
Finding Optimal Bayesian Network Structures
with Constraints Learned from Data

Xiannian Fan1, Brandon Malone2 and Changhe Yuan1

1Queens College/City University of New York
2Helsinki Institute for Information Technology,

xfan2@gc.cuny.edu, brandon.malone@cs.helsinki.fi, changhe.yuan@qc.cuny.edu

Abstract

Several recent algorithms for learning Bayesian
network structures first calculate potentially op-
timal parent sets (POPS) for all variables and
then use various optimization techniques to find
a set of POPS, one for each variable, that con-
stitutes an optimal network structure. This pa-
per makes the observation that there is useful
information implicit in the POPS. Specifically,
the POPS of a variable constrain its parent can-
didates. Moreover, the parent candidates of all
variables together give a directed cyclic graph,
which often decomposes into a set of strongly
connected components (SCCs). Each SCC cor-
responds to a smaller subproblem which can be
solved independently of the others. Our results
show that solving the constrained subproblems
significantly improves the efficiency and scala-
bility of heuristic search-based structure learning
algorithms. Further, we show that by consider-
ing only the top p POPS of each variable, we
quickly find provably very high quality networks
for large datasets.

1 INTRODUCTION

Bayesian networks (BNs) are graphical models that rep-
resent uncertain relationships between random variables.
While BNs have become one of the most popular and well-
studied probabilistic model classes, a common bottleneck
lies in deciding upon their structure. Often, experts are un-
able to completely specify the structure; in these cases,
a good structure must be learned from expert knowledge
and available data. In this work, we consider the problem
of exact, score-based Bayesian network structure learning
(BNSL), which is known to be NP-hard (Chickering 1996).

Despite the difficulty of BNSL, though, a variety of al-
gorithms have been proposed which can solve modest-
sized learning problems. The first exact algorithms were

based on dynamic programming (Koivisto and Sood 2004;
Ott, Imoto, and Miyano 2004; Singh and Moore 2005;
Silander and Myllymäki 2006). Later algorithms have used
strategies such as integer linear programming (Jaakkola et
al. 2010; Cussens 2011; Bartlett and Cussens 2013) and
heuristic search (Yuan and Malone 2013; Malone et al.
2011; Malone and Yuan 2013). These algorithms generally
take as input the potentially optimal parent sets (POPS) for
each variable. They all improve upon dynamic program-
ming by, either implicitly or explicity, pruning the search
space and considering only promising structures.

In this paper, we focus on the heuristic search approach
first proposed by Yuan et al. (2011) in which BNSL is for-
mulated as a shortest-path finding problem. A state space
search strategy like A* or breadth-first branch and bound is
then used to solve the transformed problem. Previous work
in heuristic search for BNSL has focused on pruning un-
promising structures based on bounds derived from admis-
sible heuristic functions. In this work, we show that POPS
constraints, which are implicit in the problem input, sig-
nificantly improve the efficiency of the search by pruning
large portions of the search space.

The remainder of this paper is structured as follows. Sec-
tion 2 provides an overview of BNSL and the shortest-path
finding formulation of the problem. Section 3 introduces
POPS constraints and shows how they can be used to prune
the search space. Additionally, we describe a pruning strat-
egy which uses the constraints to trade guaranteed bounded
optimality for more scalable performance in Section 4. The
POPS constraints also reduce the space required by the
heuristics used for pruning during search, as described in
Section 5. In Section 6, we compare POPS constraints to
related work. Section 7 gives empirical results on a set of
benchmark datasets, and Section 8 concludes the paper.

2 BACKGROUND

This section reviews BNSL and the shortest-path finding
formulation of the learning problem (Yuan and Malone
2013), which is the basis of our new algorithm.

2.1 BAYESIAN NETWORK STRUCTURE
LEARNING

A Bayesian network (BN) consists of a directed acyclic
graph (DAG) in which the vertices correspond to a set of
random variables V = {X1, ..., Xn} and a set of condi-
tional probability distributions P (Xi|PAi), where all par-
ents of Xi are referred to as PAi. The joint probability
over all variables factorizes as the product of the condi-
tional probability distributions.

We consider the problem of learning a network structure
from a discrete dataset D = {D1, ..., DN}, where Di is an
instantiation of all the variables in V. A scoring function
s measures the goodness of fit of a network structure to
D (Heckerman 1998). The goal is to find a structure which
optimizes the score. We only require that the scoring func-
tion is decomposable (Heckerman 1998); that is, the score
of a network s(N) =

∑
i si(PAi). The si(PAi) values

are often called local scores. Many commonly used scor-
ing functions, such as MDL (Lam and Bacchus 1994) and
BDe (Buntine 1991; Heckerman, Geiger, and Chickering
1995), are decomposable.

2.2 LOCAL SCORES

While the local scores are defined for all 2n−1 possible par-
ent sets for each variable, this number is greatly reduced
by pruning parent sets that are provably never optimal (de
Campos and Ji 2011). We refer to this as lossless score
pruning because it is guaranteed to not remove the optimal
network from consideration. We refer to the scores remain-
ing after pruning as potentially optimal parent sets (POPS).

Other pruning strategies, such as restricting the cardinal-
ity of parent sets, are also possible, but these techniques
could eliminate parent sets which are in the globally opti-
mal network; we refer to pruning strategies which might
remove the optimal network from consideration as lossy
score pruning. Of course, these, and any other, score prun-
ing strategies can be combined.

Regardless of the score pruning strategies used, we still re-
fer to the set of unpruned local scores as POPS and denote
the set of POPS for Xi as Pi. The POPS are given as input
to the learning problem. We define the Bayesian network
structure learning problem (BNSL) as follows.

{ }

{ 2 } { 3 } { 4 }

{ 3,4 }{ 2,4 }{ 2,3 }

{ 1,2,3 }

{ 1 }

{ 1,4 }{ 1,3 }{ 1,2 }

{ 1,2,4 } { 1,3,4 } { 2,3,4 }

{ 1,2,3,4 }

Figure 1: An order graph for four variables.

The BNSL Problem
INPUT: A set V = {X1, . . . , Xn} of variables and a

set of POPS Pi for each Xi.

TASK: Find a DAG N∗ such that

N∗ ∈ argmin
N

n∑
i=1

si(PAi),

where PAi is the parent set of Xi in N and
PAi ∈ Pi.

2.3 SHORTEST-PATH FINDING FORMULATION

Yuan and Malone (2013) formulated BNSL as a shortest-
path finding problem. Figure 1 shows the implicit search
graph for four variables. The top-most node with the empty
variable set is the start node, and the bottom-most node
with the complete set is the goal node. An arc from U to
U ∪ {Xi} in the graph represents generating a successor
node by adding a new variable Xi as a leaf to an existing
subnetwork of variables U; the cost of the arc is equal to
the score of the optimal parent set for Xi out of U, which
is computed by considering all subsets of the variables in
PA ⊆ U, PA ∈ Pi, i.e.,

cost(U→ U ∪ {Xi}) = BestScore(Xi,U) (1)
= min

PAi⊆U,PAi∈Pi

si(PAi). (2)

In this search graph, each path from start to goal cor-
responds to an ordering of the variables in the order of
their appearance, so the search graph is also called as or-
der graph. Each variable selects optimal parents from the
variables that precede it, so combining the optimal parent
sets yields an optimal structure for that ordering. The short-
est path gives the global optimal structure.

2.4 HEURISTIC SEARCH ALGORITHMS

This shortest path problem has been solved using sev-
eral heuristic search algorithms, including A* (Yuan, Mal-
one, and Wu 2011), anytime window A* (AWA*) (Malone
and Yuan 2013) and breadth-first branch and bound (BF-
BnB) (Malone et al. 2011).

In A* (Hart, Nilsson, and Raphael 1968), an admissible
heuristic function is used to calculate a lower bound on the
cost from a node U in the order graph to goal. An f-cost
is calculated for U by summing the cost from start to U
(called g(U)) and the lower bound from U to goal (called
h(U)). For BNSL, g(U) corresponds to the score of the
subnetwork over the variables U, and h(U) estimates the
score of the remaining variables. So f(U) = g(U)+h(U).
The f-cost provides an optimistic estimation on how good
a path through U can be. The search maintains a list of
nodes to be expanded sorted by f-costs called open and
a list of already-expanded nodes called closed. Initially,
open contains just start, and closed is empty. Nodes are
then expanded from open in best-first order according to f-
costs. Expanded nodes are added to closed. As better paths
to nodes are discovered, they are added to open. Upon ex-
panding goal, the shortest path from start to goal has been
found.

In AWA* (Aine, Chakrabarti, and Kumar 2007), a sliding
window search strategy is used to explore the order graph
over a number of iterations. During each iteration, the algo-
rithm uses a fixed window size, w, and tracks the layer l of
the deepest node expanded. For the order graph, the layer
of a node corresponds to the number of variables in its sub-
network. Nodes are expanded in best-first order as usual by
A*; however, nodes selected for expansion in a layer less
that l−w are instead frozen. A path to goal is found in each
iteration, which gives an upper bound solution. After find-
ing the path to goal, the window size is increased by 1 and
the frozen nodes become open. The iterative process con-
tinues until no nodes are frozen during an iteration, which
means the upper bound solution is optimal. Alternatively,
the search can be stopped early if a resource bound, such
as running time, is exceeded; the best solution found so far
is output.

In BFBnB (Zhou and Hansen 2006), nodes are expanded
one layer at a time. Before beginning the BFBnB search,
a quick search strategy, such as AWA* for a few iterations
or greedy hill climbing, is used to find a “good” network
and its score. The score is used as an upper bound. During
the BFBnB search, any node with an f-cost greater than the
upper bound can safely be pruned.

Yuan et al. (2011) gave a simple heuristic function. Later,
tighter heuristics based on pattern databases were devel-
oped (Yuan and Malone 2012). All of the heuristics were
shown to be admissible, i.e., to always give a lower bound
on the cost from U to goal. Furthermore, the heuristics

have been shown to be consistent, which is a property simi-
lar to non-negativity required by Dijkstra’s algorithm. Con-
sistent heuristics always underestimate the cost of the path
between any two nodes (Edelkamp and Schrodl 2012). Pri-
marily, in A*, consistency ensures that the first time a node
is expanded, the shortest path to that node has been found,
so no node ever needs to be re-expanded.

3 LEARNING UNDER POPS
CONSTRAINTS

The main contribtion of our current work focuses on taking
advantage of the implicit information encoded in the POPS.
We will first motivate our approach using a simple example
and then describe the technical details.

3.1 A SIMPLE EXAMPLE

Table 1 shows the POPS for six variables. Based on these
sets, we can see that not all variables can select all other
variables as parents. For example, X1 can only select X2

as its parent (due to score pruning). We collect all of the
potential parents for Xi by taking the union of all PA ∈
Pi. Figure 2 shows the resulting parent relation graph for
the POPS in Table 1. The parent relation graph includes an
edge from Xj to Xi if Xj is a potential parent of Xi.

Naively, the complete order graph for six variables contains
26 nodes. However, from the parent relation graph, we see
that none of {X3, X4, X5, X6} can be a parent of X1 or
X2. Consequently, we can split the problem into two sub-
problems as shown in Figure 3: first, finding the shortest
path from start to {X1, X2}, and then, finding the shortest
path from {X1, X2} to goal. Thus, the size of the search
space is reduced to 22 + 24.

3.2 ANCESTOR RELATIONS

This simple example shows that the parent relation graph
can be used to prune the order graph without bounds. In
general, we must consider ancestor relations to prune the
order graph. In particular, if Xi can be an ancestor of Xj ,
and Xj cannot be an ancestor of Xi (due to local score
pruning), then no node in the order graph which contains
Xj but not Xi needs to be generated.

As a proof sketch, we can consider a node U which in-
cludes neither Xi nor Xj . If we add Xi and then Xj , then
the cost from U to U∪ {Xi, Xj} is BestScore(Xi,U) +
BestScore(Xj ,U ∪ {Xi}). On the other hand, if we
add Xj first, then the cost from U to U ∪ {Xi, Xj}
is BestScore(Xj ,U) + BestScore(Xi,U ∪ {Xj}).
However, due to the ancestor relations, we know that
BestScore(Xi,U∪{Xj}) = BestScore(Xi,U). So, re-
gardless of the order we add the two variables,Xi will have
the same parent choices. If we addXj first, though, thenXj

variable POPS
X1 {X2} {}
X2 {X1} {}
X3 {X1, X2} {X2, X6} {X1, X6} {X2} {X6} {}
X4 {X1, X3} {X1} {X3} {}
X5 {X4} {X2} {}
X6 {X2, X5} {X2} {}

Table 1: The POPS for six variables. The ith row shows Pi.

1 2

4 6

3

5

Figure 2: The parent relation graph constructed by aggre-
gating the POPS in Table 1. The strongly connected com-
ponents are surrounded by shaded shapes.

will have fewer choices. Therefore, addingXj as a leaf first
can never be better than adding Xi first (Yuan and Malone
2013).

3.3 POPS CONSTRAINTS PRUNING

We find the ancestor relations by constructing the parent
relation graph and extracting its strongly connected com-
ponents (SCCs). The SCCs of the parent relation graph
form the component graph, which is a DAG (Cormen et
al. 2001); each component graph node ci corresponds to an
SCC scci from the parent relation graph (which in turn cor-
responds to a set of variables in the Bayesian network). The
component graph includes a directed edge from ci to cj if
the parent relation graph includes an edge from a variable
Xi ∈ scci to Xj ∈ sccj .

The component graph gives the ancestor constraints: if cj is
a descendent of ci in the component graph, then variables in
sccj cannot be ancestors of variables in scci. Consequently,
the component graph gives POPS constraints which allow
the order graph to be pruned without considering bounds.
In particular, the POPS constraints allow us to prune nodes
in the order graph which do not respect the ancestor rela-
tions.

Tarjan’s algorithm (Tarjan 1972) extracts the SCCs from
directed graphs, like the parent relation graph. We chose to
use it because, in addition to its polynomial complexity, it

{ 1,2 }

{ 1,2,4 } { 1,2,5 } { 1,2,6 }

{ 1,2,5,6 }{ 1,2,4,6 }{ 1,2,4,5 }

{ 1,2,3,4,5 }

{ 1,2,3 }

{ 1,2,3,6 }{ 1,2,3,5 }{ 1,2,3,4 }

{ 1,2,3,4,6 } { 1,2,3,5,6 } { 1,2,4,5,6 }

{ 1,2,3,4,5,6 }

(a)

{ }

{ 1 } { 2 }

{ 1,2 }

{ 1,2,4 } { 1,2,5 } { 1,2,6 }

{ 1,2,5,6 }{ 1,2,4,6 }{ 1,2,4,5 }

{ 1,2,3,4,5 }

{ 1,2,3 }

{ 1,2,3,6 }{ 1,2,3,5 }{ 1,2,3,4 }

{ 1,2,3,4,6 } { 1,2,3,5,6 } { 1,2,4,5,6 }

{ 1,2,3,4,5,6 }

(b)

{ }

{ 1 } { 2 }

1st Subproblem

2nd Subproblem

Figure 3: Order graphs after applying the POPS constraints.
(a) The order graph after applying the POPS constraints
once. (b) The order graph after recursively applying the
POPS constraints on the second subproblem.

extracts the SCCs from the parent relation graph consistent
with their topological order in the component graph. Con-
sequently, all of the parent candidates of X ∈ scci appear
in PCi = ∪ik=1scck

1. After extracting the m SCCs, the
search can be split into m indepedent subproblems: one for
each SCC where starti is PCi−1 and goali is PCi. That
is, during the ith subproblem, we select the optimal par-
ents for the variables in scci. Of course, start0 = ∅ and
goalm = V. The worst-case complexity of subproblem i is
then O(2|scci|). Figure 3(a) shows the pruned order graph
resulting from the parent relation graph in Figure 2. In par-
ticular, it shows the first subproblem, from PC0 = ∅ to
PC1 = {X1, X2}, and the second subproblem, from PC1

to PC2 = V.

The (worst-case) size of the original order graph for n vari-
ables is as follows.

O(2|scc1|+...+|sccm|) = O(2n) (3)

The worst-case size of the search space after splitting into
subproblems using the SCCs is as follows.

O(2|scc1| + . . .+ 2|sccm|) = O(m ·max
|i|

2|scci|) (4)

That is, the complexity is at worst exponential in the size
of the largest SCC. Consequently, our method can scale to

1Depending on the structure of the component graph, this may
be a superset of the parent candidates for X .

datasets with many variables if the largest SCC is of man-
ageable size.

3.4 RECURSIVE POPS CONSTRAINTS PRUNING

As described in Section 3.3, the size of the search space
for the ith subproblem is O(2|scci|), which can still be in-
tractable for large SCCs. However, recursive application
of the POPS constraints can further reduce the size of the
search space. We refer to the constraints added by this strat-
egy as recursive POPS constraints.

The intuition is the same as that behind the POPS con-
straints. As an example, consider the subproblem associ-
ated with scc2 in Figure 3, which includes variables X3,
X4, X5 and X6. Naively, the order graph associated with
this subproblem has O(24) nodes. However, suppose we
add variable X3 as a leaf first. Then, the remaining vari-
ables split into three SCCs, and their order is completely
determined. Similarly, selecting any of the other variables
as the first to add as a leaf completely determines the order
of the rest. Figure 3(b) shows the order graph after applying
recursive POPS constraints.

In general, selecting the parents for one of the variables has
the effect of removing that variable from the parent relation
graph. After removing it, the remaining variables may split
into smaller SCCs, and the resulting smaller subproblems
can be solved recursively. These SCC checks can be imple-
mented efficiently by again appealing to Tarjan’s algorithm.
In particular, after adding variable Xi as a leaf from U, we
remove all of those variables from the parent relation graph.
We then find the topologically first SCC and expand just the
variables in that component. As we recursively explore the
remaining variables, they will all eventually appear in the
first SCC of the updated parent relation graph.

4 TOP-p POPS CONSTRAINT

As shown in Equation 4, the complexity of the search
largely depends on the size of the largest strongly con-
nected component. The recursive splitting described in Sec-
tion 3.4 helps reduce this complexity, but for large, highly
connected SCCs, the subproblems may still be too large to
solve. For these cases, we can tradeoff between the com-
plexity of the search and a bound on the optimality of the
solution. In particular, rather than constructing the parent
relation graph by aggregating all of the POPS, we can in-
stead create the graph by considering only the best p POPS
for each variable. We consider the minimization version of
BNSL, so the best POPS are those with the lowest scores.
This yields a set of parent candidates for each variable, and
only POPS which are subsets of these parent candidates are
retained. The empty set is always a subset of the parent can-
didates, so some DAG (e.g., the DAG with no edges) is al-
ways consistent with the resulting pruned set of POPS. We

call this score pruning strategy the top-p POPS constraint.

By removing some of the POPS in this manner, though,
we can no longer guarantee to find the globally opti-
mal Bayesian network. That is, this score pruning strat-
egy is lossy. Despite losing the globally optimal guar-
antee, though, we can still offer a bounded suboptimal-
ity guarantee. In particular, suppose we apply the top-p
POPS constraint and learn a BN N with score s(N) in
which Xi selects parents PAi with score si(PAi). Ad-
ditionally, suppose the best pruned parent set PA′i for Xi

has score si(PA′i). Then, the most improvement we could
have in the score by including the pruned POPS for Xi

is δi = max(0, si(PAi) − si(PA′i)). The max is neces-
sary when the selected parent set is better than the best ex-
cluded parent set. Consequently, a suboptimality bound ε
on the score of the unconstrained optimal network relative
to s(N) is as follows.

ε =
s(N)∑

i (si(PAi)− δi)
(5)

When ε is 1, N is the globally optimal network.

5 REDUCING THE SPACE
REQUIREMENTS OF THE HEURISTIC

In this section we show that the POPS constraints can re-
duce the space requirements of the lower bound heuristc
used during search.

A simple heuristic function was introduced for comput-
ing lower bounds for the order graph (Yuan and Malone
2013) which allows each remaining variable to choose
optimal parents from all the other variables. This com-
pletely relaxes the acyclicity constraint on the BN struc-
ture. The heuristic was proven to be admissible, meaning
it never overestimates the distance to goal (Yuan and Mal-
one 2013). However, because of the complete relaxation of
the acyclicity constraint, the simple heuristic may generate
loose lower bounds.

5.1 THE k-CYCLE CONFLICT HEURISTIC

In (Yuan and Malone 2012), an improved heuristic func-
tion called k-cycle conflict heuristic was proposed which
reduces the amount of relaxation. The idea is to divide the
variables into multiple groups with a size up to k and en-
force acyclicity within each group while still allowing cy-
cles between the groups. Each group (subset of variables)
is called a pattern. One approach to creating the patterns
is to divide the variables V into l approximately equal-
sized static subsets Vi (typically l = 2, so k = n/2). For
each Vi, a pattern database hi is created by performing
a breadth-first search in a “reverse” order graph in which
start is V and goal is Vi. A node U′ in the graph is
expanded by removing each of the variables X ∈ Vi.

An arc from U′ ∪ {X} to U′ corresponds to selecting
the best parents for X from among U′ and has a cost of
BestScore(X,U′). The optimal g cost for node U′ gives
the cost of the pattern V \ U′. The patterns from differ-
ent groups are guaranteed to be mutually exclusive, so the
heuristic value of a node U in the order graph is the sum of
the pattern costs for the variables remaining in each parti-
tion. That is, h(U) =

∑l
i hi(Vi∩(V\U)). This approach

is a statically-partitioned additive pattern database heuris-
tic (Felner, Korf, and Hanan 2004) referred to as static pat-
tern databases. Static pattern databases were shown to be
consistent (Yuan and Malone 2013).

5.2 CREATING PATTERN DATABASES FOR
SUBPROBLEMS

As described in Section 3, the search is split into an in-
dependent subproblem for each SCC. Furthermore, us-
ing Tarjan’s algorithm, the SCCs are ordered according
to their topological order in the component graph. Conse-
quently, we construct static pattern databases using a sim-
ilar strategy as before. Namely, each SCC is partitioned
into l groups scci = scci1 . . . sccil (typically l = 2).
For each partition, a pattern database hik is created. For
hik, the pattern costs are calculated using a breadth-first
search in a reverse order graph in which start is PCi−1 ∪
sccik and goal is PCi−1. The arc costs in this graph
are BestScore(X, (

⋃
j 6=k sccij) ∪U). Thus, the heuristic

value from U to PCi, referred to as h1, is as follows.

h1(U) =

l∑
k

hik(sccik ∩ (V \U)) (6)

The pattern databases are constructed at the beginning of
the search based on the parent relation graph. That is, new
pattern databases are not created for recursive subproblems.

The pattern databases based on the SCCs are typically
smaller than those previously proposed for the entire space.
The space complexity of pattern databases created based
on l balanced partitions is O(l · 2n/l). On the other hand,
the space complexity of pattern databases created based
on l balanced partitions separately for m SCCs of size
O(max|scci| 2

|scci|) is O(m ·max|scci| 2
|scci|/l). Thus, the

space complexity of the pattern databases based on the
SCCs is less than that based on the balanced partitions
alone, unless there is only one SCC. In that case, the space
complexity is the same.

5.3 CALCULATING THE HEURISTIC VALUE

The heuristic value for node U in the subproblem for
scci is calculated in two steps. We first calculate h1(U),
the heuristic value from U to PCi, using the the pattern
databases described in Section 5.2. Second, we calculate

h2(U), the estimated distance from PCi to V, as follows.

h2(U) =

m∑
j=i+1

h1(sccj) (7)

That is, the h2 value is the sum of h1 values for the start
nodes of the remaining subproblems. Due to the POPS
constraints, none of these variables will have been added
as leaves when considering the ith subproblem. The total
heuristic value is then h′(U) = h1(U) + h2(U). The h2
values are the same for all nodes in the ith subproblem, so
they can be precomputed.

Theorem 1. The new heuristic h′ is consistent.

Proof. We prove the theorem by showing that both h1 and
h2 are consistent. The consistency of h1 follows from the
consistency of the static pattern databases (Yuan and Mal-
one 2013). The h2 value is a sum of h1 values for mutually
exclusive patterns, so it is also consistent. Therefore, the
entire heuristic is consistent.

6 RELATED WORK

The parent relation graph is, in effect, a directed super-
structure. Consequently, the work presented in this paper
is quite related to the work dealing with superstructures. To
the best of our knowledge, Ordyniak and Szeider (2013) are
the only other authors to consider directed superstructures.
They prove that BNSL is solvable in polynomial time for
acyclic directed superstructures; our algorithm agrees with
this theoretical result because, if the parent relation graph
is acyclic, then it will have n SCCs of size 1. Thus, the
complexity of our algorithm would be O(n).

The work on undirected superstructures, e.g., (Perrier,
Imoto, and Miyano 2008), is also related to our work. Any
undirected superstructure can be translated into a parent re-
lation graph by replacing the undirected edges in the su-
perstructure with directed edges in both directions. How-
ever, edges directed in only one direction give an order to
the SCCs which further reduce the search space. So, our
algorithm leverages all of the information available from
the undirected superstructure, but further makes use of con-
straints those structures cannot express.

Recently, Parviainen and Koivisto (2013) explored prece-
dence constraints, which are similar to our POPS con-
straints. In their work, ideals of partial orders on the vari-
ables are used to reduce the search space of dynamic pro-
gramming for BNSL. This approach is similar in spirit to
our use of the component graph to reduce the search space.
In fact, the component graph could be used to reduce the
search space of dynamic programming. However, after se-
lecting the ideals, they are fixed. So the recursive decom-
position described in Section 3.4 is not compatible with
the ideals formulation. Experimentally, we show that the

recursive application of constraints is important for some
datasets.

Integer linear programming (ILP) (Bartlett and Cussens
2013) is another successful strategy for BNSL. A recent
study (Malone et al. 2014) found that the performances of
ILP and heuristic search are largely orthogonal, particu-
larly with respect to the number of POPS. Consequently,
this work has focused on improvements to heuristic search.
Nevertheless, the component graph is readily applicable to
ILP by similarly creating subproblems and solving them
with independent ILP instances. Indeed, an interesting av-
enue for future research is to dynamically select between
ILP and heuristic search for each subproblem.

6.1 EXPERT KNOWLEDGE CONSTRAINTS

The formulation of BNSL as an optimization over POPS
gives a natural method for including expert knowledge in
the form of hard constraints on the structure to be learned,
such as those proposed by, e.g., (de Campos and Ji 2011).
In particular, given expert knowledge about required or for-
bidden parent relationships and maximum parent set car-
dinalities, we omit POPS which violate these constraints.
The POPS constraints automatically prune the parts of the
search space which violate the expert knowledge.

In general, hard expert knowledge constraints are lossy be-
cause they could disallow parent sets which would appear
in an optimal structure based solely on the data and scor-
ing function. Nevertheless, we still consider the network
learned under expert knowledge constraints as optimal. For
cases in which we use expert knowledge constraints and the
top-p POPS constraint, parent sets disallowed by the expert
knowledge constraints are not considered in the subopti-
mality bound calculation in Equation 5.

7 EMPIRICAL EVALUATION

In order to evaluate the efficacy of the POPS constraints
and top-p POPS constraint, we ran a set of experiments on
benchmark datasets from the UCI machine learning repos-
itory2 and the Bayesian network repository3. We gener-
ated 1, 000 records from the benchmark networks in the
repository using logic sampling. The experiments were per-
formed on an IBM System x3850 X5 with 16 2.67GHz In-
tel Xeon processors and 512G RAM; 1TB disk space was
used. Our code is available online4.

Several heuristic search algorithms have been adapted for
BNSL. We chose to evaluate A* (Yuan, Malone, and Wu
2011) because of its guarantee to expand a minimal num-
ber of nodes; AWA* (Malone and Yuan 2013) because it

2
http://archive.ics.uci.edu/ml

3
http://compbio.cs.huji.ac. il/Repository/

4
http://url.cs.qc.cuny.edu/software/URLearning.html

has been shown to find high quality, often optimal, solu-
tions very quickly; and breadth-first branch and bound (BF-
BnB) (Malone et al. 2011) because it has been shown to
scale to larger datasets by using external memory. We used
MDL as the scoring function. In all cases, we used static
pattern databases; the variable groups were determined by
partitioning the parent relation graph after applying the top-
p = 1 POPS constraint (Fan, Yuan, and Malone 2014).
Pattern database construction occurs only once after con-
structing the parent relation graph.

7.1 POPS CONSTRAINTS

We first tested the effect of the POPS constraints, which
always guarantee learning the globally optimal structure.
Table 2 compares the original version of each algorithm to
versions using the POPS constraints.

We first considered three variants of A*: a basic version
not using POPS constraints; a version using the POPS con-
straints but not applying them recursively as described in
Section 3.4; and a version which uses the recursive POPS
constraints. As the table shows, the versions of A* aug-
mented with the POPS constraints always outperform the
basic version. The improvement in running time ranges
from two times on several of the datasets to over an order
of magnitude on three of the datasets. Additionally, the ba-
sic version is unable to solve Mildew, Soybean and Barley
within the time limit (30 minutes); however, with the POPS
constraints, all of the datasets are easily solved within the
limit. The number of nodes expanded, and, hence, memory
requirements, are similarly reduced.

The recursive POPS constraints always reduce the number
of nodes expanded5. However, it sometimes increases the
running time. The overhead of Tarjan’s algorithm to recur-
sively look for SCCs is small; however, in some cases, such
as when the parent relation graph is dense, the additional
work yields minimal savings. In these cases, despite the re-
duction in nodes expanded, the running time may increase.

On the other hand, when the parent relation graph is sparse,
the advantages of the recursive POPS constraints are some-
times more pronounced. For example, the running time of
Mildew is reduced in half by recursively applying POPS
constraints. Most networks constructed by domain experts,
including those evaluated in this study, are sparse. Our anal-
ysis shows that these datasets also yield sparse parent re-
lation graphs. Thus, our results suggest that the recursive
constraints are sometimes effective when the generative
process of the data is sparse. The overhead of looking for
the recursive POPS constraints is minimal, and it some-
times offers substantial improvement for sparse generative
processes. So we always use it in the remaining experi-
ments.

5For some datasets, the precision shown in the table is too
coarse to capture the change.

Dataset Results
Name n N POPS Density PD (s) A* A*, O A*,R AWA* AWA*,R BFBnB BFBnB,R
Mushroom 23 8124 13025 0.87 0.15 Time (s) 0.74 0.41 0.67 0.75 0.47 0.61 0.78

Nodes 0.05 0.04 0.04 0.06 0.05 0.06 0.04
Autos 26 159 2391 0.75 0.17 Time (s) 46.62 20.93 26.76 44.70 19.86 11.24 6.68

Nodes 3.26 1.63 1.63 4.92 2.47 3.26 1.63
Insurance* 27 1000 560 0.35 0.21 Time (s) 98.08 52.81 50.97 118.23 66.75 47.46 28.58

Nodes 7.83 3.92 3.77 14.51 6.51 8.16 3.77
Water* 32 1000 4022 0.24 0.49 Time (s) 14.10 0.03 0.03 14.10 0.03 32.82 0.80

Nodes 1.59 0.02 0.02 1.59 0.01 7.10 0.01
Mildew* 35 1000 360 0.16 0.50 Time (s) OT 5.20 2.33 OT 3.71 OT 3.18

Nodes OT 0.56 0.37 OT 0.44 OT 0.36
Soybean 36 307 5926 0.58 0.54 Time (s) OT 435.65 511.55 OT 526.13 OT 1230.41

Nodes OT 9.78 9.64 OT 11.36 OT 129.77
Alarm* 37 1000 672 0.16 1.39 Time (s) 76.51 6.47 4.06 46.98 4.80 22.32 3.83

Nodes 2.75 0.33 0.24 3.49 0.30 2.75 0.24
Bands 39 277 892 0.26 2.03 Time (s) 109.75 0.39 0.47 74.02 0.40 249.04 1.34

Nodes 3.63 0.03 0.03 3.99 0.03 41.81 0.03
Spectf 45 267 610 0.24 43.46 Time (s) 89.08 90.62 92.17 44.41 36.79 32.34 29.59

Nodes 2.26 2.26 2.17 3.17 3.17 2.53 2.44
Barley* 48 1000 634 0.1 0.73 Time (s) OT 2.51 1.28 OT 1.10 OT 1.85

Nodes OT 0.64 0.08 OT 0.21 OT 0.08

Table 2: The number of expanded nodes (in millions) and running time (in seconds) of A*, AWA* and BFBnB with/without the POPS constraints on a set of benchmark
datasets. “n” gives the number of variables in the dataset, “N” gives the number of records in the dataset, “POPS” gives the number of POPS after lossless pruning, “Density”
gives the density of the parent relation graph constructed from the POPS (defined as the number of edges divided by the number of possible edges), and “PD” gives the time
(in seconds) to construct the pattern database. “A*,O” gives the statistics for A* using the POPS constraints, but not applying them recursively. “A*,R” gives the statistics for
A* using the recursive POPS constraints. Similarly, “AWA*”, “AWA*, R”, “BFBnB” and “BFBnB, R” refer to the respective basic algorithms or the algorithm using recursive
POPS constraints. “*” indicates the dataset was generated from a repository network using logic sampling; all other datasets are from UCI. OT means out of time (30 minutes).

The anytime window A* algorithm enjoyed improvements
similar to those seen in A*. As the table shows, A* always
expanded fewer nodes than AWA*; nevertheless, the run-
times of AWA* are often shorter than those of A*. This is
because AWA* performs a series of iterations, and open
is cleared after each of those iterations. Consequently, the
associated priority queue operations are often faster for
AWA* than A*.

A key factor in the performance for BFBnB is the upper
bound it uses for pruning. Previous results (Malone and
Yuan 2013) have shown that AWA* is effective at finding
high quality solutions quickly, so we found the bound by
running AWA* for 5 seconds on datasets with less than 35
variables and 10 seconds for larger datasets. AWA* used
the POPS constraints when BFBnB used them. BFBnB ex-
hibited improvements in line with those for A* and AWA*.

7.2 TOP-p POPS CONSTRAINT

We tested AWA* on the dataset Hailfinder, which has 56
variables. Even when using the recursive POPS constraints,
though, AWA* was unable to prove optimality within the
30-minute time limit. Therefore, we used this dataset to test
the effect of the top-p POPS constraint by varying p from 1
to 13. The upper bound on p was set to 13 because AWA*
was unable to complete within the time limit for p = 13.

Primarily, we evaluated the running time and associated
suboptimality bound as we increased p (which has the ef-
fect of pruning fewer POPS). As Figure 4 (top) shows, the
recursive order constraints are quite effective under the top-
p POPS constraint; the constrained problems are solved in
under 15 seconds for p up to 12, and the provable subop-
timality bound calculated using Equation 5 decreases very

rapidly. This provable suboptimality between the learned
network and global optimum is less than 1% even when p
is only 7.

The suboptimality bound usually decreases as p increases.
From p = 7 to p = 8, though, it slightly increases; the
scores of the learned networks were the same (not shown).
This is a result of equivalence classes of Bayesian net-
works. The suboptimality bound calculation in Equation 5
focuses on parent sets of individual variables, so it is sensi-
tive to which member of an equivalence class the algorithm
learns. Future work could investigate tightening the bound
by considering all members in the same equivalence class
as the learned network.

As mentioned, AWA* was unable to find the provably opti-
mal network under the p = 13 constraint. Equation 4 sug-
gests that the size of the largest SCC in the parent relation
graph is a key factor in determining the difficulty of an in-
stance of BNSL. However, the recursive POPS constraints
offer the potential to split large SCCs after considering a
few of their variables. Figure 4 (middle) shows that the size
of the largest SCC does substantially increase from p = 12
to p = 13, which empirically confirms our theoretical re-
sult. Somewhat unexpectedly, though, the figure also shows
that the density of the parent relation graph does not signif-
icantly increase as more POPS are included. So, at least in
this case, despite the sparsity of the parent relation graph,
the recursive order constraints are unable to break the large
SCC into manageable subproblems. This result agrees with
those in Table 2 which show that sparsity does not necessar-
ily indicate the efficacy of the recursive POPS constraints.

In addition to the characterstics of the parent relation graph,
we also considered the number of POPS included as p in-

creases. Figure 4 (bottom) shows that the number of in-
cluded POPS follows a similar trend to the density of the
parent relation graph. That is, even as p increases, more
POPS are not necessarily included for all variables. This is
because we already include all subsets of parent candidates
from the top p POPS at earlier iterations. Additionally, the
number of POPS (479 when p = 13) is quite small for this
dataset, although the number of variables is relatively large
(56). Previous studies (Malone and Yuan 2013) have shown
that basic heuristic search methods struggle with datasets
like this; however, when augmented with the POPS con-
straints, heuristic search very quickly finds a network that
is provably quite close to optimal. This result clearly shows
that the POPS constraints significantly expand the applica-
blility of heuristic search-based structure learning.

Despite the inability of AWA* to find the provably optimal
network under the top-p POPS constraint when p = 13,
we can nevertheless take advantage of its anytime behav-
ior to calculate a suboptimality bound. At each iteration,
AWA* produces an optimal network with respect to its cur-
rent window size. We can then use Equation 5 to bound
the suboptimality of the learned network. In principle, this
even suggests that we may be able to prove global opti-
mality before completing the AWA* search, although this
likely would require a tighter bound under the top-p POPS
constraint than the naive one proposed in this paper.

Even for very small values of p, though the top-p POPS
constraint results in networks provably very close to the
globally optimal solution. In order to more thoroughly un-
derstand why such constrained problems still give provably
very high quality solutions, we plotted the scores of the top
p POPS for variable X37 from Hailfinder in Figure 5. The
figure shows that the first 4 scores are much better than
the remaining ones; consequently, the globally optimal net-
work is more likely to include one of these parent sets for
X37 than the others, which are much worse. Most of the
other variables behaved similarly; consequently, p does not
need to be very large to still encompass most of the parent
selections in the globally optimal network.

0 5 10 15 20 25 30 35 40 45
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

The index of score in POPS

lo
ca

l s
co

re

Figure 5: The POPS of variableX37 from Hailfinder, sorted
in ascending order

0 1 2 3 4 5 6 7 8 9 10 11 1212.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10.1

E
rr

o
r

B
o

u
n

d
 U

n
d

er
 T

o
p

 p
 P

O
P

S

p

0 2 4 6 8 10 12
0

10

20

R
u

n
n

in
g

 T
im

e
U

n
d

er
 T

o
p

 p
 P

O
P

SError Bound
Running Time

0 1 2 3 4 5 6 7 8 9 10 11 1212.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.120.12

D
en

si
ty

 U
n

d
er

 T
o

p
 p

 P
O

P
S

p

0 2 4 6 8 10 12
0

20

40

S
iz

e
o

f
M

ax
 S

C
C

 U
n

d
er

 T
o

p
 p

 P
O

P
SDensity

Size of Max SCC

1 2 3 4 5 6 7 8 9 10 11 12
50

100

150

200

250

300

350

400

450

500

p

N
u

m
b

er
 o

f
P

O
P

S
 o

f
T

o
p

 p
 P

O
P

S

Figure 4: The behavior of Hailfinder under the top-p POPS
constraint as p varies. (top) Running time and suboptimal-
ity (middle) Size of the largest SCC and density of the par-
ent relation graph (bottom) Number of POPS included

8 CONCLUSION

In this work, we have shown how POPS constraints, which
are implicit in the input to a BNSL instance, can signifi-
cantly improve the performance of heuristic search on the
problem. Other algorithms, such as integer linear program-
ming, can also benefit from the POPS constraints. We also
introduced the top-p POPS constraint and showed how it
can be used to further take advantage of the POPS con-
straints while still providing guaranteed error bounds. Em-
pirically, we showed that the POPS constraints are prac-
tically effective and that the top-p POPS constraint can
yield provably very high quality solutions very quickly. Fu-
ture work includes more thorough empirical evaluation and
comparison with other BNSL techniques as well as investi-
gation into conditions when the POPS constraints are most
effective.

Acknowledgements This research was supported by
NSF grants IIS-0953723, IIS-1219114 and the Academy
of Finland (COIN, 251170).

References

Aine, S.; Chakrabarti, P. P.; and Kumar, R. 2007. AWA*-a
window constrained anytime heuristic search algorithm. In
Proceedings of the 20th International Joint Conference on
Artificial Intelligence, 2250–2255.

Bartlett, M., and Cussens, J. 2013. Advances in Bayesian
network learning using integer programming. In Proceed-
ings of the 29th Conference on Uncertainty in Artificial In-
telligence.

Buntine, W. 1991. Theory refinement on Bayesian net-
works. In Proceedings of the 7th Conference on Uncer-
tainty in Artificial Intelligence, 52–60.

Chickering, D. M. 1996. Learning Bayesian networks is
NP-complete. In Learning from Data: Artificial Intelli-
gence and Statistics V, 121–130. Springer-Verlag.

Cormen, T. H.; Stein, C.; Rivest, R. L.; and Leiserson, C. E.
2001. Introduction to Algorithms. McGraw-Hill Higher
Education.

Cussens, J. 2011. Bayesian network learning with cutting
planes. In Proceedings of the 27th Conference on Uncer-
tainty in Artificial Intelligence, 153–160.

de Campos, C. P., and Ji, Q. 2011. Efficient learning of
Bayesian networks using constraints. Journal of Machine
Learning Research 12:663–689.

Edelkamp, S., and Schrodl, S. 2012. Heuristic Search:
Theory and Applications. Morgan Kaufmann.

Fan, X.; Yuan, C.; and Malone, B. 2014. Tightening bounds
for Bayesian network structure learning. In Proceedings of
the 28th AAAI Conference on Artificial Intelligence.

Felner, A.; Korf, R.; and Hanan, S. 2004. Additive pat-
tern database heuristics. Journal of Artificial Intelligence
Research 22:279–318.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions On Systems Science And Cyber-
netics 4(2):100–107.

Heckerman, D.; Geiger, D.; and Chickering, D. M. 1995.
Learning Bayesian networks: The combination of knowl-
edge and statistical data. Machine Learning 20:197–243.

Heckerman, D. 1998. A tutorial on learning with Bayesian
networks. In Jordan, M., ed., Learning in Graphical Mod-
els, volume 89 of NATO ASI Series. Springer Netherlands.
301–354.

Jaakkola, T.; Sontag, D.; Globerson, A.; and Meila, M.
2010. Learning Bayesian network structure using LP relax-
ations. In Proceedings of the 13th International Conference
on Artificial Intelligence and Statistics.

Koivisto, M., and Sood, K. 2004. Exact Bayesian struc-
ture discovery in Bayesian networks. Journal of Machine
Learning Research 5:549–573.

Lam, W., and Bacchus, F. 1994. Learning Bayesian be-
lief networks: An approach based on the MDL principle.
Computational Intelligence 10:269–293.

Malone, B., and Yuan, C. 2013. Evaluating anytime al-
gorithms for learning optimal Bayesian networks. In Pro-
ceedings of the 29th Conference on Uncertainty in Artificial
Intelligence.

Malone, B.; Yuan, C.; Hansen, E.; and Bridges, S. 2011.
Improving the scalability of optimal Bayesian network
learning with external-memory frontier breadth-first branch
and bound search. In Proceedings of the 27th Conference
on Uncertainty in Artificial Intelligence, 479–488.

Malone, B.; Kangas, K.; Järvisalo, M.; Koivisto, M.; and
Myllymäki, P. 2014. Predicting the hardness of learning
Bayesian networks. In Proceedings of the 28th AAAI Con-
ference on Artificial Intelligence.

Ordyniak, S., and Szeider, S. 2013. Parameterized com-
plexity results for exact Bayesian network structure learn-
ing. Journal of Artificial Intelligence Research 46:263–
302.

Ott, S.; Imoto, S.; and Miyano, S. 2004. Finding optimal
models for small gene networks. In Pacific Symposium on
Biocomputing, 557–567.

Parviainen, P., and Koivisto, M. 2013. Finding optimal
Bayesian networks using precedence constraints. Journal
of Machine Learning Research 14:1387–1415.

Perrier, E.; Imoto, S.; and Miyano, S. 2008. Finding opti-
mal Bayesian network given a super-structure. Journal of
Machine Learning Research 9:2251–2286.

Silander, T., and Myllymäki, P. 2006. A simple approach
for finding the globally optimal Bayesian network struc-
ture. In Proceedings of the 22nd Conference on Uncer-
tainty in Artificial Intelligence.

Singh, A., and Moore, A. 2005. Finding optimal Bayesian
networks by dynamic programming. Technical report,
Carnegie Mellon University.

Tarjan, R. 1972. Depth-first search and linear graph algo-
rithms. SIAM Journal on Computing 1(2):146–160.

Yuan, C., and Malone, B. 2012. An improved admissible
heuristic for finding optimal Bayesian networks. In Pro-
ceedings of the 28th Conference on Uncertainty in Artifi-
cial Intelligence.

Yuan, C., and Malone, B. 2013. Learning optimal Bayesian
networks: A shortest path perspective. Journal of Artificial
Intelligence Research 48:23–65.

Yuan, C.; Malone, B.; and Wu, X. 2011. Learning opti-
mal Bayesian networks using A* search. In Proceedings of
the 22nd International Joint Conference on Artificial Intel-
ligence.

Zhou, R., and Hansen, E. A. 2006. Breadth-first heuristic
search. Artificial Intelligence 170:385–408.

