ∗(s) and Q∗(s, a) by V h(s) and Qh(s, a), re-
spectively, at each horizon h. These two functions satisfy
the following recursive relationship:

Qh(s, a) = R(s, a) + γ ·
∑
s′∈S

T (s, a, s′) · V h−1(s′) (1)

V h(s) = max
a∈A

{
Qh(s, a)

}
(2)

The algorithm can be executed by first initialising V 0(s)

to zero or the terminal reward. Then for each h, V h(s) is
calculated from V h−1(s) via Equations (1) and (2), until the
intended h-stage-to-go value function is computed. Value
iteration converges linearly in the number of iterations to
the true values of Q∗(s, a) and V ∗(s) (Bertsekas, 1987).

MDPs can be used to model multiagent systems by assum-
ing that other agents are part of the environment and have
fixed behaviour. As a result, they ignore the difference be-
tween responsive agents and a passive environment (Hu &
Wellman, 1998). In the next two sections we present game
theoretic frameworks which generalises MDPs to situations
with two or more responsive agents.

3 ZERO-SUM DISCRETE STOCHASTIC
GAMES

Discrete state stochastic games (DSGs) are formally de-
fined by the tuple 〈S,A1, . . . , An, T,R1, . . . , Rn, h, γ〉. S
is a set of discrete states and Ai is the action set avail-
able to agent i. T is a transition function T : S × A1 ×
. . . × An → ∆(S), where ∆(S) is the set of probability
distributions over the state space S. The reward function
Ri : S×A1× . . .×An → R, encodes the individual pref-
erences of agent i. The horizon h represents the number
of decision steps until termination and the discount factor
γ ∈ [0, 1) is used to discount future rewards. In general,
an agent’s objective is to find a policy, πi : S → σi(Ai)
which maximises the expected sum of discounted rewards
over horizon h. Here σi(Ai) specifies probability distri-
butions over action set Ai. The optimal policy in a DSG
may be stochastic, that is, it may define a mixed strategy
for each state.

Zero-sum DSGs are a type of DSG involving two agents
with diametrically opposing goals. Under these conditions
the reward structure for the game can be represented by a
single reward function since an agents reward function is
simply the opposite of their opponent’s. The objective of
each agent is to maximise its expected discounted future
rewards in the minimax sense. That is, each agent views its
opponent as acting to minimise the agent’s reward. Zero-
sum DSGs can be solved using a technique analogous to
value iteration for MDPs (Littman, 1994). The value func-
tion, V h(s), in this setting can be defined as:

V h(s) =

max
m∈σ1(A1)

min
o∈σ2(A2)

∑
a1∈A1

∑
a2∈A2

Qh(s, a1, a2) ·ma1 · oa2

(3)

where m ∈ R|A1| and o ∈ R|A2| are mixed (stochas-
tic) strategies from σ1(A1) and σ2(A2), respectively.
Qh(s, a1, a2), the quality of taking action a1 against action
a2 in state s, is given by:

Qh(s, a1, a2) = R(s, a1, a2) +

γ ·
∑
s′∈S

T (s, a1, a2, s
′) · V h−1(s′). (4)

Equation (3) can be further simplified by noting that given
any m, the optimal minimum strategy is achieved through
a deterministic action choice. This observation leads to the
following form:

V h(s) = max
m∈σ1(A1)

min
a2∈A2

∑
a1∈A1

Qh(s, a1, a2) ·ma1 . (5)

Together Equations (4) and (5) define a recursive method to
calculate the optimal solution to zero-sum DSGs. The pol-
icy for the opponent can be calculated by applying symmet-
ric reasoning and the Minimax theorem (Neumann, 1928).

3.1 SOLUTION TECHNIQUES

Zero-sum DSGs can be solved via discrete linear optimisa-
tion at each horizon h. The value function in Equation (5)
can be reformulated as a linear program through the fol-
lowing steps:

1. Define V h(s) to be the value of the inner minimisation
term in Equation (5). This leads to the following linear
program for a known state s:

maximise V h(s)
subject to

V h(s) = min
a2∈A2

∑
a1∈A1

Qh(s, a1, a2) ·ma1 (6a)

∑
a1∈A1

ma1 = 1; ma1 ≥ 0 ∀a1 ∈ A1

2. Replace the equality (=) in constraint (6a) with ≤ by
observing that the maximisation of V h(s) effectively
pushes the ≤ condition to the = case. This gives:

maximise V h(s)
subject to

V h(s) ≤ min
a2∈A2

∑
a1∈A1

Qh(s, a1, a2) ·ma1 (7a)

∑
a1∈A1

ma1 = 1; ma1 ≥ 0 ∀a1 ∈ A1

3. Remove the minimisation operator in constraint (7a)
by noting that the minimum of a set is less than or
equal to the minimum of all elements in the set. This
leads to the final form of the discrete linear optimisa-
tion problem:

maximise V h(s)
subject to

V h(s) ≤
∑
a1∈A1

Qh(s, a1, a2) ·ma1 ∀a2 ∈ A2∑
a1∈A1

ma1 = 1; ma1 ≥ 0 ∀a1 ∈ A1

We can now use existing linear programming solvers to
compute the optimal solution to this linear program for
each s ∈ S at a given horizon h.

The linear program used to solve zero-sum DSGs cannot
be used with continuous state formulations, since there are
infinitely many states. A key contribution of this paper is
in showing that zero-sum continuous state stochastic games
can still be solved exactly through the use of symbolic dy-
namic programming. In the next section we present the
continuous state analogue to zero-sum DSGs.

4 ZERO-SUM CONTINUOUS
STOCHASTIC GAMES

Continuous state stochastic games (CSGs) are formally de-
fined by the tuple 〈~x,A1, . . . , An, T,R1, . . . , Rn, h, γ〉. In
CSGs states are represented by vectors of continuous vari-
ables, ~x = (x1, . . . , xm), where xi ∈ R. The other compo-
nents of the tuple are as previously defined in Section 3.

Zero-sum CSGs impose the same restrictions on the num-
ber of agents and the reward structure as their discrete state
counterparts.

The optimal solution to zero-sum CSGs can be calculated
via the following recursive functions:

Qh(~x, a1, a2) = R(~x, a1, a2) +

γ ·
∫
T (~x, a1, a2, ~x

′) · V h−1(~x′) d~x′ (8)

V h(~x) = max
m∈σ(A1)

min
a2∈A2

∑
a1∈A1

Qh(~x, a1, a2) ·ma1 (9)

We can derive Equation (8) from Equation (4) by replacing
s, s′ and the

∑
operator with their continuous state coun-

terparts, ~x, ~x′ and
∫

, respectively. Equation (9) is simply
Equation (5) restated.

4.1 SOLUTION TECHNIQUES

Zero-sum CSGs can be solved using a technique analogous
to that presented in Section 3.1. Namely, the value func-
tion in Equation (9) can be reformulated as the following
continuous optimisation problem:

maximise V h(~x)
subject to

V h(~x) ≤
∑
a1∈A1

Qh(~x, a1, a2) ·ma1 ∀a2 ∈ A2 (10a)

∑
a1∈A1

ma1 = 1; ma1 ≥ 0 ∀a1 ∈ A1

This optimisation problem cannot be easily solved us-
ing existing techniques due to two factors: (1) there are
infinitely many states in ~x; and (2) constraint (10a) is
nonlinear in ~x and ma1

for general representations of
Qh(~x, a1, a2). To further illustrate the second limitation
consider Qh(~x, a1, a2) in the form of a linear function in
x, for some a1 and a2:

Qh(~x, a1, a2) =
∑
j

cj · xj (11)

Substituting Equation (11) into constraint (10a) yields:

V h(~x) ≤
∑
a1∈A1

ma1

∑
j

cj · xj ∀a2 ∈ A2. (12)

It is clear from Equation (12) that a linear representation
of Qh(~x, a1, a2) leads to a nonlinear constraint where ma1

must be optimal with respect to the free variable ~x. This re-
sults in a parameterised nonlinear program, whose optimal
solutions are known to be NP-hard (Bennett & Mangasar-
ian, 1993; Petrik & Zilberstein, 2011).

At this point we present the first key insight of this pa-
per: we can transform constraint (10a) from a param-
eterised nonlinear constraint to a piecewise linear con-
straint by imposing the following restrictions: (1) restrict-
ing the reward function, R(~x, a1, a2), to piecewise con-
stant functions; and (2) restricting the transition function,
T (~x, a1, a2, ~x

′), to piecewise linear functions. As a re-
sult, V h(~x) and Qh(~x, a1, a2) will be piecewise constant
functions, thereby guaranteeing a tractable solution to con-
straint (10a).

One key challenge still remains, namely, dealing with the
infinitely many states in ~x. We know that the V h(~x) and
Qh(~x, a1, a2) functions have structure, but are unable to de-
rive them. Furthermore, given known structures for V h(~x)
and Qh(~x, a1, a2) we must determine the restrictions that

guarantee a tractable solution. The SDP framework in con-
junction with its closed-form operations provide answers to
both of these concerns.

In the next section we show that zero-sum CSGs, with the
aforementioned restrictions, can be solved optimally for ar-
bitrary horizons using symbolic dynamic programming.

5 SYMBOLIC DYNAMIC
PROGRAMMING

Symbolic dynamic programming (SDP) (Boutilier et al.,
2001) is the process of performing dynamic programming
via symbolic manipulation. In the following sections we
present a brief overview of SDP operations and also show
how SDP can be used to solve zero-sum CSGs.

5.1 CASE REPRESENTATION

SDP assumes that all functions can be represented in case
statement form (Boutilier et al., 2001) as follows:

f =

φ1 : f1
...

...
φk : fk

Here, the φi are logical formulae defined over the state
~x that can consist of arbitrary logical combinations of
boolean variables and linear inequalities (≥, >,<,≤) over
continuous variables. We assume that the set of conditions
{φ1, . . . , φk} disjointly and exhaustively partition ~x such
that f is well-defined for all ~x. In general, the fi may be
polynomials of ~x with non-negative exponents. However,
in this paper we restrict the fi to be either constant or lin-
ear functions of the state variable ~x. Henceforth, we refer to
functions with linear φi and piecewise constant fi as linear
piecewise constant (LPWC) and functions with linear φi
and piecewise linear fi as linear piecewise linear (LPWL)
functions.

5.2 CASE OPERATIONS

Operations on case statements may be either unary or bi-
nary. In this section we present a brief overview of the
SDP operations needed to calculate closed form solutions
to zero-sum CSGs. All of the operations presented here are
closed form for LPWC and LPWL functions. We refer the
reader to (Sanner et al., 2011; Zamani & Sanner, 2012) for
more thorough expositions of SDP and its operations.

Unary operations on a aingle case statement f, such as
scalar multiplication c · f where c ∈ R, are applied to each
fi (1 ≤ i ≤ k).

Binary operations such as addition, subtraction and mul-
tiplication are executed in two stages. Firstly, the cross-

product of the logical partitions of each case statement is
taken, producing paired partitions. Finally, the binary op-
eration is applied to the resulting paired partitions. The
“cross-sum” ⊕ operation can be performed on two cases in
the following manner:

{
φ1 : f1
φ2 : f2

⊕

{
ψ1 : g1
ψ2 : g2

=

φ1 ∧ ψ1 : f1 + g1
φ1 ∧ ψ2 : f1 + g2
φ2 ∧ ψ1 : f2 + g1
φ2 ∧ ψ2 : f2 + g2

“cross-subtraction”	 and “cross-multiplication”⊗ are de-
fined in a similar manner but with the addition operator re-
placed by the subtraction and multiplication operators, re-
spectively. Some partitions resulting from case operators
may be inconsistent and are thus removed.

Minimisation over cases, known as casemin, is defined as:

casemin

({
φ1 : f1
φ2 : f2

,

{
ψ1 : g1
ψ2 : g2

)
=

φ1 ∧ ψ1 ∧ f1 < g1 : f1
φ1 ∧ ψ1 ∧ f1 ≥ g1 : g1
φ1 ∧ ψ2 ∧ f1 < g2 : f1
φ1 ∧ ψ2 ∧ f1 ≥ g2 : g2
...

...

casemin preserves the linearity of the constraints and the
constant or linear nature of the fi and gi. If the fi or gi are
quadratic then the expressions fi > gi or fi ≤ gi will be
at most univariate quadratic and any such constraint can be
linearised into a combination of at most two linear inequal-
ities by completing the square.

Substitution into case statements is performed via a
set θ of variables and their substitutions e.g. θ ={
x′1/(x1 + x2), x

′
2/x

2
1exp(x2)

}
, where the LHS of the / rep-

resents the substitution variable and the RHS of the / repre-
sents the expression that should be substituted in its place.
θ can be applied to both non-case functions fi and case
partitions φi as fiθ and φiθ, respectively. Substitution into
case statements can be written as:

fθ =

φ1θ : f1θ
...

...
φkθ : fkθ

Substitution is used when calculating integrals with respect
to deterministic δ transitions (Sanner et al., 2011).

A case statement can be maximised with respect to a con-
tinuous parameter y as f1(~x, y) = maxyf2(~x, y). The con-
tinuous maximisation operation is a complex case opera-
tion whose explanation is beyond the scope of this paper.
We refer the reader to (Zamani & Sanner, 2012) for further
details.

Case statements and their operations are implemented
using Extended Algebraic Decision Diagrams (XADDs)
(Sanner et al., 2011). XADDs provide a compact

data structure with which to maintain compact forms of
Qh(~x, a1, a2) and V h(~x).

5.3 SDP FOR ZERO-SUM CONTINUOUS
STOCHASTIC GAMES

In this section we will show that a subclass of zero-sum
continuous stochastic games with (a) piecewise constant
rewards; and (b) piecewise linear transition functions can
be solved exactly and in closed-form by using SDP.

To calculate the exact solution to zero-sum CSGs we begin
by replacing all functions and operations in Equations (8)
and (9) by their case statement equivalents. That is, we ex-
change operations such as +,× and min, by their symbolic
equivalents, ⊕, ⊗ and casemin, respectively, and express
R(~x, a1, a2), T (~x, a1, a2, ~x′), V 0(~x) as case statements. ma1

is also encoded as a trivial case statement representing an
uninstantiated symbolic variable:

ma1 =
{
> : ma1

The optimal solution to zero-sum CSGs can now be de-
scribed by the following recursive SDP equations:

Qh(~x, a1, a2) = R(~x, a1, a2) ⊕

γ ⊗
∫
T (~x, a1, a2, ~x

′)⊗ V h−1(~x′) d~x′ (13)

Q̃h(~x, a2) =
∑
a1∈A1

Qh(~x, a1, a2)⊗ma1 (14)

V h(~x) =

max
m

casemin
(
casemina2∈A2

(
Q̃h(~x, a2)

)
, I
)

(15)

Equation (14) calculates a symbolic Q function weighted
by the variable ma1

for each a1. In Equation (15) the inner
casemin operation is calculated with respect to Q̃h(~x, a2)

instantiated with a particular a2. The “indicator” function I
serves as the summation constraint

∑
a1∈A1

ma1 = 1 and
ensures that the subsequent max operation returns legal
values for the ma1

. The indicator is defined as follows:

I ={
∀a1 ∈ A1 [(ma1 ≥ 0) ∧ (ma1 ≤ 1) ∧ (

∑
ma1 = 1)] : +∞

∀a1 ∈ A1¬ [(ma1 ≥ 0) ∧ (ma1 ≤ 1) ∧ (
∑
ma1 = 1)] : −∞

The function I returns +∞when the conjunction of all con-
straints on each ma1

are satisfied and −∞, otherwise.

In Algorithm 1 we present CSG-VI, a methodology to
calculate the optimal h-stage-to-go value function through
Equations (13) to (15). In the algorithm we notationally
specify the arguments of the Qh and V h functions when
they are instantiated by an operation. For the base case of
h = 0, we set V 0(~x), expressed in case statement form, to
zero or to the terminal reward. For all h > 0 we apply the

previously defined SDP operations in the following steps:

1. Prime the Value Function. In line 6 we set up a sub-
stitution θ = {x1/x′1, . . . , xm/x′m}, and obtain V h

′
=

V hθ, the “next state”.

2. Discount and add Rewards. We assume that the re-
ward function contains primed variables and incorpo-
rate it in line 8.

3. Continuous Regression. For the continuous state vari-
ables in ~x lines 10 – 11 follow the rules of integra-
tion w.r.t. a δ function (Sanner et al., 2011). This
yields the following symbolic substitution:

∫
f(x′j) ⊗

δ
[
x′j − g(~z)

]
dx′j = f(x′j)

{
x′j/g(~z)

}
, where g(~z) is a

case statement and ~z does not contain x′j . The lat-
ter operation indicates that any occurrence of x′j in
f(x′j) is symbolically substituted with the case state-
ment g(~z).

4. Incorporate Agent 1’s strategy. At this point we have
calculatedQh(~x, a1, a2), as shown in Equation (13). In
lines 13 - 14 we weight the strategy for a specific a1
by ma1

. We note that ma1
is a case statement repre-

senting an uninstantiated symbolic variable.

5. Case Minimisation. In lines 16 – 17 we compute the
best case for a2 as a function of all other variables, as
shown in Equation (14).

6. Incorporate Constraints. In line 19 we incorporate
constraints on the ma1

variable:
∑
a1∈A1

ma1 = 1 and
ma1 ≥ 0 ∧ma1 ≤ 1 ∀a1 ∈ A1. The casemin opera-
tor ensures that all case partitions which involve illegal
values of ma1

are mapped to −∞.

7. Maximisation. In lines 22 – 23 we compute the best
response strategy for every state. We note that this
can only be done via symbolic methods since there are
infinitely many states. At this point we have calculated
V h(~x) as shown in Equation (15).

It can be proved that all of the SDP operations used in Al-
gorithm 1 are closed form for LPWC or LPWL functions
(Sanner et al., 2011; Zamani & Sanner, 2012). Given a
LPWC V 0(~x) and that SDP operations are closed form, the
resulting V h+1(~x) is also LPWC. Therefore, by induction
V h+1(~x) is LPWC for all horizons h.

In the next section we demonstrate how SDP can be used
to compute exact solutions to a variety of zero-sum contin-
uous stochastic games.

6 EMPIRICAL RESULTS

In this section we evaluate our novel SDP solution tech-
nique for zero-sum CSGs on three continuous domains1:

1All of the source code can be found online at
http://code.google.com/p/xadd-inference.

Algorithm 1: CSG-VI(CSG, H , I) −→ (V h)

1 begin
2 V 0 := 0, h := 0
3 while h < H do
4 h := h+ 1
5 // Prime the value function
6 Qh := Prime(V h−1)
7 // Discount and add Rewards
8 Qh := R(~x, a1, a2, ~x

′)⊕ (γ ⊗Qh)
9 // Continuous Regression

10 for all x′j ∈ Qh do
11 Qh :=

∫
Qh ⊗ T (x′j |a1, a2, ~x) dx′

j

12 // Incorporate Agent 1’s strategy
13 for all a1 ∈ A1 do
14 Qh := Qh ⊕

(
Qh (a1)⊗ {> : ma1

)
15 // Case Minimisation
16 for all a2 ∈ A2 do
17 Qh := casemin(Qh, Qh (a2))

18 // Incorporate constraints
19 Qh := casemin(Qh, I)
20 // Maximisation
21 V h = Qh

22 for all a1 ∈ A1 do
23 V h := maxma1

V h (ma1
)

24 // Terminate if early convergence
25 if V h = V h−1 then
26 break
27 return (V h)

(1) continuous stochastic matching pennies; (2) binary op-
tion stochastic game; and (3) robust energy production.
The results represent the first known exact solutions to
these domains.

6.1 CONTINUOUS STOCHASTIC MATCHING
PENNIES

Matching pennies is a well known zero-sum game with
a mixed strategy Nash Equilibrium (Osborne, 2004). In
this paper we extend the standard formulation of the game
by incorporating continuous state and sequential decisions
while still maintaining the zero-sum nature of the reward.

6.1.1 Domain Description

We define continuous stochastic matching pennies as an ex-
tensive form game between two players p ∈ {1, 2}. The
aim of a player is to maximise its expected discounted pay-
off at a fixed horizon H. Our game is played within the
interval [0, 1], two fixed variables c ∈ [0, 1) and d ∈ (0, 1]
with (c < d), are used to partition the interval into three re-
gions r ∈ {1, 2, 3}. Each region is associated with its own

zero-sum reward structure. The continuous state variable
x ∈ [0, 1] is used to specify which region the players are
competing within.

At each horizon (h ≤ H) each player executes an action
ap ∈ {headsp, tailsp}. Player 1 “wins” if both players
choose the same action. Otherwise, Player 2 wins. The
joint actions of the players affect the state x as follows:

P (x′|x, a1, a2) =

δ

x′ −

(heads1) ∧ (heads2) ∧ (x ≥ k) : x− k
(heads1) ∧ (tails2) ∧ (x ≤ 1) : x+ k

(tails1) ∧ (heads2) ∧ (x ≥ k) : x+ k

(tails1) ∧ (tails2) ∧ (x ≤ 1) : x− k

The constant k ∈ (0, 1) is a step size which perturbs the
state x. If Player 1 wins, the state moves to the left by k,
otherwise it moves to the right by k. The Dirac function δ[·]
ensures that the transitions are valid conditional probability
functions that integrate to 1.

We define the rewards obtained by Player 1 in region r as:

Rr1 =

(heads1) ∧ (heads2) : αr1
(heads1) ∧ (tails2) : αr2
(tails1) ∧ (heads2) : αr3
(tails1) ∧ (tails2) : αr4

Here we restrict αr
i ∈ R. The rewards obtained by Player 2

in the same region are simply −Rr
1. Given this reward for-

mulation we specify two different reward structures: sym-
metric and asymmetric. In a symmetric reward structure
αr
1 = αr

4 and αr
2 = αr

3. An example of this reward struc-
ture is shown in Table 1. Under a symmetric reward set-
ting the expected reward for each player is the same across
all regions r. In an asymmetric reward structure we allow
each of the αr

i to differ in both sign and magnitude. Ta-
ble 2 shows an example of an asymmetric reward structure.
Under an asymmetric setting the expected reward for each
player may vary across each region r. This gives a player an
incentive to reach regions with a higher expected reward.

Table 1: Symmetric reward structure for Player 1.

Region 1 Region 2 Region 3
(heads1) ∧ (heads2) 10 5 20
(heads1) ∧ (tails2) -10 -5 -20
(tails1) ∧ (heads2) -10 -5 -20
(tails1) ∧ (tails2) 10 5 20

Table 2: Asymmetric reward structure for Player 1.

Region 1 Region 2 Region 3
(heads1) ∧ (heads2) 1 5 7
(heads1) ∧ (tails2) -3 -5 -2
(tails1) ∧ (heads2) 0 -5 10
(tails1) ∧ (tails2) 2 5 20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

State (x)

V
a
lu
e

(a) Symmetric rewards.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

State (x)

V
a
lu
e

(b) Asymmetric rewards.

Figure 1: The optimal value functions of the continuous
stochastic matching pennies game for Player 1 at horizon 4
under (a) symmetric and (b) asymmetric reward structures.
Threshold values are set to c = 0.3 and d = 0.7 and are
highlighted in red and green, respectively. The step size is
k = 0.3.

6.1.2 Results

We investigate the continuous stochastic matching pennies
game under both symmetric and asymmetric rewared struc-
tures. For both experiments the threshold values are set to
c = 0.3 and d = 0.7. The step size is k = 0.3.

Figure (1a) shows the results of the continuous stochastic
matching pennies game using the symmetric reward struc-
ture given in Table 1. The results show that the expected
reward for Player 1 remains at zero over all 4 horizons, ir-
respective of the state x. The symmetric reward structure
clearly shows that both players achieve the same expected
reward in all regions r. This in turn ensures that both play-
ers are indifferent between their pure strategies. Hence, the
expected reward for each player is zero in all regions. This
result corresponds to the well known solution of the match-
ing pennies game with symmetric rewards and serves as a
proof of concept for our novel solution technique.

Figure (1b) shows the effect of the asymmetric reward
structure given in Table 2. The figure shows that Player 1
achieves the highest expected reward in Region 3, followed
by Region 2 and finally by Region 1. This corresponds to
the expected reward within each region of Table 2. The
results indicate that the Player 1 is no longer indifferent be-
tween its pure strategies in each region and may take short-
term losses to reach more favourable regions.

6.2 BINARY OPTION STOCHASTIC GAME

Binary options are financial instruments which allow an in-
vestor to bet on the outcome of a yes/no proposition. The
proposition typically relates to whether the price of a par-
ticular asset that underlies the option will rise above or fall
below a specified amount, known as the strike price, κ ∈ R.
When the option reaches maturity the investor receives a
fixed pay-off if their bet was correct and nothing otherwise.

6.2.1 Domain Description

We analyse the valuation of a binary option as an extensive
form zero-sum game between a trader and the market. The
aim of the trader is to maximise their expected discounted
pay-off at a fixed horizon H through buying and selling
options within an adversarial market. The problem has two
state variables: the underlying market value of the asset
v ∈ [0, 100] and the trader’s inventory of options i ∈ N.

At each time step the trader can execute one of three actions
atrd ∈ {buytrd, selltrd, holdtrd}, where buytrd refers to a
request to buy an option from the market, selltrd refers to a
request to sell an option to the market and holdtrd is equiv-
alent to taking no action. The market can execute one of
two actions: amkt ∈ {sellmkt, nsellmkt}, where sellmkt

corresponds to selling an option to the trader and nsellmkt

corresponds to not selling to the trader.

The joint actions of the trader and market, atrd and amkt,
respectively, affect both the underlying market value of the
asset and the trader’s inventory. For the sake of simplicity
we assume that the market value may increase or decrease
by fixed step sizes, u ∈ R for an increase and d ∈ R for a
decrease.

The trader’s option inventory dynamics are given by:

P (i′|v, i, atrd, amkt) =

δ

i′ −

(buytrd) ∧ (sellmkt) : i+ 1

(selltrd) ∧ (i > 0) : i− 1

otherwise : i

It should be noted that under this formulation the market
will always buy an option from the trader when the trader
selects selltrd. The market value changes according to:

P (v′|v, i, atrd, amkt) =

δ

v′ −

(buytrd) ∧ (sellmkt) : v + u

(selltrd) ∧ (i > 0) : v − d
otherwise : v

Assuming that the strike price κ ∈ [0, 100], the rewards
obtained by the trader are given by:

Rtrader =

{
(selltrd) ∧ (i > 0) ∧ (v > κ) : 1

otherwise : 0

The market’s reward is simply the additive inverse of the
trader’s reward. Hence, the binary option game is zero-
sum.

6.2.2 Results

Figure 2: The optimal value function of the binary option
stochastic game for the trader at horizon 20. The strike
price is set to κ = 45.0 and the increment and decrement
values are set to u = 1.0 and d = 1.0, respectively. Under
the domain specification the value function is invariant to
the inventory i.

In Figure (2) we show the optimal value function for the
binary option game at horizon 20. The strike price is set to
κ = 45.0 and the increment and decrement values, u and
d are both set to 1.0. The value function clearly shows that
under this formulation the trader achieves the most reward
by selling options as soon v > κ. Selling an option causes
the underlying value to decrease. Once the value falls be-
neath the strike price, the trader will buy options, which
increases the underlying value. This leads to the continual
cycling of buying and selling of the option at values close
to the strike price κ. In essence the trader behaves like a
market maker in that they take both sides of the transaction
at values near κ. We note that while Figure (2) is invariant
to the inventory of options i, its inclusion is critical for the
correct formalisation of the domain.

6.3 ROBUST ENERGY PRODUCTION

The provision of energy resources is an integral component
of any economy. Energy providers must be able to pro-
duce energy in response to changes in energy demand. In
situations where demand exceeds supply, an energy crisis
may occur. In this paper we investigate energy production
from the viewpoint of an energy provider responsible for
supplying energy in an adversarial environment.

6.3.1 Domain Description

We define our energy production domain as an extensive
form zero-sum game between an energy provider and na-
ture. The aim of the energy provider is to maximise its

expected discounted reward at a fixed horizon H by chang-
ing production levels in response to changes in demand.
The domain has two state variables: the production level
p ∈ R+ and the energy demand d ∈ R+.

At each time step the energy provider can execute one of
two actions aprd ∈ {incprd, decprd}, where incprd refers
to increasing energy production and decprd refers to de-
creasing energy production. Nature can also execute one
of two actions anat ∈ {incdem, decdem}, where incdem
refers to increasing energy demand and decdem refers to
decreasing energy demand. We specify the increase in the
amount of energy produced or demanded by prdu, natu ∈
R+ and a corresponding decrease by prdd, natd ∈ R+.

The joint actions of the energy provider and nature, aprd
and anat, respectively, affect the production level as fol-
lows:

P (p′|d, p, aprd, anat) =

δ

p′ −

(incprd) : p+ prdu
(decprd) ∧ (p > prdd) : p− prdd
otherwise : p

The energy demand changes according to:

P (d′|d, p, aprd, anat) =

δ

d′ −

(incdem) : d+ natu
(decdem) ∧ (d > natd) : d− natd
otherwise : d

The reward obtained by the energy provider are specified
as:

Rprd =

{
(p < d) : −100
otherwise : 0

We note that under this reward structure failure to meet en-
ergy demand is heavily penalised, whereas meeting or even
exceeding demand are given the same reward. Nature’s re-
ward is simply the additive inverse of the energy provider’s
reward.

6.3.2 Results

In Figure (3) we show the optimal value function for the
robust energy production game at horizon 8. The produc-
tion and demand increase and decrease variables were set
to prdu = prdu = 1.0 and natu = natd = 0.5, respec-
tively. The value function shows that the energy provider
achieves the highest value when the energy provided meets
or exceeds demand. The value function is lowest when the
demand exceeds supply, which is in accordance with the
reward structure. The value function clearly decreases in

0
2

4
6

8
10

0
2

4
6

8
10

−600

−500

−400

−300

−200

−100

0

Production level (p)Demand (d)

V
a
lu
e

Figure 3: The optimal value function of the robust energy
production game for the producer at horizon 8. The pro-
duction and demand increase and decrease variables were
set to prdu = prdu = 1.0 and natu = natd = 0.5, respec-
tively.

a step-wise manner from the point where the production
level meets demand, indicating that production levels just
beneath demand have a higher value than those well below
demand.

7 RELATED WORK

Solutions to stochastic games have been proposed from
within both game theory and reinforcement learning. The
first algorithm, game theoretic or otherwise, for finding a
solution to a stochastic game was given by Shapley (Shap-
ley, 1953). Shapley’s algorithm calculates a value function
V (s) over discrete states which converges to an optimal
value function V ∗(s). V ∗(s) represents the expected dis-
counted future reward if both players in the game follow
the game’s Nash equilibrium. The algorithm is in essence
an extension of the Value Iteration algorithm to stochastic
games.

A partically implementable solution, based on reinforce-
ment learning, for a subclass of stochastic games was
first introduced by (Littman, 1994). Littman’s algorithm,
Minimax-Q, extends the traditional Q-learning algorithm
for MDPs to zero-sum discrete stochastic games. The al-
gorithm converges to the stochastic game’s equilibrium so-
lution. Hu and Wellman (Hu & Wellman, 1998) extended
Minimax-Q to general-sum games and proved that it con-
verges to a Nash equilibrium under certain restrictive con-
ditions. Although both reinforcement learning based algo-
rithms are able to calculate equilibrium solutions they are
limited to discrete state formulations of stochastic games.
In this paper we provide the first known exact closed-form
solution to a subclass of continuous state zero-sum stochas-
tic games defined by piecewise constant reward and piece-
wise linear transition functions.

Several techniques have been put forward to tackle contin-

uous state spaces in MDPs. Li and Littman (Li & Littman,
2005) describe a method for approximate solutions to con-
tinuous state MDPs. In their work, Li and Littman only
allow for rectilinearly aligned constraints in their reward
and transition functions, not arbitrary linear constraints,
and cannot handle general linear transition models with-
out approximation. Our SDP method provides exact solu-
tions without these restrictions, which makes SDP strictly
more general. Also, Li and Littman did not consider game-
theoretic extensions of their work or the parameterised op-
timisation problem that these extensions entail.

Symbolic dynamic programming techniques have been
previously used to calculate exact solutions to single agent
MDPs with both continuous state and actions in a variety
of non-game theoretic domains (Sanner et al., 2011; Za-
mani & Sanner, 2012). In this paper we build on this work
and present the first application of SDP to stochastic games
with concurrently acting agents.

8 CONCLUSIONS

In this paper we have characterised a subclass of zero-
sum continuous stochastic games that can be solved exactly
via parameterised linear optimisation. We have also pre-
sented a novel symbolic dynamic programming algorithm
that can be used to calculate exact solutions to this sub-
class of games for arbitrary horizons. The algorithm was
used to calculate the first known exact solutions to a vari-
ety of continuous stochastic games with piecewise constant
reward and piecewise linear transitions.

There are a number of avenues for future research. Firstly,
it is important to examine more general representations
of the reward and transition functions while still guar-
anteeing exact solutions. Another direction of research
lies within improving the scalability of the algorithm by
either extending techniques for Algebraic Decision Dia-
grams (Bahar et al., 1993) from APRICODD (St-Aubin
et al., 2000) under the current restrictions on the reward
and transition functions, bounded error compression for
XADDs (Vianna et al., 2013) for more expressive represen-
tations, or lazy approximation of value functions as piece-
wise linear XADDs (Li & Littman, 2005). Search based
approaches such as RTDP (Barto et al., 1995) and HAO*
(Meuleau et al., 2009) are also readily adaptable to SDP.
These extensions may then be used to model sequential
decision making in more complex financial and economic
domains. Finally, SDP can be used to calculate exact solu-
tions to general sum stochastic games. The advances made
within this paper open up a number of potential novel re-
search paths which may be used to progress solutions to
sequential game theoretic domains with continuous state.

References

Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D.,
Macii, E., Pardo, A., & Somenzi, F. 1993. Algebraic
Decision Diagrams and Their Applications. Journal
of Formal Methods in Systems Design, 10, 171–206.

Barto, Andrew G., Bradtke, Steven J., & Singh, Satinder P.
1995. Learning to Act using Real-Time Dynamic Pro-
gramming. Artificial Intelligence, 72(1-2), 81–138.

Bellman, Richard E. 1957. Dynamic Programming. Prince-
ton, NJ: Princeton University Press.

Bennett, Kristin P., & Mangasarian, O. L. 1993. Bilinear
Separation of Two Sets in N-space. Comput. Optim.
Appl., 2(3), 207–227.

Bertsekas, Dimitri P. 1987. Dynamic Programming: Deter-
ministic and Stochastic Models. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc.

Boutilier, Craig, Reiter, Ray, & Price, Bob. 2001. Sym-
bolic Dynamic Programming for First-order MDPs.
Pages 690–697 of: Proceedings of the Seventeenth In-
ternational Joint Conference on Artificial Intelligence
(IJCAI-01). IJCAI, vol. 1.

Howard, Ronald A. 1960. Dynamic Programming and
Markov Processes. The M.I.T. Press.

Hu, Junling, & Wellman, Michael P. 1998. Multiagent Re-
inforcement Learning: Theoretical Framework and an
Algorithm. Pages 242–250 of: Proceedings of the Fif-
teenth International Conference on Machine Learning
(ICML-98). ICML. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.

Li, Lihong, & Littman, Michael L. 2005. Lazy Approxi-
mation for Solving Continuous Finite-horizon MDPs.
Pages 1175–1180 of: Proceedings of the Twentieth
National Conference on Artificial Intelligence (AAAI-
05). AAAI, vol. 3. AAAI Press.

Littman, Michael L. 1994. Markov Games as a Framework
for Multi-Agent Reinforcement Learning. Pages 157–
163 of: Proceedings of the Eleventh International
Conference on Machine Learning Machine Learning
(ICML-94). ICML. San Francisco, California, USA:
Morgan Kaufmann Publishers Inc.

Meuleau, Nicolas, Benazera, Emmanuel, Brafman, Ro-
nen I., Hansen, Eric A., & Mausam. 2009. A Heuris-
tic Search Approach to Planning with Continuous Re-
sources in Stochastic Domains. Journal of Artificial
Intelligence Research, 34, 27–59.

Neumann, J. 1928. Zur Theorie der Gesellschaftsspiele.
Mathematische Annalen, 100(1), 295–320.

Osborne, Martin J. 2004. An Introduction to Game Theory.
New York: Oxford University Press.

Petrik, Marek, & Zilberstein, Shlomo. 2011. Robust Ap-
proximate Bilinear Programming for Value Function
Approximation. Journal of Machine Learning Re-
search, 12, 3027–3063.

Sanner, Scott, Delgado, Karina, & Nunes de Barros,
Leliane. 2011. Symbolic Dynamic Programming for
Discrete and Continuous State MDPs. Pages 1–10 of:
Proceedings of the Twenty-Seventh Conference on Un-
certainty in Artificial Intelligence (UAI-11). UAI.

Shapley, L. S. 1953. Stochastic Games. Proceedings of the
National Academy of Sciences, 39(10), 1095–1100.

St-Aubin, Robert, Hoey, Jesse, & Boutilier, Craig. 2000.
APRICODD: Approximate Policy Construction Us-
ing Decision Diagrams. Pages 1089 – 1095 of: Ad-
vances in Neural Information Processing 13 (NIPS
2000). NIPS. Denver, Colorado, USA: MIT Press.

Vianna, Luis Gustavo Rocha, Sanner, Scott, & Nunes de
Barros, Leliane. 2013. Bounded Approximate Sym-
bolic Dynamic Programming for Hybrid MDPs.
Pages 1–9 of: Proceedings of the Twenty-Ninth Con-
ference on Uncertainty in Artificial Intelligence (UAI-
13). UAI.

Zamani, Zahra, & Sanner, Scott. 2012. Symbolic Dynamic
Programming for Continuous State and Action MDPs.
Pages 1–7 of: Proceedings of the Twenty-Sixth Con-
ference on Artificial Intelligence (AAAI-12). AAAI.

