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Abstract

In this paper we study a general version of re-
gression where each covariate itself is a func-
tional data such as distributions or functions.
In real applications, however, typically we do
not have direct access to such data; instead
only some noisy estimates of the true co-
variate functions/distributions are available
to us. For example, when each covariate is
a distribution, then we might not be able
to directly observe these distributions, but it
can be assumed that i.i.d. sample sets from
these distributions are available. In this pa-
per we present a general framework and a k-
NN based estimator for this regression prob-
lem. We prove consistency of the estimator
and derive its convergence rates. We further
show that the proposed estimator can adapt
to the local intrinsic dimension in our case
and provide a simple approach for choosing
k. Finally, we illustrate the applicability of
our framework with numerical experiments.

1 INTRODUCTION

Machine learning has undergone a paradigm shift in
the recent times. Traditional machine learning tech-
niques focused on simple form of data such as features
modeled as vectors in Rp. However, with the advent of
modern data collection methods datasets have not only
become huge but also more complex, often involving
objects like distributions, functions, and sets. Con-
sider the example of brain connectivity mapping data.
The brain contains billions of neurons with several tril-
lion physical connections. Neuroimaging approaches
like Di�usion Spectrum Imaging (DSI) attempt to vi-
sualize the underlying anatomical architecture of neu-
ral pathways by creating 3D probability distributions
of water di�usion along nerve fiber bundles. In this ex-

ample the input data consists of distributions, instead
of simple finite dimensional vectors. Likewise, there
are many instances where the training data consists of
functions. For example, whenever we encounter with
time series data (e.g. time series of commodity’s price,
patient’s health monitor, energy usage data), then we
can always think of the instances as functions whose
domain is the time.

Unfortunately, our understanding of algorithms for
such complex data is still limited. Most of the ex-
isting machine learning and statistical techniques can-
not handle such data, often resorting to ad-hoc ap-
proaches; thereby ignoring the underlying rich struc-
ture in the data. This necessitates the development of
a di�erent machine learning paradigm where the true

structure in the complex data can be exploited. The
goal of this paper is to further advance our knowledge
of such algorithms.

One of the central issues working with complex func-
tional data is that it is typically di�cult to obtain the
exact data (functions or distributions). Hence, our
access to the data is often restricted to some noisy
estimate of the data. For example, when the input
variables are distributions, then it is more natural to
assume that we only have finite samples from the dis-
tributions, but the true distributions (such as their pdf
or cdf) are unknown to us. The empirical distribution
can be viewed as a noisy estimate of the distribution.
Similarly, in the case of function regression, we have
the function values at some selected points rather than
whole the function itself. We use the terms “measure-
ment error” and “error in variable” to emphasize this
issue of noise in the data.

Although, there have been a few attempts to tackle
the issues of “error in variables” [3], most of the ear-
lier works do not fully exploit the scenario where we
have control over the measurement error. This is par-
ticularly relevant to the applications we are interested
in such as distribution regression, where we can obtain
more accurate measurements of the data by obtaining



more samples from the distribution.

While working with complex data, it is often desirable
to have a simple yet powerful algorithms. One such
algorithm often used in traditional machine learning
is the k-Nearest Neighbor (k-NN) regression estima-
tion. k-NN based algorithms are easy to use and ro-
bust. Furthermore, thanks to the extensive research on
nearest neighbor search, there are many e�cient algo-
rithms for finding the nearest neighbors [1, 22, 5]. Ad-
ditionally, k-NN estimators have the virtue of adapt-
ing to the local structure of the data [10]. Due to
these factors, k-NN estimators are well-suited for com-
plex data. However, very little is understood about
these estimators in the context of functional data. To
this end, we study the problem of k-NN regression on
functional data with measurement error. We present
our results in a rather broad framework since working
within a general framework allows us to use the same
tools across di�erent settings and understand the un-
derlying principles of k-NN estimators.

Main Contributions: Our contributions can be
summarized as follows: (i) We provide a general frame-
work for analysis of k-NN estimators for functional
data. (ii) We prove consistency of the estimators un-
der weak assumptions. (iii) We derive convergence
rates for the estimators. (iv) We provide probabilistic
bounds which exploit the local intrinsic structure of
the probability measure. (v) We provide an adaptive
procedure to select k by exploiting the local intrinsic
structure. (vi) We apply the framework in two in-
teresting settings, namely distribution regression and
function regression. Due to space constraints, we rel-
egate few longer proofs to the appendix.

2 RELATED WORK

Our work is related to functional data analysis, a new
exciting field of statistics. We refer interested readers
to [4, 17] for a comprehensive treatment of the topic.
However, note that most of these works assume direct
access to the covariates without any measurement er-
ror. This does not fit our framework for regression
over distributions or functions.

One popular approach to deal with distribution co-
varaites in ML tasks is to first embed the distribu-
tions into a reproducing kernel Hilbert space (RKHS)
and then solve the learning problem using the stan-
dard machinery of kernel methods [20, 6, 18]. There
are both parametric and non-parametric methods pro-
posed along these lines. Parametric methods usually
fit a parametric model to distributions for estimating
inner products [9, 8, 12]. Few non-parametric methods
for distributions also exist. For example, set kernels
(since the samples from the distributions are repre-

sented by sets) or kernels over distributions may be
used. In this context, it is worthwhile to note that the
representer theorem was recently generalized for the
space of probability distributions [13].

More recently, Póczos et al. [16] proposed a kernel re-
gression approach for solving the regression problem
with distribution covariates and real-valued responses.
Convergence and sample complexity of the estimator
were analyzed in the paper. Oliva et al. [14] provided a
similar analysis for the case where the response is also a
distribution. Function regression has also gained con-
siderable interest recently. Oliva et al. [15] provided
a functional analogue to the LASSO and studied the
statistical properties of the estimator. The functional
output case has been studied in [11]. None of these
works, however, provide an adaptive algorithm which
exploits the local structure of the data, such as the
local intrinsic dimensionality. This is an important is-
sue, because this dimension plays an important role in
the convergence rate. To design e�cient algorithms,
it is important to be able to adapt to the local intrin-
sic dimensions. Another important di�erence between
these algorithms and the estimator we propose here is
that none of these algorithms are based on k-NN.

Our work is also related to the error in variables model
[3]. However, unlike the latter case where the error is
O(1) and is not decreasing, we have control over the
error and hence, can obtain very accurate (but expen-
sive) measurements. This is true in the applications of
our interest like distribution and function regression.
As we will see later, we can exploit this additional flex-
ibility to obtain faster rates of convergence.

There has been fairly extensive research on k-NN es-
timators for regression problem. Kpotufe at al. [10]
study k-NN regression and show that it adapts to local
intrinsic dimension. Furthermore, they also provide a
simple method to choose k that nearly achieves the
minimax rate. But these works do not address the
problem of our concern, namely k-NN estimators for
functional data with error in measurement.

Notation: The symbol P(E) is used to denote the
probability of event E. We use X ≥ P to denote that
the random variable X has probability distribution P.
We use the [n] and i : j to denote the set {1, . . . , n}
and {i, . . . , j} respectively. The symbol E(X) is used
to denote the expectation of random variable X. We
use B(P, r) to denote a ball of radius r centered around
P (where P is a point in some metric space).

3 PRELIMINARIES

We start this section with a formal discussion of k-NN
based regression estimators. We denote by (P, fl) a



metric space P with distance measure fl. We assume
that the space with this metric fl is bounded, i.e., there
exists a ‹ > 0 such that fl(P, Q) Æ ‹ for all P, Q œ P.
In a typical regression setting, we have m i.i.d samples
(P, Y) = {(Pi, Yi)}m

i=1 from some unknown distribu-
tion over (P ◊ R), which is the space of input-output
pairs. For example, many machine learning applica-
tions usually deal with finite dimensional Euclidean
spaces, i.e., P = Rp and fl is the Euclidean distance.
We assume that for our observations {Yi} it holds that

Yi = f(Pi) + “i, i œ [m],

where f is a regression function f : P æ R, and “i’s are
noise variables with E[“i] = 0 and variance E[“2

i ] = ‡2.
We assume that the functional f is L-Lipschitz, i.e.,
|f(P ) ≠ f(P Õ)| Æ Lfl(P, P Õ) for all P, P Õ œ P. We use
µ and µm to denote the marginal distribution and the
empirical distribution on P respectively. k-NN based
regression is fairly well-understood when P = Rp and
fl is the Euclidean distance [7].

In functional data analysis, as mentioned earlier, it is
usually not possible to obtain the samples Pi exactly,
and hence we have to deal with a noisy representation
of Pi. Our goal, however, is still the same as in stan-
dard regression problems: to recover the function f .
The type of representation generally depends on the
application. For example, in the case of distribution
regression (i.e., P is the space of continuous distribu-
tions), we only have access to the samples from the
distributions (and not the distributions themselves).

To formalize the notion of noisy representation of the
input data, assume that we have m i.i.d. samples
(‚P, Y) = {( ‚Pi, Yi)}m

i=1 instead of (P, Y). Here ‚Pi de-
notes the empirical estimation of distribution Pi.

In what follows, we will discuss the details of k-NN
regression for functional data. We first look at the case
of fixed k (given as an input). We will later investigate
an approach to adaptively select k. The regression
estimate at P (function or distribution) using (‚P, Y)
is defined as follows:

f̂(P, ‚P1, . . . , ‚Pm) =
mÿ

j=1
YjWj(P, P̂1, . . . , P̂m), (1)

where

Wj(P, P̂1, . . . , P̂m) =
I

1
k if P̂j is k-NN of P

0 otherwise.
(2)

For the sake of brevity, we use f̂(P ) and Wj to denote
f̂(P, P̂1, . . . , P̂m) and Wj(P, P̂1, . . . , P̂m) respectively.
It should also be noted that more general approaches,
such as the generalized version of k-NN with non-
uniform weights can also be used through the means

of a kernel function [10]. For simplicity we only ana-
lyze the case of uniform weight in this paper, but all
of our results can be extended to the aforementioned
scenario.

Before we delve into the technical details of the regres-
sion estimator in Equation (1), we have to introduce
the definition of doubling dimension, which will help
us deriving upper bounds on the generalization error
of the estimator. We just briefly describe the defini-
tion here, and refer interested readers to [10] for more
details.
Definition 1. (Doubling Dimension) The marginal

distribution µ on P has a doubling dimension at most

d if there exists a constant C such that for all P œ P
and r Ø 0, we have µ(B(P, r)) Æ C‘≠dµ(B(P, ‘r)).

To illustrate the concept, it is instructive to look at
the simple case of Euclidean space Rd and uniform
measure over a closed ball. In this case, it is easy
to see that the doubling dimension is d. While this
describes a global notion of doubling dimension (since
it holds uniformly over all region), we will also define
and use a local notion in a later section. With this
setting in mind, we now analyze the consistency and
convergence rates of our estimator in a rather broad
framework.

4 GENERAL FRAMEWORK FOR
ANALYSIS OF k-NN
ESTIMATORS

In this section, we first analyze consistency and con-
vergence rates of the k-NN based estimator in Equa-
tion (1) within a general framework. We will investi-
gate probabilistic bounds which depend on the local
intrinsic structure of the measure µ on P. Finally, we
develop an approach which adapts to the local intrin-
sic dimension by carefully choosing k. Upper bounds
on the convergence rates will also be derived for this
estimator.

In this general framework, we assume certain applica-
tion specific bounds on the estimation of P̂i. In par-
ticular, we assume the following:

(i) E[fl(Pi, P̂i)] Æ �.

(ii) P(fl(Pi, P̂i) ≠ E[fl(Pi, P̂i)] > ‘) Æ Âi(‘).

These bounds � and Âi will be instantiated for the
cases of distribution and function regression in later
sections. The first term provides an upper bound on
how close Pi is to P̂i in expected sense, while the
second term measures how far the random variable
fl(Pi, P̂i) is from its expected value.



4.1 CONSISTENCY OF ESTIMATOR

In this section we analyze the L2-consistency of the
k-NN estimator in Equation (1). In order to prove the
consistency of our estimator, we assume that k æ Œ
but k/m æ 0 as m æ Œ. This assumption is typical in
k-NN like estimators [7]. Additionally, we also assume
that � æ 0 as m æ Œ. Using these assumptions, we
prove the following consistency result.
Theorem 1. Suppose k æ Œ and limmæŒ k/m = 0.

Furthermore, we assume that � æ 0 as m æ Œ. Then

f̂ is consistent, i.e., limmæŒ E[|f̂(P ) ≠ f(P )|2] = 0.

Proof. The proof is in the appendix.

4.2 CONVERGENCE RATES

We now turn our attention towards the convergence
rates of the estimator. In particular, we prove that
if the measure µ has finite doubling dimension, then
we can get a nonparametric convergence rate that
depends on this dimension. We already know that
E[fl(P̂i, Pi)] is bounded by �. Lemma 5 in the Supple-
mentary material provides a bound for uniform con-
vergence.

Let �(‘0) denote the event that fl(P̂i, Pi) Æ � + ‘0
for all i œ [m]. From Lemma 5, we know that this
event occurs with at least probability 1 ≠

q
i Âi(‘0).

For feasibility, we assume that ‘0 is large enough such
that

q
i Âi(‘0) < 1.

Theorem 2. Let d Ø 3, mÕ = Â m
k Ê, and �, ‘0 be

such that ‹≠d Æ mÕ Æ (4(� + ‘0))≠d
and

q
i Âi(‘0) Æ

1
m ‹≠d

. Then the following holds:

E[|f̂(P ) ≠ f(P )|2] Æ ‡2

k
+ 2C ÕL2mÕ≠2/d + 2L2�2.

for some constant C Õ
.

Proof. The proof is in the appendix.

4.3 LOCAL INTRINSIC BOUNDS FOR
ESTIMATOR

We establish probabilistic convergence bounds for our
estimators in this section, building on the work of [10].
Our rates exploit the local intrinsic dimension of the
measure µ.

In order to obtain uniform bounds over P, we assume
additional structure in our problem setting. We as-
sume that the VC-dimension of class B of balls on
(P, fl) is ‹B. To capture the notion of local intrinsic
dimension, let us define the following.

Definition 2. (Local Doubling Dimension) We say the

measure µ has local doubling dimension dl on B(P, r) if

we have µ(B(P, rÕ)) Æ C‘≠dlµ(B(P, ‘rÕ)) for all rÕ Æ r
and 0 < ‘ < 1.

Additionally, similar to [10], we assume a noise model
that has uniformly bounded tails and variance. More
formally, we have for all ” > 0, there exists t > 0
such that supP œP PY |P (|Y ≠ f(P )| > t) Æ ”. Infimum
amongst all such t is denoted by T (”). Our goal is to
obtain a probabilistic upper bound on |f̂(P ) ≠ f(P )|.

The proof uses results from [10] with additional com-
plexity arising due to the estimation error in the vari-
ables themselves. We capture the notion of local in-
trinsic dimension by the doubling dimension at the
neighborhood of the point P . We have the following
result for the consistency of the estimator:
Theorem 3. Suppose µ has local doubling dimension

dl on B(P, r). Let ‘ = (3Ck/mµ(B(P, r)))1/dl
and

–m = (‹B log(2m) + log(16/”))/m. Also, let ”Õ = ” +q
i Âi(‘0). Suppose µ(B(P, ‘r)) Ø ‘dlµ(B(P, r))/C Ø

3k/m. Then the following holds with uniformly over

all P œ P with probability at least 1 ≠ ”Õ
,

|f̂(P ) ≠ f(P )|2 Æ 2‹BT 2(”/4m) log(4m/”) + 16‡2

k

+ 2L2(r + 2(� + ‘0))2
3

3Ck

mµ(B(P, r))

42/dl

.

Proof. Let f̃(P ) =
qm

i=1 Wif(Pi). Using f̃(P ), we get
the following:

|f̂(P ) ≠ f(P )|2 Æ 2 |f̂(P ) ≠ f̃(P )|2¸ ˚˙ ˝
Variance

+2 |f̃(P ) ≠ f(P )|2¸ ˚˙ ˝
Bias

This is obtained by simple application of AM-GM in-
equality. We first derive an upper bound for the bias
and then deal with the variance. We have:

|f̃(P ) ≠ f(P )| =
---

mÿ

i=1
Wi(f(Pi) ≠ f(P ))

---

Æ
mÿ

i=1
Wi|(f(Pi) ≠ f(P ))| Æ L

mÿ

i=1
Wifl(P, Pi).

The first step follows from the fact that
qm

i=1 Wi = 1.
The second and third steps follow from triangle in-
equality and Lipschitz continuity of f respectively.
Consider the index set J = {i1, . . . , ik} which repre-
sents the nearest neighbors of P amongst {P̂1, . . . , P̂m}
where ij is used to denote the index of the jth near-
est neighbor of P amongst {P̂1, . . . , P̂m}. Similarly,
let us denote by iÕ

j and J Õ, the index of jth nearest
neighbor of P amongst {P1, . . . , Pm} and correspond-
ing index set respectively. Furthermore, we use rk to



denote fl(P, PiÕ
k
). In order to obtain an upper bound

on the bias we need to analyze maxjœJ fl(P, Pj).

Let E represent the event that maxi D(Pi, P̂i) Æ �+‘0
for all i œ [m]. We know that this event occurs with
probability at least 1 ≠

q
i Âi(‘0). Conditioned on the

event E , we have the following:

fl(P, P̂i) Æ fl(P, Pi) + fl(Pi, P̂i) Æ fl(P, Pi) + � + ‘0.

for all i œ [m]. This holds due to triangle inequal-
ity and the definition of the event E . Let By similar
argument, we also have fl(P, Pi) Æ fl(P, P̂i) + � + ‘0.

The rest of the argument is conditioned on the event
E . Using the above relation, we get the following:
maxiœJ Õ fl(P, P̂i) Æ rk + � + ‘0. This is due to the
fact that fl(P, P̂i) Æ fl(P, Pi) + � + ‘0 for all i œ [m]
and the definition of rk. Using the above relation, we
get the following inequality:

max
iœJ

fl(P, P̂i) Æ max
iœJ Õ

fl(P, P̂i) Æ rk + � + ‘0.

The first step holds since J are the indices for the k
nearest neighbors of P amongst {P̂1, . . . , P̂m}. But we
also have fl(P, Pi) Æ fl(P, P̂i) + (� + ‘0) for all i œ [m]
(since we condition on E). From above argument, the
following holds:

max
iœJ

fl(P, Pi) Æ max
iœJ

fl(P, P̂i) + (� + ‘0)

Æ rk + 2(� + ‘0).

In order to complete our analysis for the bias, we need
to bound the distance rk. To this end, we appeal
to the bound obtained in [10]. In particular, since
µ(B(P, ‘r)) Ø 3k/m, by invoking Lemma 10 we have
µm(B(P, ‘r)) Ø k/m. Therefore, with probability at
least 1 ≠ ”, we have rk Æ ‘r. Finally, by using union
bound over the event above and E , we get the required
bound on the bias.

To establish a bound on the variance, we resort to
the bound from [10]. We derive the bounds here for
the sake of completeness. We need to bound the term
|f̂(P ) ≠ f̃(P )| = |

qm
i=1 Wi(Yi ≠ f(Pi))|. The key step

is to utilize the classical VC-theory to obtain a bound
on |Yi ≠ f(Pi)|.

More formally, let us first condition on the P =
{P1, . . . , Pm}. By using the concept of VC-dimension
and applying union bound, we can obtain the final re-
sult. We further restrict our attention to the event
where |Yi ≠ f(Pi)| < T (”0) for all i œ [m]. Note that
this event occurs with probability at least 1 ≠ m”0 >
0.5. This is obtained by and simple application of
union bound. From Markov inequality, we have:

P(÷P s.t. |f̂(P ) ≠ f̃(P )| > 2E(|f̂(P ) ≠ f̃(P )|) + ‘) Æ
P(÷P s.t. |f̂(P ) ≠ f̃(P )| > E(|f̂(P ) ≠ f̃(P )|) + ‘|E)

Also note that,

P(÷P s.t. |f̂(P ) ≠ f̃(P )| > E(|f̂(P ) ≠ f̃(P )|) + ‘|E)
Æ n‹B exp(≠2k‘2/T 2(”0))

This is due to the following facts: (i) changing any of
the Yi’s changes the function |f̂(P )≠ f̃(P )| by at most
T (”0)/k and (ii) VC-dimension of the class of balls B
over P is ‹B. Hence, using McDiamard’s inequality
and union bound we get the above result. Let us take
”0 = ”/2m. Now using a union bound over aforemen-
tioned events and rewriting the result using AM-GM
inequality, we have with probability at least 1 - ”

|f̂(P ) ≠ f̃(P )|2 < 8E[|f̂(P ) ≠ f̃(P )|2]

+T 2(”/2m)
k

(‹B log(2m/”))

To complete the proof, we need to obtain an upper
bound on the expected value E[|f̂(P ) ≠ f̃(P )|2]. This
is obtained in the following manner:

E[|f̂(P )≠f̃(P )|2] = E[|
ÿ

i

(WiYi ≠ f(Pi))|2]

=
ÿ

i

W 2
i E[|Yi ≠ f(Pi)|2] Æ ‡2/k

The second equality is obtained from the fact that Yi≠
f(Pi) are i.i.d random variables. The last inequality is
obtained from the assumption that variance of Y |P is
bounded by ‡2. Combining, the bounds obtained for
the bias and variance, we get the required result.

Note the dependence of bounds on dl, the local dou-
bling dimension rather than d. When dl π d, we have
obtain much better rates of convergence locally.

4.4 SELECTION OF k AND ADAPTIVE
CONVERGENCE RATES

In the previous section, we obtained convergence guar-
antees which depend on the local intrinsic dimension
for k-NN estimators. A natural question to investi-
gate is whether these bounds provide any principled
approach to choose k. Intuitively, we can see that
such an approach should respect the local structure at
the query point P . We derive an approach to choose
k by handling the bias-variance tradeo�. Here, � and

Algorithm 1 Adaptive Selection of k

1: Let ◊ Æ log(4m/”), � and ‘0 be given.
2: Let r̂i be ith nearest neighbor amongst

{P̂1, . . . , P̂m}.
3: k = arg mini

!
◊/i + r̂2

i + 16(� + ‘0)2r̂i

"
.

‘0 are parameters to the algorithm. � can be ob-
tained through upper bound on the error or through



estimation procedures. Intuitively, the above approach
can be seen as choosing k which minimizes our upper
bound. We make this intuition more formal by the
following result.
Theorem 4. Suppose µ has local doubling dimension

dl on B(P, r). Suppose k is chosen according to Algo-

rithm 1 for each P œ P and f̂(P ) is the k-NN estimate.

Assume ((‹B log(2m)+log(16/”))/◊ < m4/(6+3dl)
. Let

”Õ = ” +
q

i Âi(‘0). Furthermore, let r < R and

µ(B(P, r)) > 6Cm≠1/3
. Then the following statement

holds with probability at least 1 ≠ ”Õ
simultaneously for

all P œ P.

|f̂(P ) ≠ f(P )|2 Æ 2
3

C

◊
+ L2

4

◊
A

(1 + 16R2)
3

3C◊

mµ(B(P, r))

4 2
2+dl

+ 48(� + ‘0)2

B

where C = ‹BT 2(”/4m) log(4m/”) + 8‡2
.

Proof. We have the following bound on |f̂(P )≠f(P )|2
holds with probability at least 1 ≠ ”:

|f̂(P )≠f(P )|2 Æ 2C

k
+ 2L2(rk + 2(� + ‘0))2

Æ 2C

k
+ 2L2(r̂k + 4(� + ‘0))2

Æ
3

2C

◊
+ 2L2

4 3
◊

k
+ (r̂k + 4(� + ‘0))2

4

The first and second inequalities holds from Theorem 3
and the fact that |rk ≠ r̂k| Æ 2(� + ‘0) where rk and
r̂k denote the distance of kth nearest neighbor of P
amongst {P1, . . . , Pm} and {P̂1, . . . , P̂m} respectively.
Note that the procedure we use exactly minimizes ◊

k +
(r̂k + 4(� + ‘0))2. In order to complete the proof,
we need to derive an upper bound for the estimator,
we need to provide a bound on the minimum value of
◊
k + (r̂k + 4(� + ‘0))2. To this end, we borrow ideas
from [10] (Theorem 3), which provides a upper bound
on the minimum value by explicitly constructing a k
that has low objective value. We provide all the details
here for sake of completeness.

Let · = ◊dl/(2+dl)
1

mµ(B(P,r))
3C

22/(2+dl)
Using our

assumption on local doubling dimension, we have
µ(B(P, r)) > 6C◊m≠dl/(2+dl) Ø 6c·/m. Let ‘ =1

3C·
mµ(B(P,r))

21/dl

. It is easy to see that from the above
relationship that ‘ < 1. Moreover,we have

µ(B(P, ‘r)) Ø ‘dlµ(B(P, r))/C Ø 3·/m,

–m = (‹B log(2m) + log(8/”))/m Æ ◊

m
m4/6+3dl

Æ ◊

m
m4/6+3dl Æ ·

m
.

Therefore, using Lemma 10, we have µm(B(P, ‘r)) Ø
·
m with probability at least 1 ≠ ”. This in turn implies
that rk Æ ‘r for all k Æ · .

The following argument shows a bound on r2
k. First,

observe that if k Æ · , we have

r2
k Æ (‘r)2 Æ

3
3C·

mµ(B(P, r))

42/dl

R2 = R2◊

·
Æ R2◊

k
.

The first and last inequalities holds since k Æ · . Let k0
be the highest integer for which the above inequality
holds. It can be proved that that either k0 or k0 + 1
is larger than · . If k0 > · , then the above statement
is obviously true. For the case of k0 Æ · , it is easy to
see that k0 + 1 > · since k0 is the highest integer for
which r2

k Æ R2◊
k and this holds for all k Æ · .

Suppose k0 Æ · . Let k1 = k0+1 then ◊/(k1) < ‘2 since
◊/k1 < ◊/· = ‘2 when k1 > · . Moreover, rk1 Æ 21/dl‘r
since µ(B(P, 21/dl‘r)) Ø 6·/m which in turn implies
µm(B(P, 21/dl‘r)) Ø 2·/m Ø k1/m (by Lemma 10 and
the fact that k1 Æ 2·).

In the other case of k0 > · , by similar argument, we
can prove that ◊/k0 < ◊/· = ‘2 and r2

k0
Æ R2‘2.

Therefore, either k0 or k1, satisfy the following:
!
◊/k + 4r2

k

"
Æ (1 + 16R2)‘2 (3)

Since k is chosen in such a way that it mini-
mizes

!
◊/k + (r̂k + 4(� + ‘0))2"

, we have the follow-
ing bound:

| ˆf(P ) ≠ f(P )|2 Æ
1

2C
◊

+ 2L2
2 1

◊
k

+ (r̂k + 4(� + ‘0))

2
2

Æ min

k0,k1

1
2C
◊

+ 2L2
2 1

◊
k

+ (r̂k + 4(� + ‘0))

2
2

Æ min

k0,k1

1
2C
◊

+ 2L2
2 1

◊
k

+ (2r̂2
k + 32(� + ‘0)

2
)

2

Æ
1

2C
◊

+ 2L2
2 !

(1 + 16R2
)‘2

+ 48(� + ‘0)

2"

The first and second inequalities follow from the fact
that |r̂k≠rk| Æ 2(�+‘0) and the criteria of choosing k.
The final inequality follows from Equation (3). This
gives us the required result.

The above result shows adaptive convergence rates for
the k-NN estimators. We now proceed towards appli-
cations of the general framework we just discussed.

5 APPLICATIONS

We discuss specific applications of the general frame-
work introduced in the previous section. More specif-
ically, we look at distribution regression and function



regression settings. We will see that by using appropri-
ate instantiation of the bounds � and Âi in the general
framework, the results for both these case follow in a
straightforward manner.

5.1 DISTRIBUTION REGRESSION

We describe distribution regression problem in this
section. We consider a regression problem where
the input variables are from the space of continu-
ous 1≠Lipschitz probability distributions (i.e., |P (x)≠
P (y)| Æ Îx ≠ yÎ) on a compact subset K µ Rp

(denoted by D). In this case, P = D and we as-
sume fl to the L1 distance between distributions, i.e.,
fl(P, Q) = ÎP ≠ QÎ1 =

s
|P (x) ≠ Q(x)|dx. Note

that f : D æ R. We assume that class of balls B
on D have finite VC-dimension ‹B. Here, we have
Yi = f(Pi) + “i for all i œ [m].

The measurement error comes into play due to the
fact that we do not have access to the probability
distributions Pi directly; rather we observe samples
Xi1, . . . , Xini ≥ Pi. From these samples, we estimate
the probability distributions through one of the several
density estimation procedures like kernel density esti-
mation, data clustering. Let P̂1, . . . , P̂m be estimated
probability distributions corresponding to P1, . . . , Pm

respectively. To summarize, we think of observations
as (P, Y) = {(P̂i, Yi)}m

i=1 and our goal is to infer the
function f . For ease of exposition, we assume that the
number of samples observed for all the distributions,
i.e., n = ni for all i œ [m]. To apply our framework,
we need to instantiate the bounds � and Âi.

Bound �: We have the following bound on the ex-
pected error of estimation of the distributions.
Lemma 1. Under above conditions, we have

E[fl(P̂i, Pi)] Æ C̃n≠1/(2+p)

where C̃ is a constant.

Using this result we can take � = C̃n≠1/(2+p). Refer
[19] for details of the proof.

Bound Âi: We obtain the following bound Âi by using
McDiamard’s inequality.
Lemma 2. Under above conditions, we have

P(fl(P̂i, Pi) > E[fl(P̂i, Pi)] + ‘) Æ e≠n‘2/2

Therefore, Âi(‘) = exp(≠n‘2/2) (see [2] for details).

By using the above bounds, we present the main re-
sults for distribution regression. Our first result is the
consistency of the estimator f̂ . From Theorem 1, we
have the following result. We set � = C̃n≠1/(2+p) and
‘0 = n≠1/(2+p).

Theorem 5. (Consistency of Estimator) Suppose

k æ Œ and limmæŒ k/m = 0. Furthermore, we as-

sume that n = �(log(2+p)/p(m)). Then f̂ is consistent,

i.e., limmæŒ E[|f̂(P ) ≠ f(P )|2] = 0.

The next result provides convergence rates for distri-
bution regression by directly appealing to Theorem 2.
Theorem 6. (Convergence Rate) Let d Ø 3 and mÕ =
Â m

k Ê. Assume n Ø (2 log(m) + 2d log(‹))(2+p)/p
and

d log(1/‹) Æ log(mÕ) Æ d log(n)/(2 + p) ≠ d(log(4 +
4C̃))). Then the following holds:

E[|f̂(P ) ≠ f(P )|2] Æ ‡2

k
+ 2C ÕL2

mÕ2/d
+ 2 C̃2L2

n2/(2+p) .

for some constant C Õ
.

The following result shows that the convergence rates
in fact depend on the local intrinsic dimension of the
probability measure µ. This is obtain from Theorem 3
of the general framework.
Theorem 7. (Adaptive Convergence Rates) Suppose

µ has local doubling dimension dl on B(P, r). Let

‘ = (3Ck/mµ(B(P, r)))1/dl
and –m = (‹B log(2m) +

log(16/”))/m. Let ”Õ = ” + m exp (≠np/(p+2)/2). Sup-

pose µ(B(P, ‘r)) Ø ‘dlµ(B(P, r))/C Ø 3k/m. Then

the following holds with uniformly over all P œ P with

probability at least 1 ≠ ”Õ
,

|f̂(P ) ≠ f(P )|2 Æ 2‹BT 2(”/4m) log(4m/”) + 16‡2

k

+ 2L2
3

r + 2 (C̃ + 1)
n1/(2+p)

42 3
3Ck

mµ(B(P, r))

42/dl

.

The final result for distribution regression shows that
by using Algorithm 1, we obtain reasonable adaptive
convergence rates.
Theorem 8. (k-Selection Convergence Rates) Sup-

pose µ has local doubling dimension dl on B(P, r).
Suppose k is chosen according to Algorithm 1 for

each P œ P and f̂(P ) is the k-NN estimate. As-

sume ((‹B log(2m) + log(16/”))/◊ < m4/(6+3dl)
. Let

”Õ = ” + m exp (≠np/(p+2)/2). Furthermore, let r < R
and µ(B(P, r)) > 6Cm≠1/3

. Then the following state-

ment holds with probability at least 1 ≠ ”Õ
simultane-

ously for all P œ P.

|f̂(P ) ≠ f(P )|2 Æ 2
3

C0
◊

+ L2
4

◊
A

(1 + 16R2)
3

3C◊

mµ(B(P, r))

4 2
2+dl

+ 48(C̃ + 1)2

n≠2/(2+p)

B

where C0 = ‹BT 2(”/4m) log(4m/”) + 8‡2
.



5.2 FUNCTION REGRESSION

In this section, we describe another interesting
application—function regression. Here, the input
variables belong to the class of 1-Lipschitz (w.r.t
Euclidean distance) functions on [0, 1] (denoted by
F). For this case, we use fl(P, Q) = ÎP ≠ QÎ2 =Òs 1

0 (P (x) ≠ Q(x))2dx (norm in L2 space of func-
tions). We again focus only on the case when class of
balls B on P = F have finite VC-dimension ‹B. The
model is Yi = f(Pi) + “i for all i œ [m] where Pi are
functions. Similar to the distribution regression, we
usually do not have access to the function themselves
but only the ability to obtain noisy estimates of func-
tion value at certain points. For simplicity, we assume
a deterministic design where we query at the points
{Xij}n

j=1 where Xij = j/n for all i œ [m] (see [21]
for more details about deterministic design). There-
fore, we have Zij = Pi(Xij)+ ’ij where ’ij is the noise
variable with E(’ij) = 0 and variance ‡̃2.

We can intuitively think of function regression as 2-
stage regression problem. We first estimate the func-
tions themselves and then perform another regression
on these functions to obtain the functional of inter-
est f . From {(Xij , Zij)}n

j=1, we can obtain estimated
functions P̂1, . . . , P̂m corresponding to P1, . . . , Pm re-
spectively. This model now fits our framework per-
fectly once we have appropriate bounds � and Âi. To
obtain these bounds, we directly appeal to the follow-
ing well-known bounds for regression.

Bound �: We have the following bound for � in the
case of function regression.
Lemma 3. Under the conditions mentioned above, we

have

E[fl(P̂i, Pi)] Æ C̄n≠1/3

where C̄ is a constant.

Proof. From Jensen’s inequality, we have

E[fl(P̂i, Pi)]2 Æ E[fl2(P̂i, Pi)] Æ C̄2n≠2/3.

The last inequality follows from Corollary 1.2 of [21].

Bound Âi: To obtain bound Âi, we resort to McDia-
mard’s inequality and obtain the following bound.
Lemma 4. Under the conditions mentioned above, we

have

P(fl(P̂i, Pi) > E[fl(P̂i, Pi)] + ‘) Æ e≠n‘2/2

Proof. The result follows from simple application of
McDiamard’s inequality.

We now state the main results for function regres-
sion by appealing to the general framework. We set
� = C̄n≠1/3 and ‘0 = n≠1/3. The following result
shows consistency of estimator f̂ in case of function
regression. This is obtained from Theorem 1.
Theorem 9. (Consistency of Estimator) Suppose

k æ Œ and limmæŒ k/m = 0. Furthermore, we as-

sume that n = �(log3(m)). Then

‚f is consistent, i.e.,

limmæŒ E[| ‚f(P ) ≠ f(P )|2] = 0.

The next result provides convergence rates for function
regression by directly using Theorem 2.
Theorem 10. (Convergence Rate) Let d Ø 3 and

mÕ = Â m
k Ê. Assume n Ø (2 log(m) + 2d log(‹))3

and

d log(1/‹) Æ log(mÕ) Æ d log(n)/3 ≠ d(log(4 + 4C̄))).
Then the following holds:

E[|f̂(P ) ≠ f(P )|2] Æ ‡2

k
+ 2C ÕL2

mÕ2/d
+ 2C̄2L2

n2/3 .

for some constant C Õ
.

The following result shows that the convergence rates
in fact depend on the local intrinsic dimension of the
probability measure µ.
Theorem 11. (Adaptive Convergence Rates) Suppose

µ has local doubling dimension dl on B(P, r). Let

‘ = (3Ck/mµ(B(P, r)))1/dl
and –m = (‹B log(2m) +

log(16/”))/m. Let ”Õ = ” + m exp (≠n1/3/2). Suppose

µ(B(P, ‘r)) Ø ‘dlµ(B(P, r))/C Ø 3k/m. Then the fol-

lowing holds uniformly over all P œ P with probability

at least 1 ≠ ”Õ
,

|f̂(P ) ≠ f(P )|2 Æ 2‹BT 2(”/4m) log(4m/”) + 16‡2

k

+ 2L2
3

r + 2(C̄ + 1)
n1/3

42 3
3Ck

mµ(B(P, r))

42/dl

.

The final result for distribution regression shows that
by using Algorithm 1, we obtain reasonable adaptive
convergence rates.
Theorem 12. (k-Selection Convergence Rates) Sup-

pose µ has local doubling dimension dl on B(P, r).
Suppose k is chosen according to Algorithm 1 for

each P œ P and f̂(P ) is the k-NN estimate. As-

sume ((‹B log(2m) + log(16/”))/◊ < m4/(6+3dl)
. Let

”Õ = ” + m exp (≠n1/3/2). Furthermore, let r < R and

µ(B(P, r)) > 6Cm≠1/3
. Then the following holds with

probability at least 1≠”Õ
simultaneously for all P œ P.

|f̂(P ) ≠ f(P )|2 Æ 2
3

C0
◊

+ L2
4

◊
A

(1 + 16R2)
3

3C◊

mµ(B(P, r))

4 2
2+dl

+ 48(C̄ + 1)2

n≠2/3

B

where C0 = ‹BT 2(”/4m) log(4m/”) + 8‡2
.



Before ending our discussion of technical results, it is
worthy to note two points: (i) Our rates are faster than
the logarithmic rates that are sometimes obtained in
measurement error nonparametric regression models
as in [3]. As mentioned earlier, this is due to the fact
that the measurement error corresponds to fl(P̂i, Pi)
which is not Gaussian for finite ni and which decreases
when ni increases. (ii) Typically, it is di�cult to esti-
mate the distance fl(P, Q) exactly. This presents addi-
tional level of complexity but it can be handled grace-
fully within our framework by viewing it as another
measurement error.

6 EXPERIMENTS

Although the main contribution of our paper is to pro-
vide theoretical insights in k-NN based estimation for
functional data, we also provide numerical evidence
showing the empirical benefits of these estimators.
We consider two distribution regression tasks: Beta
distribution skewness and Gaussian distribution en-
tropy estimation. In our experiments, we set all the
n, n1, . . . , nm set sizes to the same values, which will be
specified below. In the first experiment, we generated
325 sample sets from Beta(a, 3) distributions where a
was varied between [3, 20] randomly. We constructed
m = 250 sample sets for training, 25 for validation, and
50 for testing. Each sample set contained n = 500 i.i.d
samples from Beta(a, 3). Our task in this experiment
was to learn the skewness of Beta(a, b) distributions,
f = 2(b≠a)

Ô
a+b+1

(a+b+2)
Ô

ab
. We considered the noiseless case,

i.e., “ was set to zero. Our estimator is oblivious of the
fact that the sample sets are coming from Beta distri-
butions, and it does not know the skewness function
values in the test sets either; its values are available
only in the training and validation sets.

For obtaining the empirical probability distribution,
we use kernel density estimation with Gaussian kernel.
The optimal bandwidth is of the kernel is obtained by
cross validation. To estimate the L2 distances between
p̂i and p, we calculated their estimated values in 4096
points on a uniformly distributed grid between the min
and max values in the sample sets, and then estimated
the integral

s
(p(x) ≠ p̂i(x))2d(x) with the rectangle

method for numerical integration. To find the appro-
priate k, we selected the value from {1, . . . , 10} that
lead to minimum MSE on validation set. Figure 1(a)
displays the predicted values for the 50 test sample
sets, and we also show the true values of the skewness
functions. As we can see the true and the estimated
values are very close to each other.

In the next experiment, our task was to learn the en-
tropy of Gaussian distributions. We chose a 2 ◊ 2 co-
variance matrix � = AAT , where A œ R2◊2, and Aij

was randomly selected from the uniform distribution
U [0, 1]. Just as in the previous experiments we con-
structed 325 sample sets from {N (0, R(–i)�1/2)}325

i=1.
Where R(–i) is a 2d rotation matrix with rotation
angle –i = ifi/325. From each N (0, R(–i)�1/2) dis-
tribution we sampled 500 2-dimensional i.i.d. points.
Similarly to the previous experiment, 250 points was
used for training, 25 for selecting appropriate band-
width parameters, and 50 for training. Our goal
was to learn the entropy of the first marginal dis-
tribution: f = 1

2 ln(2fie‡2), where ‡2 = M1,1 and
M = R(–i)�RT (–i) œ R2◊2. µ was zero in this ex-
periment as well. Figure 1(b) displays the learned en-
tropies of the 50 test sample sets. The true and the
estimated values are close to each other in this exper-
iment as well.
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Figure 1: (a) Learned skewness of Beta(a, 3) distribu-
tion. Axis x: parameter a in [3, 20]. Axis y: skewness
of Beta(a, 3). (b) Learned entropy of a 1d marginal dis-
tribution of a rotated 2d Gaussian distribution. Axes
x: rotation angle in [0, fi]. Axis y: entropy. The MSE
in two cases are 7.1◊10≠3 and 8.6◊10≠2 respectively.

7 CONCLUSION

We presented a general framework for k-NN esti-
mators for functional data with measurement er-
ror. We proved consistency of the estimator and de-
rived upper bounds on the risk. We also analyzed
probabilistic bounds capturing the local intrinsic di-
mension. Furthermore, we presented an algorithm
for adaptively choosing k. Two interesting appli-
cations of our framework—distribution and function
regression—were presented.

In future work, we would like to study lower bounds for
the problem and compare our results with the minimax
bounds. From practical point of view, it would also
be interesting to use these estimators in conjunction
with cover trees [1] to obtain fast k-NN estimators.
Analyzing the empirical performance on large datasets
is another interesting direction.
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