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Abstract

We study information elicitation in cost-func-
tion-based combinatorial prediction markets
when the market maker’s utility for information
decreases over time. In the sudden revelation set-
ting, it is known that some piece of information
will be revealed to traders, and the market maker
wishes to prevent guaranteed profits for trading
on the sure information. In the gradual decrease
setting, the market maker’s utility for (partial) in-
formation decreases continuously over time. We
design adaptive cost functions for both settings
which: (1) preserve the information previously
gathered in the market; (2) eliminate (or dimin-
ish) rewards to traders for the publicly revealed
information; (3) leave the reward structure unaf-
fected for other information; and (4) maintain the
market maker’s worst-case loss. Our construc-
tions utilize mixed Bregman divergence, which
matches our notion of utility for information.

1 INTRODUCTION

Prediction markets have been used to elicit information in
a variety of domains, including business [6, 7, 12, 28], pol-
itics [4, 29], and entertainment [25]. In a prediction mar-
ket, traders buy and sell securities with values that depend
on some unknown future outcome. For example, a mar-
ket might offer securities worth $1 if Norway wins a gold
medal in Men’s Moguls in the 2014 Winter Olympics and
$0 otherwise. Traders are given an incentive to reveal their
beliefs about the outcome by buying and selling securi-
ties, e.g., if the current price of the above security is $0.15,
traders who believe that the probability of Norway winning
is more than 15% are incentivized to buy and those who be-
lieve that the probability is less than 15% are incentivized
to sell. The equilibrium price reflects the market consensus
about the security’s expected payout (which here coincides
with the probability of Norway winning the medal).

There has recently been a surge of research on the design
of prediction markets operated by a centralized authority
called a market maker, an algorithmic agent that offers to
buy or sell securities at some current price that depends
on the history of trades in the market. Traders in these
markets can express their belief whenever it differs from
the current price by either buying or selling, regardless of
whether other traders are willing to act as a counterparty,
because the market maker always acts as a counterparty,
thus “providing the liquidity” and subsidizing the infor-
mation collection. This is useful in situations when the
lack of interested traders would negatively impact the ef-
ficiency in a traditional exchange. Of particular inter-
est to us are combinatorial prediction markets [8–10, 17–
19, 26] which offer securities on various related events such
as “Norway wins a total of 4 gold medals in the 2014 Win-
ter Olympics” and “Norway wins a gold medal in Men’s
Moguls.” In combinatorial markets with large, expressive
security spaces, such as an Olympics market with securities
covering 88 nations participating in 98 events, the lack of
an interested counterparty is a major concern. Only a single
trader may be interested in trading the security associated
with a specific event, but we would still like the market to
incorporate this trader’s information.

Most market makers considered in the literature are im-
plemented using a pricing function called the cost func-
tion [11]. While such markets have many favorable proper-
ties [1, 2], the current approaches have several drawbacks
that limit their applicability in real-world settings. First, ex-
isting work implicitly assumes that the outcome is revealed
all at once. When concerned about “just-in-time arbitrage,”
in which traders closer to the information source make last-
minute guaranteed profits by trading on the sure informa-
tion before the market maker can adjust prices, the market
maker can prevent such profits by closing the entire mar-
ket just before the outcome is revealed. This approach is
undesirable when partial information about the outcome is
revealed over time, as is often the case in practice, includ-
ing the Olympics market. For instance, we may learn the
results of Men’s Moguls before Ladies’ Figure Skating has
taken place. Closing a large combinatorial market when-



ever a small portion of the outcome is determined seems to
be an unreasonably large intervention.

Second, in real markets, the information captured by the
market’s consensus prices often becomes less useful as the
revelation of the outcome approaches. Consider a market
over the event “Unemployment in the U.S. falls below 5.8%
by the end of 2015.” Although there may be a particular
moment when the unemployment rate is publicly revealed,
this information becomes gradually less useful as that mo-
ment approaches; the government may be less able to act
on the information as the end of the year draws near. In
the Olympics market, the outcome of a particular compe-
tition is often more certain as the final announcement ap-
proaches, e.g., if one team is far ahead by the half-time of
a hockey game, market forecasts become less interesting.
Existing market makers fail to take this diminishing utility
for information into account, with the strength of the mar-
ket incentives remaining constant over time.

To address these two shortcomings of existing markets, we
consider two settings:

• a sudden revelation setting in which it is known that
some piece of information (such as the winner of Men’s
Moguls) will be publicly revealed at a particular time,
driving the market maker’s utility for this information to
zero; crucially, in this setting we assume that the market
maker does not have direct access to this information at
the time it is revealed, which is realistic in the case of the
Olympics where a human might not be available to input
winners for all 98 events in real time;

• a gradual decrease setting in which the market maker
has a diminishing utility for a piece of information (such
as the unemployment rate for 2015) over time and there-
fore is increasingly unwilling to pay for this information
even while other information remains valuable.

The sudden revelation setting can be viewed as a special
case of the gradual decrease setting. In both cases, we
model the relevant information as a variable X , represent-
ing a partly determined outcome such as the identity of the
gold medal winner in a single sports event.

We consider cost-function-based market makers in which
the cost function switches one or many times, and aim to
design switching strategies such that: (1) information pre-
viously gathered in the market is not lost at the time of the
switch, (2) a trader who knows the value of X but has no
additional information is unable to profit after the switch
(for the sudden revelation setting) or is able to profit less
and less over time (in the gradual decrease setting), and (3)
the market maker maintains the same reward structure for
any other information that traders may have. To formalize
these objectives, we define the notion of the market maker’s
utility (Sec. 2) and show how it corresponds to the mixed
Bregman divergence [13, 15] (Sec. 2.5).

For the sudden revelation setting (Sec. 3), we introduce a
generic cost function switching technique which in many
cases removes the rewards for “just-in-time arbitragers”
who know only the value ofX , while allowing traders with
other information to profit, satisfying our objectives.

For the gradual decrease setting (Sec. 4), we focus on lin-
early constrained market makers (LCMMs) [13], propos-
ing a time-sensitive market maker that gradually decreases
liquidity by employing the cost function of a different
LCMM at each point in time, again meeting our objectives.

Others have considered the design of cost-function-based
markets with adaptive liquidity [3, 21–24]. That line of re-
search has typically focused on the goal of slowing down
price movement as more money enters the market. In
contrast, we adjust liquidity to reflect the current market
maker’s utility which can be viewed as something external
to trading in the market. Additionally, we change liquidity
only in the “low-utility” parts of the market, whereas previ-
ous work considered market-wide liquidity shifts. Brahma
et al. [5] designed a Bayesian market maker that adapts to
perceived increases in available information. Our market
maker does not try to infer high information periods, but as-
sumes that a schedule of public revelations is given a priori.
Our market makers have guaranteed bounds on worst-case
loss whereas those of Brahma et al. [5] do not.

2 SETTING AND DESIDERATA

We begin by reviewing cost-function-based market making
before describing our desiderata. Here and throughout the
paper we make use of many standard results from convex
analysis, summarized in Appendix A. All of the proofs in
this paper are relegated to the appendix. 1

2.1 COST-FUNCTION-BASED MARKET MAKING

Let Ω denote the outcome space, a finite set of mutually
exclusive and exhaustive states of the world. We are inter-
ested in the design of cost-function-based market makers
operating over a set of K securities on Ω specified by a
payoff function ρ : Ω → RK , where ρ(ω) denotes the
vector of security payoffs if the outcome ω ∈ Ω occurs.
Traders may purchase bundles r ∈ RK of securities from
the market maker, with ri denoting the quantity of security
i that the trader would like to purchase; negative values of
ri are permitted and represent short selling. A trader who
purchases a bundle r of securities pays a specified cost for
this bundle up front and receives a (possibly negative) pay-
off of ρ(ω) · r if the outcome ω ∈ Ω occurs.

Following Chen and Pennock [11] and Abernethy et al.
[1, 2], we assume that the market maker initially prices se-
curities using a convex potential function C : RK → R,

1The full version of this paper on arXiv includes the appendix.



called the cost function. The current state of the market is
summarized by a vector q ∈ RK , where qi denotes the total
number of shares of security i that have been bought or sold
so far. If the market state is q and a trader purchases the
bundle r, he must pay the market maker C(q+ r)−C(q).
The new market state is then q+r. The instantaneous price
of security i is ∂C(q)/∂qi whenever well-defined; this is
the price per share of an infinitesimally small quantity of
security i, and is frequently interpreted as the traders’ col-
lective belief about the expected payoff of this security.
Any expected payoff must lie in the convex hull of the set
{ρ(ω)}ω∈Ω, called price space, denotedM.

While our cost function might not be differentiable at all
states q, it is always subdifferentiable thanks to convex-
ity, i.e., its subdifferential ∂C(q) is non-empty for each q
and, if it is a singleton, it coincides with the gradient. Let
p(q) := ∂C(q) be called the price map. The set p(q) is
always convex and can be viewed as a multi-dimensional
version of the “bid-ask spread”. In a state q, a trader can
make an expected profit if and only if he believes that
E[ρ(ω)] 6∈ p(q). If C is differentiable at q, we slightly
abuse notation and also use p(q) := ∇C(q).

We assume that the cost function satisfies two standard
properties: no arbitrage and bounded loss. The former
means that as long as all outcomes ω are possible, there
are no market transactions with a guaranteed profit for a
trader. The latter means that the worst-case loss of the mar-
ket maker is a priori bounded by a constant. Together, they
imply that the cost function C can be written in the form
C(q) = supµ∈M[µ · q − R(µ)], where R is the convex
conjugate of C, with domR = M. See Abernethy et al.
[1, 2] for an analysis of the properties of such markets.

Example 1. Logarithmic market-scoring rule (LMSR).
The LMSR of Hanson [18, 19] is a cost function for a
complete market where traders can express any probabil-
ity distribution over Ω. Here, for any K ≥ 1, Ω = [K] :=
{1, . . . ,K} and ρi(ω) = 1[i = ω] where 1[·] is a 0/1 indi-
cator, i.e., the security i pays out $1 if the outcome i occurs
and $0 otherwise. The price space M is the simplex of
probability distributions in K dimensions. The cost func-
tion is C(q) = ln

(∑K
i=1 e

qi
)
, which is differentiable and

generates prices pi(q) = eqi/
(∑K

j=1 e
qj
)
. Here R is the

negative entropy function, R(µ) =
∑K
i=1 µi lnµi.

Example 2. Square. The square market consists of two
independent securities (K = 2) each paying out either
$0 or $1. This can be encoded as Ω = {0, 1}2 with
ρi(ω) = ωi for i = 1, 2. The price space is the unit
square M = [0, 1]2. Consider the cost function C(q) =
ln
(
1 + eq1

)
+ ln

(
1 + eq2

)
, which is differentiable and gen-

erates prices pi(q) = eqi/(1 + eqi) for i = 1, 2. Using this
cost function is equivalent to running two independent bi-
nary markets, each with an LMSR cost function. We have
R(µ) =

∑2
i=1 µi lnµi + (1− µi) ln(1− µi).

PROTOCOL 1: Sudden Revelation Market Makers
Input: initial cost function C, initial state sini, switch time t,

update functions NewCost(q), NewState(q)

Until time t:
sell bundles r1, . . . , rN priced using C

for the total cost C(sini+r)− C(sini) where r =
∑N

i=1r
i

let s = sini+ r
At time t:

C̃ ← NewCost(s)
s̃← NewState(s)

After time t:
sell bundles r̃1, . . . , r̃Ñ priced using C̃

for the total cost C̃(s̃+ r̃)− C̃(s̃) where r̃ =
∑Ñ

i=1 r̃
i

let s̃fin = s̃+ r̃
Observe ω
Pay (r + r̃) · ρ(ω) to traders

PROTOCOL 2: Gradual Decrease Market Makers
Input: time-sensitive cost function C(q; t),

initial state s0, initial time t0,
update function NewState(q; t, t′)

For i = 1, . . . , N (where N is an unknown number of trades):
at time ti ≥ ti−1: receive a request for a bundle ri

s̃i−1 ← NewState(si−1; ti−1, ti)
sell the bundle ri

for the cost C(s̃i−1 + ri; ti)−C(s̃i−1; ti)
si ← s̃i−1 + ri

Observe ω

Pay
∑N

i=1 r
i · ρ(ω) to traders

Example 3. Piecewise linear cost. Here we describe a
non-differentiable cost function for a single binary security
(K = 1). Let Ω = {0, 1} and ρ(ω) = ω, soM = [0, 1].
The cost function is C(q) = max{0, q}. It gives rise to the
price map such that p(q) = 0 if q < 0, and p(q) = 1 if
q > 0, but at q = 0, we have p(q) = [0, 1], i.e., because
of non-differentiability we have a bid-ask spread at q = 0.
Here, R(µ) = I

[
µ ∈ [0, 1]

]
where I[·] is a 0/∞ indicator,

equal to 0 if true and∞ if false. This market is uninterest-
ing on its own, but will be useful to us in Sec. 3.3.

2.2 OBSERVATIONS AND ADAPTIVE COSTS

We study two settings. In the sudden revelation setting, it
is known to both the market maker and the traders that at
a particular point in time (the observation time) some in-
formation about the outcome (an observation) will be pub-
licly revealed to the traders, but not to the market maker.
More precisely, let any function on Ω be called a random
variable and its value called the realization of this ran-
dom variable. Given a random variable X : Ω → X ,
we assume that its realization is revealed to the traders
at the observation time. For a random variable X and a
possible realization x, we define the conditional outcome
space by Ωx := {ω ∈ Ω : X(ω) = x}. After observ-
ing X = x (where, using standard random variable short-
hand, we write X for X(ω)), the traders can conclude that



ω ∈ Ωx. Note that the sets {Ωx}x∈X form a partition of Ω.

We design sudden revelation market makers (Protocol 1)
that replace the cost functionC with a new cost function C̃,
and the current market state s (i.e., the current value of q in
the definition above) with a new market state s̃ in order to
reflect the decrease in the utility for information about X .
Such a switch would typically occur just before the obser-
vation time. Note that we allow the new cost function C̃ as
well as the new state s̃ to be chosen adaptively according
to the last state s of the original cost function C.

In the gradual decrease setting, the utility for information
about a future observation X is decreasing continuously
over time. We use a gradual decrease market maker (Pro-
tocol 2) with a time-sensitive cost function C(q; t) which
sells a bundle r for the cost C(q+r; t)−C(q; t) at time t,
when the market is in a state q. We place no assumptions
on C other than that for each t, the function C(·; t) should
be an arbitrage-free bounded-loss cost function. The mar-
ket maker may modify the state between the trades.

Protocol 2 alternates between trades and cost-function
switches akin to those in Protocol 1. In each iteration i,
the cost function C(·; ti−1) is replaced by the cost func-
tion C(·; ti) while simultaneously replacing the state si−1

by the state s̃i−1. Crucially, unlike Protocol 1, the cost-
function switch here is state independent, so any state-
dependent adaptation happens through the state update. 2

At a high level, within each of the protocols, our goal is to
design switch strategies that satisfy the following criteria:

• Any information that has already been gathered from
traders about the relative likelihood of the outcomes in
the conditional outcome spaces is preserved.

• A trader who has information about the observation X
but has no additional information about the relative like-
lihood of outcomes in the conditional outcome spaces is
unable to profit from this information (for sudden reve-
lation), or the profits of such a trader are decreasing over
time (for gradual decrease).

• The market maker continues to reward traders for new
information about the relative likelihood of outcomes in
the conditional outcome spaces as it did before, with
prices reflecting the market maker’s utility for informa-
tion within these sets of outcomes.

To reason about these goals, it is necessary to define what
we mean by the information that has been gathered in the
market and the market maker’s utility.

2.3 MARKET MAKER’S UTILITY

By choosing a cost function, the market maker creates an
incentive structure for the traders. Ideally, this incentive

2This simplifying restriction matches our solution concept in
Sec. 4, but it could be dropped for greater generality.

structure should be aligned with the market maker’s sub-
jective utility for information. That is, the amount the mar-
ket maker is willing to pay out to traders should reflect the
market maker’s utility for the information that the traders
have provided. In this section, we study how the traders
are rewarded for various kinds of information, and use the
magnitude of their profits to define the market maker’s im-
plicit “utility for information” formally.

We start by defining the market maker’s utility for a belief,
where a belief µ ∈ M is a vector of expected security
payoffs E[ρ(ω)] for some distribution over Ω.
Definition 1. The market maker’s utility for a belief µ ∈
M relative to the state q is the maximum expected payoff
achievable by a trader with belief µ when the current mar-
ket state is q:
Util(µ; q) := supr∈RK

[
µ · r − C(q + r) + C(q)

]
.

Any subset E ⊆ Ω is referred to as an event. Observations
X = x correspond to events Ωx. Suppose that a trader has
observed an event, i.e., a trader knows that ω ∈ E , but is
otherwise uninformed. The market maker’s utility for that
event can then be naturally defined as follows.
Definition 2. The utility for a (non-null) event E ⊆ Ω rel-
ative to the market state q is the largest guaranteed payoff
that a trader who knows ω ∈ E (and has only this informa-
tion) can achieve when the current market state is q:

Util(E ; q) := sup
r∈RK

min
ω∈E

[
ρ(ω) · r − C(q + r) + C(q)

]
.

Finally, consider the setting in which a trader has ob-
served an event E , and also holds a belief µ consistent
with E . Specifically, let M(E) denote the convex hull of
{ρ(ω)}ω∈E , which is the set of beliefs consistent with the
event E , and assume µ ∈ M(E). Then we can define the
“excess utility for the belief µ” as the excess utility pro-
vided by µ over just the knowledge of E .
Definition 3. Given an event E and a belief µ ∈ M(E),
the excess utility of µ over E , relative to the state q is:

Util(µ | E ; q) = Util(µ; q)− Util(E ; q) .

Note that in these definitions a trader can always choose
not to trade (r = 0), so the utility for a belief and an
event is non-negative. Also it is not too difficult to see that
Util(µ; q) ≥ Util(E ; q) for any µ ∈ M(E), so the ex-
cess utility for a belief is also non-negative.

In Sec. 2.5, we show that given a state q and a non-null
event E , there always exists a (possibly non-unique) belief
µ ∈ E such that Util(µ | E ; q) = 0. Thus, a trader with
such a “worst-case” belief is able to achieve in expecta-
tion no reward beyond what any trader that just observed E
would receive. We show that these worst-case beliefs corre-
spond to certain kinds of “projections” of the current price
p(q) ontoM(E). For LMSR, the projections are with re-
spect to KL divergence and correspond to the usual condi-
tional probability distributions. Moreover, for sufficiently



Table 1: Information Desiderata

PRICE Preserve prices:
p̃(s̃) = p(s).

CONDPRICE Preserve conditional prices:
p̃(X=x; s̃) = p(X=x; s) ∀x ∈ X .

DECUTIL Decrease profits for uninformed traders:
~Util(X=x; s̃) ≤ Util(X=x; s) ∀x∈X ,

with sharp inequality if Util(X=x; s) > 0.

ZEROUTIL No profits for uninformed traders:
~Util(X=x; s̃) = 0 ∀x ∈ X .

EXUTIL Preserve excess utility:
~Util(µ|X=x; s̃) = Util(µ|X=x; s)

for all x ∈ X and µ ∈M(X=x).

smooth cost functions (including LMSR) they correspond
to market prices that result when a trader is optimizing his
guaranteed profit from the information ω ∈ E as in Defini-
tion 2 (see Appendix E). Because of this motivation, such
beliefs are referred to as “conditional price vectors.”

Definition 4. A vector µ ∈ M(E) is called a conditional
price vector, conditioned on E , relative to the state q if
Util(µ; q) = Util(E ; q). The set of such conditional
price vectors is denoted

p(E ; q) := {µ ∈M(E) : Util(µ; q) = Util(E ; q)} .

See Appendix F for additional motivation for our defini-
tions of utility and conditioning. With these notions de-
fined, we can now state our desiderata.

2.4 DESIDERATA

Recall that we aim to design mechanisms which replace a
cost function C at a state s, with a new cost function C̃ at
a state s̃. Let Util denote the utility for information with
respect to C and ~Util with respect to C̃, and let p and p̃
be the respective price maps. In our mechanisms, we at-
tempt to satisfy (a subset of) the conditions on information
structures as listed in Table 1.

Conditions PRICE and CONDPRICE capture the require-
ment to preserve the information gathered in the market.
The current price p(q) is the ultimate information content
of the market at a state q before the observation time, but
it is not necessarily the right notion of information content
after the observation time. When we do not know the re-
alization x, we may wish to set up the market so that any
trader who has observed X = x and would like to max-
imize the guaranteed profit would move the market to the
same conditional price vector as in the previous market.
This is captured by CONDPRICE.

DECUTIL models a scenario in which the utility for infor-
mation about X decreases over time, and ZEROUTIL rep-
resents the extreme case in which utility decreases to zero.
These conditions are in friction with EXUTIL, which aims

to maintain the utility structure over the conditional out-
come spaces. A key challenge is to satisfy EXUTIL and
ZEROUTIL (or DECUTIL) simultaneously.

Apart from the information desiderata of Table 1, we would
like to maintain an important feature of cost-function-based
market makers: their ability to bound the worst-case loss
to the market maker. Specifically, we would like to show
that there is some finite bound (possibly depending on the
initial state) such that no matter what trades are executed
and which outcome ω occurs, the market maker will lose
no more than the amount of the bound. It turns out that
the solution concepts introduced in this paper maintain the
same loss bound as guaranteed for using just the market’s
original cost function C, but since the focus of the paper
is on the information structures, worst-case loss analysis is
relegated to Appendix H.

In Sec. 3, we study in detail the sudden revelation set-
ting with the goal of instantiating Protocol 1 in a way
that achieves ZEROUTIL while satisfying CONDPRICE and
EXUTIL. Our key result is a characterization and a geomet-
ric sufficient condition for when this is possible.

In Sec. 4, we examine instantiations of Protocol 2 for
the gradual decrease setting. Our construction focuses on
linearly-constrained market makers (LCMM) [13], which
naturally decompose into submarkets. We show how to
achieve PRICE, CONDPRICE, DECUTIL and EXUTIL in
LCMMs. We also show that it is possible to simultaneously
decrease the utility for information in each submarket ac-
cording to its own schedule, while maintaining PRICE.

Before we develop these mechanisms, we introduce the
machinery of Bregman divergences, which helps us ana-
lyze notions of utility for information.

2.5 BREGMAN DIVERGENCE AND UTILITY

To analyze the market maker’s utility for information, we
show how it corresponds to a specific notion of distance
built into the cost function, the mixed (or generalized)
Bregman divergence [13, 15]. Let R be the conjugate
of C. 3 The mixed Bregman divergence between a belief µ
and a state q is defined asD(µ‖q) := R(µ)+C(q)−q ·µ.
The conjugacy of R and C implies that D(µ‖q) ≥ 0 with
equality iff µ ∈ ∂C(q) = p(q), i.e., if the price vector
“matches” the state (see Appendix A). The geometric inter-
pretation of mixed Bregman divergence is as a gap between
a tangent and the graph of the function R (see Fig. 1).

To see how the divergence relates to traders’ beliefs, con-
sider a trader who believes that E[ρ(ω)] = µ′ and moves
the market from state q to state q′. The expected pay-
off to this trader is (q′ − q) · µ′ − C(q′) + C(q) =
D(µ′‖q)−D(µ′‖q′). This payoff increases as D(µ′‖q′)

3The conjugate is also, less commonly, called the “dual”.



D(µ ‖ q)R

µ
tangent t with slope q

Figure 1: The mixed Bregman divergence D(µ‖q) derived from
the conjugate pair C and R measures the distance between the
tangent with slope q and the value of R evaluated at µ. By conju-
gacy, the tangent t is described by t(µ) = µ ·q−C(q). Note that
the divergence is well defined even when R is not differentiable,
because each slope vector determines a unique tangent.

decreases. Thus, subject to the trader’s budget constraints,
the trader is incentivized to move to the state q′ which is
as “close” to his/her belief µ′ as possible in the sense of a
smaller value D(µ′‖q′), with the largest expected payoff
when D(µ′‖q′) = 0. This argument shows that D(·‖·) is
an implicit measure of distance used by traders.

The next theorem shows that the Bregman divergence also
matches the concepts defined in Sec. 2.3. Specifically, we
show that (1) the utility for a belief coincides with the Breg-
man divergence, (2) the utility for an event E is the small-
est divergence between the current market state andM(E),
and (3) the conditional price vector is the (Bregman) pro-
jection of the current market state on M(E), i.e., it is a
belief inM(E) that is “closest to” the current market state.
Theorem 1. Let µ ∈M, q ∈ RK and ∅ 6= E ⊆ Ω. Then

Util(µ; q) = D(µ‖q) , (1)
Util(E ; q) = minµ′∈M(E)D(µ′‖q) , (2)
p(E ; q) = argminµ′∈M(E)D(µ′‖q) . (3)

We finish this section by characterizing when EXUTIL is
satisfied and showing that it implies CONDPRICE. Recall
that Ωx = {ω : X(ω) = x} and letMx :=M(Ωx).
Proposition 1. EXUTIL holds if and only if for all x ∈ X ,
there exists some cx such that for all µ ∈ Mx, D(µ‖s)−
D̃(µ‖s̃) = cx. Moreover, EXUTIL implies CONDPRICE.

3 SUDDEN REVELATION

In this section, we consider the design of sudden revelation
market makers (Protocol 1). In this setting, partial informa-
tion in the form of the realization of X is revealed to mar-
ket participants (but not to the market maker) at a predeter-
mined time, as might be the case if the medal winners of an
Olympic event are announced but no human is available to
input this information into the automated market maker on
behalf of the market organizer. The random variableX and
the observation time are assumed to be known, and the mar-
ket maker wishes to “close” the submarket with respect to
X just before the observation time, without knowing the re-
alization x, while leaving the rest of the market unchanged.

Stated in terms of our formalism, we wish to find func-
tions NewState and NewCost from Protocol 1 such that the
desiderata CONDPRICE, EXUTIL, and ZEROUTIL from
Table 1 are satisfied. This implies that traders who know
only that X = x are not rewarded after the observation
time, but traders with new information about the outcome
space conditioned on X = x are rewarded exactly as be-
fore. As a result, trading immediately resumes in a “con-
ditional market” on M(Ωx) for the correct realization x,
without the market maker needing to know x and without
any other human intervention. We refer to the goal of si-
multaneously achieving CONDPRICE, EXUTIL, and ZE-
ROUTIL as achieving implicit submarket closing.

For convenience, throughout this section we writeMx :=
M(Ωx) to denote the conditional price space, andM? :=⋃
x∈XMx to denote prices possible after the observation.

3.1 SIMPLIFYING THE OBJECTIVE

We first show that achieving implicit submarket closing can
be reduced to finding a function R̃ satisfying a simple set of
constraints, and defining NewCost to return the conjugate
C̃ of R̃. As a first step, we observe that it is without loss
of generality to let NewState be an identity map, i.e., to
assume that s̃ = s; when this is not the case, we can obtain
an equivalent market by setting s̃ = s and shifting C̃ so
that the Bregman divergence is unchanged.

Lemma 1. Any desideratum of Table 1 holds for C̃ and s̃ if
and only if it holds for C̃ ′(q) = C̃(q+ s̃− s) and s̃′ = s.

To simplify exposition, we assume that s̃ = s through-
out the rest of the section as we search for conditions on
NewCost that achieve implicit submarket closing. Under
this assumption, Proposition 1 can be used to characterize
our goal in terms of R̃. Specifically, we show that EXUTIL
and CONDPRICE hold if R̃ differs from R by a (possibly
different) constant on each conditional price spaceMx.

Lemma 2. When s̃ = s, EXUTIL and CONDPRICE hold
together if and only if there exist constants bx for x ∈ X
such that R̃(µ) = R(µ)− bx for all x ∈ X and µ ∈Mx.

This suggests parameterizing our search for R̃ by vectors
b = {bx}x∈X . For b ∈ RX , define a function

Rb(µ) =

{
R(µ)− bx if µ ∈Mx, x ∈ X ,
∞ otherwise.

If the sets Mx overlap, Rb is not well defined for all b.
Whenever we write Rb, we assume that b is such that Rb

is well defined. To satisfy Lemma 2 with a specific b, it
suffices to find a convex function R̃ “consistent with” Rb

in the following sense.

Definition 5. We say that a function R̃ is consistent with
Rb if R̃(µ) = Rb(µ) for all µ ∈M?.

We next simplify our objective further by proving that



whenever implicit submarket closing is achievable, it suf-
fices to consider functions NewCost that set C̃ to be the
conjugate of the largest convex function consistent withRb

for some b ∈ RX . To establish this, we examine properties
of the convex roof of Rb, the largest convex function that
lower-bounds (but is not necessarily consistent with) Rb.
Definition 6. Given a function f : RK → (−∞,∞], the
convex roof of f , denoted (conv f), is the largest convex
function lower-bounding f , defined by

(conv f)(x) := sup {g(x) : g ∈ G, g ≤ f}

where G is the set of convex functions g : RK → (−∞,∞],
and the condition g ≤ f holds pointwise.

The convex roof is analogous to a convex hull, and the epi-
graph of (conv f) is the convex hull of the epigraph of f .
See Urruty and Lemarchal [30, §B.2.5] for details.
Example 4. Recall the square market of Example 2. Let
X(ω) = ω1, so traders observe the payoff of the first
security at observation time. Then Mx = {x} × [0, 1]
for x ∈ {0, 1}. For simplicity, let b = 0. We have
Rb(µ) = µ2 lnµ2 +(1−µ2) ln(1−µ2) for µ ∈M1∪M2

andRb(µ) =∞ for all otherµ. Examining the convex hull
of the epigraph of Rb gives us that for all µ ∈ [0, 1]2, we
have (convRb)(µ) = µ2 lnµ2 + (1− µ2) ln(1− µ2).

As this example illustrates, the roof of Rb is the “flattest”
convex function lower-bounding Rb. Given the geomet-
ric interpretation of Bregman divergence (Fig. 1), a “flat-
ter” R̃ yields a smaller utility for information. This flatness
plays a key role in achieving ZEROUTIL. Assume that R̃
is consistent with Rb, so CONDPRICE and EXUTIL hold
by Lemma 2. Following the intuition in Fig. 1, to achieve
ZEROUTIL, i.e., D̃(µ̂x‖s) = 0 across all x ∈ X and
µ̂x ∈ p(Ωx; s), it must be the case that for all x and µ̂x, the
function values R̃(µ̂x) lie on the tangent of R̃ with slope
s. That is, the graph of R̃ needs to be flat across the points
µ̂x. This suggests that the roof might be a good candidate
for R̃. This intuition is formalized in the following lemma,
which states that instead of considering arbitrary convex R̃
consistent with Rb, we can consider R̃ which take the form
of a convex roof.
Lemma 3. If any convex function R̃ is consistent with Rb

then so is the convex roof R̃′ = (convRb). Furthermore, if
R̃ satisfies ZEROUTIL or DECUTIL then so does R̃′.

3.2 IMPLICIT SUBMARKET CLOSING

We now have the tools to answer the central question of this
section: When can we achieve implicit submarket closing?
Lemma 1 implies that we can assume that NewState is the
identity function, and Lemmas 2 and 3 imply that it suffices
to consider functions NewCost that set C̃ to the conjugate
of R̃ = (convRb) for some b ∈ RX . What remains is to
find the vector b that guarantees ZEROUTIL. As mentioned
above, ZEROUTIL is satisfied if and only if

(
µ̂x, R̃(µ̂x)

)

lies on the tangent of R̃ with the slope s for all x ∈ X and
µ̂x ∈ p(Ωx; s). This implies that R̃(µ̂x) = µ̂x · s − c for
all x and µ̂x and some constant c. The specific choice of c
does not matter since D̃ is unchanged by vertical shifts of
the graph of R̃. For convenience, we set c = C(s), which
makes the tangents of R and R̃ with the slope s coincide.
This and Lemma 2 then yield the choice of b = b̂, with

b̂x := R(µ̂x) + C(s)− µ̂x · s = D(µ̂x‖s) (4)

for all x and any choice of µ̂x ∈ p(Ωx; s). The result-
ing construction of R̃ = (convRb̂) can be described using
geometric intuition. First, consider the tangent of R with
slope equal to the current market state s. For each x ∈ X ,
take the subgraph of R over the set Mx and let it “fall”
vertically until it touches this tangent at the point µ̂x. The
set of fallen graphs for all x together describes Rb̂ and the
convex hull of the fallen epigraphs yields R̃ = (convRb̂).

Defining NewCost using this construction guarantees ZE-
ROUTIL, but CONDPRICE and EXUTIL are achieved only
when R̃ is consistent with Rb̂. Conversely, whenever the
three properties are achievable, this construction produces
a function R̃ consistent with Rb̂. This yields a full charac-
terization of when implicit submarket closing is achievable.
Theorem 2. Let b̂ be defined as in Eq. (4). CONDPRICE,
EXUTIL, and ZEROUTIL can be satisfied using Protocol 1
if and only if (convRb̂) is consistent with Rb̂. In this case,
they can be achieved with NewState as the identity and
NewCost outputting the conjugate of R̃ = (convRb̂).

3.3 CONSTRUCTING THE COST FUNCTION

Theorem 2 describes how to achieve implicit submarket
closing by defining the cost function C̃ output by NewCost

implicitly via its conjugate R̃. In this section, we provide
an explicit construction of the resulting cost function, and
illustrate the construction through examples.

Fixing R, for each x ∈ X define a function Cx(q) :=
supµ∈Mx

[
q ·µ−R(µ)

]
. Each function Cx can be viewed

as a bounded-loss and arbitrage-free cost function for out-
comes in Ωx. The conjugate of each Cx coincides with R
onMx (and is infinite outsideMx). The explicit expres-
sion for C̃ is described in the following proposition.
Proposition 2. For a given C with conjugate R, define b̂
as in Eq. (4) and let R̃ = (convRb̂). The conjugate C̃ of
R̃ can be written C̃(q) = maxx∈X

[
b̂x +Cx(q)

]
. Further-

more, for each x ∈ X , b̂x = C(s)− Cx(s).

At any market state q with a unique x̂ := argmaxx∈X
[
b̂x+

Cx(q)
]
, the price according to C̃ lies in the setMx̂. When

x̂ is not unique, the market has a bid-ask spread. The addi-
tion of b̂x ensures that the bid-ask spread at the market state
s contains conditional prices µ̂x across all x. To illustrate
this construction, we return to the example of a square.



Example 5. Consider again the square market from Ex-
amples 2 and 4 with X(ω) = ω1. One can verify that
Cx(q) = xq1 + ln

(
1 + eq2

)
for x ∈ {0, 1}. Prop. 2 gives

C̃(q) = maxx∈{0,1}

[
x(q1−s1)+ln(1+eq2)+ln(1+es1)

]
= max{0, q1 − s1}+ ln(1 + es1) + ln(1 + eq2).

In switching from C to C̃ we have effectively changed the
first term of our cost from a basic LMSR cost for a single
binary security to the piecewise linear cost of Example 3,
introducing a bid-ask spread for security 1 when q1 = s1;
states q = (s1, q2) have p̃(q) = [0, 1] × {eq2/(1 + eq2)}.
The market for security 1 has thus implicitly closed; as the
new market begins with q = s, any trader can switch the
price of security 1 to 0 or 1 by simply purchasing an in-
finitesimal quantity of security 1 in the appropriate direc-
tion, at essentially no cost and with no ability to profit.

The example above illustrates our cost function construc-
tion, but does not show that R̃ is consistent with Rb̂ as
required by Theorem 2. In fact, it is consistent. This fol-
lows from the sufficient condition proved in Appendix G.2.
Briefly, the condition is thatM? does not contain any price
vectors µ that can be expressed as nontrivial convex com-
binations of vectors from multipleMx.

In Appendix G.3, we show that this sufficient condition
applies to many settings of interest such as arbitrary par-
titions of simplex and submarket observations in binary-
payoff LCMMs (defined in Sec. 4), which were used to run
a combinatorial market for the 2012 U.S. Elections [14].

A case in which the sufficient condition is violated is the
square market with X(ω) = ω1 + ω2 ∈ {0, 1, 2}, where
M0 = (0, 0) and M2 = (1, 1) but ( 1

2 ,
1
2 ) = 1

2 (0, 0) +
1
2 (1, 1) ∈M1. This particular example also fails to satisfy
Theorem 2 (see Appendix G.1), but in general the sufficient
condition is not necessary (see Appendix G.4).

4 GRADUAL DECREASE

We now consider gradual decrease market makers (Proto-
col 2) for the gradual decrease setting in which the utility
of information about a future observation X is decreasing
continuously over time. We focus on linearly constrained
market makers (LCMMs) [13], which naturally decompose
into submarkets. Our proposed gradual decrease market
maker employs a different LCMM at each time step, and
satisfies various desiderata of Sec. 2.4 between steps.

As a warm-up for the concepts introduced in this section,
we show how the “liquidity parameter” can be used to im-
plement a decreasing utility for information.

Example 6. Homogeneous decrease in utility for informa-
tion. We begin with a differentiable cost function C in a
state s. Let α ∈ (0, 1), and define C̃(q) = αC(q/α), and
s̃ = αs. C̃ is parameterized by the “liquidity parameter” α.

The transformation s̃ guarantees the preservation of prices,
i.e., p̃(s̃) = ∇C̃(s̃) = α∇C(s̃/α)/α = ∇C(s) = p(s).
We can derive that R̃(µ) = αR(µ), and D̃(µ‖q) =
αD(µ‖q/α), so, for all µ, D̃(µ‖s̃) = αD(µ‖s). In
words, the utility for all beliefsµwith respect to the current
state is decreased according to the multiplier α.

This idea will be the basis of our construction. We next de-
fine the components of our setup and prove the desiderata.

4.1 LINEARLY CONSTRAINED MARKETS

Recall that ρ : Ω → RK is the payoff function. Let G be
a system of non-empty disjoint subsets g ⊆ [K] forming a
partition of coordinates of ρ, so [K] =

⋃
g∈G g. We use the

notation ρg(ω) := (ρi(ω))i∈g for the block of coordinates
in g, and similarly µg and qg . Blocks g describe groups
of securities that are treated as separate “submarkets,” but
there can be logical dependencies among them.

Example 7. Medal counts. Consider a prediction market
for the Olympics. Assume that Norway takes part in n
Olympic events. In each, Norway can win a gold medal
or not. Encode this outcome space as Ω = {0, 1}n. De-
fine random variables Xi(ω) = ωi equal to 1 iff Norway
wins gold in the ith Olympic event. Also define a random
variable Y =

∑n
i=1Xi representing the number of gold

medals that Norway wins in total. We create K = 2n + 1
securities, corresponding to 0/1 indicators of the form
1[Xi = 1] for i ∈ [n] and 1[Y = y] for y ∈ {0, . . . , n}.
That is, ρi = Xi for i ∈ [n] and ρn+1+y = 1[Y = y] for
y ∈ {0, . . . , n}. A natural block structure in this market
is G =

{
{1}, {2}, . . . , {n}, {n + 1, . . . , 2n + 1}

}
with

submarkets corresponding to the Xi and Y .

Given the block structure G, the construction of a lin-
early constrained market begins with bounded-loss and
arbitrage-free convex cost functions Cg : Rg → R with
conjugates Rg and divergences Dg for each g ∈ G. These
cost functions are assumed to be easy to compute and give
rise to a “direct-sum” cost C⊕(q) =

∑
g∈G Cg(qg) with

the conjugate R⊕(µ) =
∑
g∈G Rg(µg) and divergence

D⊕(µ‖q) =
∑
g∈G Dg(µg‖qg).

Since C⊕ decomposes, it can be calculated quickly. How-
ever, the market maker C⊕ might allow arbitrage due to
the lack of consistency among submarkets since arbitrage
opportunities arise when prices fall outside M [1]. M
is always polyhedral, so it can be described as M ={
µ ∈ RK : A>µ ≥ b

}
for some matrix A ∈ RK×M and

vector b ∈ RM . Letting am denote the mth column of A,
arbitrage opportunities open up if the price of the bundle
am falls below bm. For any η ∈ RM+ , the bundle Aη
presents an arbitrage opportunity if priced below b · η.

A linearly constrained market maker (LCMM) is described
by the cost functionC(q) = infη∈RM

+

[
C⊕(q+Aη)−b·η

]
.

While the definition of C is slightly involved, the conju-



gate R has a natural meaning as a restriction of the direct-
sum market to the price spaceM, i.e., R(µ) = R⊕(µ) +
I [µ ∈M]. Furthermore, the infimum in the definition of
C is always attained (see Appendix D.1). Fixing q and let-
ting η? be a minimizer in the definition, we can think of
the market maker as automatically charging traders for the
bundle Aη?, which would present an arbitrage opportunity,
and returning to them the guaranteed payout b · η. This
benefits traders while maintaining the same worst-case loss
guarantee for the market maker as C⊕ [13].

Example 8. LCMM for medal counts. Continuing the pre-
vious example, for submarkets Xi, we can define LMSR
costs Ci(qi) = ln (1 + exp(qi)). For the submarket for Y ,
let g = {n + 1, . . . , 2n + 1} and use the LMSR cost
Cg(qg) = ln

(∑n
y=0 exp(qn+1+y)

)
. The submarkets for

Xi and Y are linked. One example of a linear constraint is
based on the linearity of expectations: for any distribution,
we must have E[Y ] =

∑n
i=1 E[Xi]. This places an equality

constraint
∑n
y=0 y ·µn+1+y =

∑n
i=1 µi on the vectorµ,

which can be expressed as two inequality constraints (see
Dudı́k et al. [13, 14] for more on constraint generation).

4.2 DECREASING LIQUIDITY

We now study the gradual decrease scenario in which the
utility for information in each submarket g decreases over
time. In the Olympics example, the market maker may
want to continuously decrease the rewards for information
about a particular event as the event takes place.

We generalize the strategy from Example 6 to LCMMs and
extend them to time-sensitive cost functions by introduc-
ing the “information-utility schedule” in the form of a dif-
ferentiable non-increasing function βg : R → (0, 1] with
βg(t

0) = 1. The speed of decrease of βg controls the speed
of decrease of the utility for information in each submarket.
(We make this statement more precise in Theorem 3.)

We first define a gradual decrease direct-sum cost func-
tion C⊕(q; t) =

∑
g∈G βg(t)Cg

(
qg/βg(t)

)
which is used

to define a gradual decrease LCMM, and a matching
NewState as follows:

C(q; t) = infη∈RM
+

[
C⊕(q + Aη; t)− b · η

]
NewState(q; t, t̃) = q̃

such that q̃g =
βg(t̃)
βg(t) (qg + δ?g)− δ?g

where η? is a minimizer in C(q; t) and δ? = Aη? .

When considering the state update from time t to time t̃,
the ratio βg(t̃)/βg(t) has the role of the liquidity param-
eter α in Example 6. The motivation behind the def-
inition of NewState is to guarantee that q̃g + δ?g =

[βg(t̃)/βg(t)](qg + δ?g), which turns out to ensure that η?

remains the minimizer and the prices are unchanged. The
preservation of prices (PRICE) is achieved by a scaling sim-

ilar to Example 6, albeit applied to the market state in the
direct-sum market underlying the LCMM.

This intuition is formalized in the next theorem, which
shows that the above construction preserves prices and de-
creases the utility for information, as captured by the mixed
Bregman divergence, according to the schedules βg . We
use the notation Ct(q) := C(q; t) and write Dt

g for the
divergence derived from Ctg(qg) := βg(t)Cg(qg/βg(t)).

Theorem 3. Let C be a gradual decrease LCMM, let t, t̃ ∈
R and s ∈ RK . The replacement of Ct by C̃ := C t̃ and s
by s̃ := NewState(s; t, t̃) satisfies PRICE. Also,

D̃(µ‖s̃) =
∑
g∈G

αgD
t
g(µg‖sg+δ?g)+(A>µ−b) ·η? (5)

for all µ ∈ M, where η? and δ? are defined by
NewState(s; t, t̃), and αg = βg(t̃)/βg(t) > 0.

The first term on the right-hand side of Eq. (5) is the sum of
divergences in submarkets g, each weighted by a coefficient
αg which is equal to one at t̃ = t and weakly decreases as
t̃ grows. The divergences are between µg and the state
resulting from the arbitrager action in the direct-sum mar-
ket. The second term is non-negative, since µ ∈ M, and
represents expected arbitrager gains beyond the guaranteed
profit from the arbitrage in the direct-sum market. The only
terms that depend on time t̃ are the multipliers αg . Since
they are decreasing over time, we immediately obtain that
the utility for information, Util(µ; s̃) = D̃(µ‖s̃), is also
decreasing, with the contributions from individual submar-
kets decreasing according to their schedules βg .

When only one of the schedules βg is decreasing and the
other schedules stay constant, we can show that the excess
utility and conditional prices are preserved (conditioned on
ρg), and under certain conditions also DECUTIL holds.

For a submarket g, let Xg := {ρg(ω) : ω ∈ Ω} be the set
of realizations of ρg . Recall thatM(E) is the convex hull
of {ρ(ω)}ω∈E . We show that DECUTIL holds if Cg is dif-
ferentiable and the submarket g is “tight” as follows.
Definition 7. We say that a submarket g is tight if for all
x ∈ Xg the set {µ ∈ M : µg = x} coincides with
M(ρg = x), i.e., if all the beliefs µ with µg = x can
be realized by probability distributions over states ω with
ρg(ω) = x. (In general, the former is always a superset of
the latter, hence the name “tight” when the equality holds.)

While this condition is somewhat restrictive, it is easy to
see that all submarkets with binary securities, i.e., with
ρg(ω) ∈ {0, 1}g , are tight (see Appendix D.4).
Theorem 4. Assume the setup of Theorem 3. Let g ∈ G and
assume that βg(t̃) < βg(t) whereas βg′(t̃) = βg′(t) for
g′ 6= g. Then the replacement of Ct by C̃ and s by s̃ satis-
fies CONDPRICE and EXUTIL for the random variable ρg .
Furthermore, if Cg is differentiable and the submarket g is
tight, we also obtain DECUTIL.
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