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Abstract

The Brown clustering algorithm (Brown et al.,
1992) is widely used in natural language process-
ing (NLP) to derive lexical representations that
are then used to improve performance on vari-
ous NLP problems. The algorithm assumes an
underlying model that is essentially an HMM,
with the restriction that each word in the vocab-
ulary is emitted from a single state. A greedy,
bottom-up method is then used to find the clus-
tering; this method does not have a guarantee of
finding the correct underlying clustering. In this
paper we describe a new algorithm for clustering
under the Brown et al. model. The method relies
on two steps: first, the use of canonical correla-
tion analysis to derive a low-dimensional repre-
sentation of words; second, a bottom-up hierar-
chical clustering over these representations. We
show that given a sufficient number of training
examples sampled from the Brown et al. model,
the method is guaranteed to recover the correct
clustering. Experiments show that the method
recovers clusters of comparable quality to the al-
gorithm of Brown et al. (1992), but is an order of
magnitude more efficient.

1 INTRODUCTION

There has recently been great interest in the natural lan-
guage processing (NLP) community in methods that de-
rive lexical representations from large quantities of unla-
beled data (Brown et al., 1992; Pereira et al., 1993; Ando
and Zhang, 2005; Liang, 2005; Turian et al., 2010; Dhillon
et al., 2011; Collobert et al., 2011; Mikolov et al., 2013a,b).
These representations can be used to improve accuracy on
various NLP problems, or to give significant reductions in
the number of training examples required for learning. The
Brown clustering algorithm (Brown et al., 1992) is one of
the most widely used algorithms for this task. Brown clus-
tering representations have been shown to be useful in a

diverse set of problems including named-entity recognition
(Miller et al., 2004; Turian et al., 2010), syntactic chunking
(Turian et al., 2010), parsing (Koo et al., 2008), and lan-
guage modeling (Kneser and Ney, 1993; Gao et al., 2001).

The Brown clustering algorithm assumes a model that is
essentially a hidden Markov model (HMM), with a restric-
tion that each word in the vocabulary can only be emitted
from a single state in the HMM (i.e, there is a deterministic
mapping from words to underlying states). The algorithm
uses a greedy, bottom-up method in deriving the cluster-
ing. This method is a heuristic, in that there is no guarantee
of recovering the correct clustering. In practice, the algo-
rithm is quite computationally expensive: for example in
our experiments, the implementation of Liang (2005) takes
over 22 hours to derive a clustering from a dataset with 205
million tokens and 300,000 distinct word types.

This paper introduces a new algorithm for clustering un-
der the Brown et al. model (henceforth, the Brown model).
Crucially, under an assumption that the data is generated
from the Brown model, our algorithm is guaranteed to re-
cover the correct clustering when given a sufficient num-
ber of training examples (see the theorems in Section 5).
The algorithm draws on ideas from canonical correlation
analysis (CCA) and agglomerative clustering, and has the
following simple form:

1. Estimate a normalized covariance matrix from a cor-
pus and use singular value decomposition (SVD)
to derive low-dimensional vector representations for
word types (Figure 4).

2. Perform a bottom-up hierarchical clustering of these
vectors (Figure 5).

In our experiments, we find that our clusters are compara-
ble to the Brown clusters in improving the performance of
a supervised learner, but our method is significantly faster.
For example, both our clusters and Brown clusters improve
the F1 score in named-entity recognition (NER) by 2-3
points, but the runtime of our method is around 10 times
faster than the Brown algorithm (Table 3).

The paper is structured as follows. In Section 2, we discuss



Input: corpus with N tokens of n distinct word types
w(1), . . . , w(n) ordered by decreasing frequency; number of clus-
ters m.
Output: hierarchical clustering of w(1), . . . , w(n).

1. Initialize active clusters C = {{w(1)}, . . . , {w(m)}}.

2. For i = m+ 1 to n+m− 1:

(a) If i ≤ n: set C = C ∪ {{w(i)}}.
(b) Merge c, c′ ∈ C that cause the smallest decrease in the

likelihood of the corpus.

Figure 1: A standard implementation of the Brown cluster-
ing algorithm.

related work. In Section 3, we establish the notation we
use throughout. In Section 4, we define the Brown model.
In Section 5, we present the main result and describe the
algorithm. In Section 6, we report experimental results.

2 BACKGROUND
2.1 THE BROWN CLUSTERING ALGORITHM

The Brown clustering algorithm (Brown et al., 1992) has
been used in many NLP applications (Koo et al., 2008;
Miller et al., 2004; Liang, 2005). We briefly describe the
algorithm below; a part of the description was taken from
Koo et al. (2008).

The input to the algorithm is a corpus of text withN tokens
of n distinct word types. The algorithm initializes each
word type as a distinct cluster, and repeatedly merges the
pair of clusters that cause the smallest decrease in the like-
lihood of the corpus according to a discrete hidden Markov
model (HMM). The observation parameters of this HMM
are assumed to satisfy a certain disjointedness condition
(Assumption 4.1). We will explicitly define the model in
Section 4.

At the end of the algorithm, one obtains a hierarchy of
word types which can be represented as a binary tree as
in Figure 2. Within this tree, each word is uniquely identi-
fied by its path from the root, and this path can be com-
pactly represented with a bit string. In order to obtain
a clustering of the words, we select all nodes at a cer-
tain depth from the root of the hierarchy. For exam-
ple, in Figure 2 we might select the four nodes at depth
2 from the root, yielding the clusters {apple,pear},
{Apple,IBM}, {bought,run}, and {of,in}. Note that
the same clustering can be obtained by truncating each
word’s bit string to a 2-bit prefix. By using prefixes of var-
ious lengths, we can produce clusterings of different gran-
ularities.

A naive implementation of this algorithm has runtime
O(n5). Brown et al. (1992) propose a technique to re-
duce the runtime toO(n3). Since this is still not acceptable
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Figure 2: An example of a Brown word-cluster hierarchy
taken from Koo et al. (2008). Each node in the tree is la-
beled with a bit string indicating the path from the root node
to that node, where 0 indicates a left branch and 1 indicates
a right branch.

for large values of n, a common trick used for practical
implementation is to specify the number of active clusters
m � n, for example, m = 1000. A sketch of this imple-
mentation is shown in Figure 1. Using this technique, it is
possible to achieve O(N + nm2) runtime. We note that
our algorithm in Figure 5 has a similar form and asymp-
totic runtime, but is empirically much faster. We discuss
this issue in Section 6.3.1.

In this paper, we present a very different algorithm for de-
riving a word hierarchy based on the Brown model. In
all our experiments, we compared our method against the
highly optimized implementation of the Brown algorithm
in Figure 1 by Liang (2005).

2.2 CCA AND AGGLOMERATIVE CLUSTERING

Our algorithm in Figure 4 operates in a fashion similar to
the mechanics of CCA. CCA is a statistical technique used
to maximize the correlation between a pair of random vari-
ables (Hotelling, 1936). A central operation in CCA to
achieve this maximization is SVD; in this work, we also
critically rely on SVD to recover the desired parameters.

Recently, it has been shown that one can use CCA-style
algorithms, so-called spectral methods, to learn HMMs
in polynomial sample/time complexity (Hsu et al., 2012).
These methods will be important to our goal since the
Brown model can be viewed as a special case of an HMM.

We briefly note that one can view our approach from the
perspective of spectral clustering (Ng et al., 2002). A spec-
tral clustering algorithm typically proceeds by constructing
a graph Laplacian matrix from the data and performing a
standard clustering algorithm (e.g., k-means) on reduced-
dimensional points that correspond to the top eigenvalues
of the Laplacian. We do not make use of a graph Laplacian,
but we do make use of spectral methods for dimensionality
reduction before clustering.

Agglomerative clustering refers to hierarchical grouping
of n points using a bottom-up style algorithm (Ward Jr,
1963; Shanbehzadeh and Ogunbona, 1997). It is com-
monly used for its simplicity, but a naive implementation



requires O(dn3) time where d is the dimension of a point.
Franti et al. (2000) presented a faster algorithm that re-
quires O(γdn2) time where γ is a data-dependent quan-
tity which is typically much smaller than n. In our work,
we use a variant of this last approach that has runtime
O(γdmn) where m � n is the number of active clus-
ters we specify (Figure 5). We also remark that under our
derivation, the dimension d is always equal to m, thus we
express the runtime simply as O(γnm2).

3 NOTATION
Let [n] denote the set {1, . . . , n}. Let [[Γ]] denote the indi-
cator of a predicate Γ, taking value 1 if Γ is true and 0 oth-
erwise. Given a matrix M , we let

√
M denote its element-

wise square-root and M+ denote its Moore-Penrose pseu-
doinverse. Let Im×m ∈ Rm×m denote the identity ma-
trix. Let diag(v) denote the diagonal matrix with the vector
v ∈ Rm appearing on its diagonal. Finally, let ‖v‖ de-
note the Euclidean norm of a vector v, and ‖M‖ denote the
spectral norm of a matrix M .

4 BROWN MODEL DEFINITION
A Brown model is a 5-tuple (n,m, π, t, o) for integers n,m
and functions π, t, o where

• [n] is a set of states that represent word types.

• [m] is a set of states that represent clusters.

• π(c) is the probability of generating c ∈ [m] in the
first position of a sequence.

• t(c′|c) is the probability of generating c′ ∈ [m] given
c ∈ [m].

• o(x|c) is the probability of generating x ∈ [n] given
c ∈ [m].

In addition, the model makes the following assumption on
the parameters o(x|c). This assumption comes from Brown
et al. (1992) who require that the word clusters partition the
vocabulary.

Assumption 4.1 (Brown et al. assumption). For each x ∈
[n], there is a unique C(x) ∈ [m] such that o(x|C(x)) > 0
and o(x|c) = 0 for all c 6= C(x).

In other words, the model is a discrete HMM with a many-
to-one deterministic mapping C : [n] → [m] from word
types to clusters. Under the model, a sequence of N tokens
(x1, . . . , xN ) ∈ [n]N has probability

p(x1, . . . , xN ) = π(C(x1))×
N∏
i=1

o(xi|C(xi))

×
N−1∏
i=1

t(C(xi+1)|C(xi))
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Figure 3: Illustration of our clustering scheme. (a) Original
rows of

√
O. (b) After row-normalization.

An equivalent definition of a Brown model is given by orga-
nizing the parameters in matrix form. Under this definition,
a Brown model has parameters (π, T,O) where π ∈ Rm is
a vector and T ∈ Rm×m, O ∈ Rn×m are matrices whose
entries are set to:

• πc = π(c) for c ∈ [m]

• Tc′,c = t(c′|c) for c, c′ ∈ [m]

• Ox,c = o(x|c) for c ∈ [m], x ∈ [n]

Throughout the paper, we will assume that T,O have rank
m. The following is an equivalent reformulation of As-
sumption 4.1 and will be important to the derivation of our
algorithm.

Assumption 4.2 (Brown et al. assumption). Each row of
O has exactly one non-zero entry.

5 CLUSTERING UNDER THE BROWN
MODEL

In this section, we develop a method for clustering words
based on the Brown model. The resulting algorithm
is a simple two-step procedure: an application of SVD
followed by agglomerative hierarchical clustering in Eu-
clidean space.

5.1 AN OVERVIEW OF THE APPROACH
Suppose the parameter matrixO is known. Under Assump-
tion 4.2, a simple way to recover the correct word clustering
is as follows:

1. Compute M̄ ∈ Rn×m whose rows are the rows of
√
O

normalized to have length 1.

2. Put words x, x′ in the same cluster iff M̄x = M̄x′ ,
where M̄x is the x-th row of M̄ .

This works because Assumption 4.2 implies that the rows
of
√
O corresponding to words from the same cluster lie

along the same coordinate-axis in Rm. Row-normalization
puts these rows precisely at the standard basis vectors. See
Figure 3 for illustration.



In Section 5.2, we prove that the rows of
√
O can be recov-

ered, up to an orthogonal transformation Q ∈ Rm×m, just
from unigram and bigram word probabilities (which can be
estimated from observed sequences). It is clear that the cor-
rectness of the above procedure is unaffected by the orthog-
onal transformation. Let M denote the row-normalized
form of

√
OQ>: then M still satisfies the property that

Mx = Mx′ iff x, x′ belong to the same cluster. We give an
algorithm to estimate this M from a sequence of words in
Figure 4.

5.2 SPECTRAL ESTIMATION OF OBSERVATION
PARAMETERS

To derive a method for estimating the observation parame-
ter
√
O (up to an orthogonal transformation), we first define

the following random variables to model a single random
sentence. Let (X1, . . . , XN ) ∈ [n]N be a random sequence
of tokens drawn from the Brown model, along with the
corresponding (hidden) cluster sequence (C1, . . . , CN ) ∈
[m]N ; independently, pick a position I ∈ [N − 1] uni-
formly at random. Let B ∈ Rn×n be a matrix of bigram
probabilities, u, v ∈ Rn vectors of unigram probabilities,
and π̃ ∈ Rm a vector of cluster probabilities:

Bx,x′ := P (XI = x,XI+1 = x′) ∀x, x′ ∈ [n]

ux := P (XI = x) ∀x ∈ [n]

vx := P (XI+1 = x) ∀x ∈ [n]

π̃c := P (CI = c) ∀c ∈ [m].

We assume that diag(π̃) has rank m; note that this assump-
tion is weaker than requiring diag(π) to have rank m. We
will consider a matrix Ω ∈ Rn×n defined as

Ω := diag(u)−1/2Bdiag(v)−1/2 (1)

Theorem 5.1. Let U ∈ Rn×m be the matrix of m left sin-
gular vectors of Ω corresponding to nonzero singular val-
ues. Then there exists an orthogonal matrix Q ∈ Rm×m

such that U =
√
OQ>.

To prove Theorem 5.1, we need to examine the structure of
the matrix Ω. The following matrices A, Ã ∈ Rn×m will
be important for this purpose:

A = diag(Oπ̃)−1/2Odiag(π̃)1/2

Ã = diag(OTπ̃)−1/2OTdiag(π̃)1/2

The first lemma shows that Ω can be decomposed into A
and Ã>.
Lemma 5.1. Ω = AÃ>.

Proof. It can be algebraically verified from the definition
of B, u, v that B = Odiag(π̃)(OT )>, u = Oπ̃, and v =
OTπ̃. Plugging in these expressions in Eq. (1), we have

Ω = diag(Oπ̃)−1/2Odiag(π̃)1/2(
diag(OTπ̃)−1/2OTdiag(π̃)1/2

)>
= AÃ>.

The second lemma shows that A is in fact the desired ma-
trix. The proof of this lemma crucially depends on the
disjoint-cluster assumption of the Brown model.
Lemma 5.2. A =

√
O and A>A = Im×m.

Proof. By Assumption 4.2, the x-th entry of Oπ̃ has value
Ox,C(x)×π̃C(x), and the (x,C(x))-th entry ofOdiag(π̃)1/2

has value Ox,C(x) ×
√
π̃C(x). Thus the (x,C(x))-th entry

of A is

Ax,C(x) =
Ox,C(x)

√
π̃C(x)√

Ox,C(x)π̃C(x)

=
√
Ox,C(x)

The columns of A have disjoint supports since A has the
same sparsity pattern asO. Furthermore, the l2 (Euclidean)
norm of any column of A is the l1 norm of the correspond-
ing column of O. This implies A>A = Im×m

Now we give a proof of the main theorem.

Proof of Theorem 5.1. The orthogonal projection matrix
onto range(Ω) is given by UU> and also by Ω(Ω>Ω)+Ω>.
Hence from Lemma 5.1 and 5.2, we have

UU> = Ω(Ω>Ω)+Ω>

= (AÃ>)(ÃA>AÃ>)+(AÃ>)>

= (AÃ>)(ÃÃ>)+(AÃ>)> = AΠA>

where Π = Ã(Ã>Ã)+Ã> is the orthogonal projec-
tion matrix onto range(Ã). But since Ã has rank m,
range(Ã) = Rm and thus Π = Im×m. Then we have
UU> = AA> where both U and A have orthogonal
columns (Lemma 5.2). This implies that there is an or-
thogonal matrix Q ∈ Rm×m such that U = AQ>.

5.3 ESTIMATION FROM SAMPLES

In Figure 4, we give an algorithm for computing an esti-
mate of M from a sample of words (x1, . . . , xN ) ∈ [n]N

(where M is described in Section 5.1). The algorithm es-
timates unigram and bigram word probabilities u, v,B to
form a plug-in estimate Ω̂ of Ω (defined in Eq. (1)), com-
putes a low-rank SVD of a sparse matrix, and normalizes
the rows of the resulting left singular vector matrix.

The following theorem implies the consistency of our algo-
rithm, assuming the consistency of Ω̂.
Theorem 5.2. Let ε := ‖Ω̂ − Ω‖/σm(Ω), where σm(Ω)
is the m-th largest singular value of Ω. If ε ≤
0.07 minx∈[n]{O

1/2
x,C(x)}, then the word embedding f :

x 7→ M̂x (where M̂x is the x-th row of M̂ ) satisfies the
following property: for all x, x′, x′′ ∈ [n],

C(x) = C(x′) 6= C(x′′)

=⇒ ‖f(x)− f(x′)‖ < ‖f(x)− f(x′′)‖;



Input: sequence of N ≥ 2 words (x1, . . . , xN ) ∈ [n]N ; number
of clusters m; smoothing parameter κ.
Output: matrix M̂ ∈ Rn×m defining f : x 7→ M̂x ∀x ∈ [n].

1. Compute B̂ ∈ Rn×n, û ∈ Rn, and v̂ ∈ Rn where

B̂x,x′ :=
1

N − 1

N−1∑
i=1

[[xi = x, xi+1 = x′]] ∀x, x′ ∈ [n]

ûx :=
1

N − 1

N−1∑
i=1

[[xi = x]] +
κ

N − 1
∀x ∈ [n]

v̂x :=
1

N − 1

N−1∑
i=1

[[xi+1 = x]] +
κ

N − 1
∀x ∈ [n]

2. Compute rank-m SVD of the sparse matrix

Ω̂ := diag(û)−1/2 B̂ diag(v̂)−1/2.

Let Û ∈ Rn×m be a matrix of m left singular vectors of Ω̂
corresponding to the m largest singular values.

3. Let M̂ be the result of normalizing every row of Û to have
length 1.

Figure 4: Estimation of M from samples.

(i.e., the embedding of any word x is closer to that of other
words x′ from the same cluster than it is to that of any word
x′′ from a different cluster).

The property established by Theorem 5.2 (proved in the ap-
pendix) allows many distance-based clustering algorithms
to recover the correct clustering (e.g., single-linkage,
average-linkage; see Balcan et al., 2008). Moreover, it is
possible to establish the finite sample complexity bounds
for the estimation error of Ω̂ (and we do so for a simplified
scenario in the (supplementary) Appendix C).

In practice, it is important to regularize the estimates û and
v̂ using a smoothing parameter κ ≥ 0. This can be viewed
as adding pseudocounts to alleviate the noise from infre-
quent words, and has a significant effect on the resulting
representations. The practical importance of smoothing is
also seen in previous methods using CCA (Cohen et al.,
2013; Hardoon et al., 2004).

Another practical consideration is the use of richer context.
So far, the context used for the token XI is just the next
token XI+1; hence, the spectral estimation is based just on
unigram and bigram probabilities. However, it is straight-
forward to generalize the technique to use other context—
details are in the appendix. For instance, if we use the pre-
vious and next tokens (XI−1, XI+1) as context, then we
form Ω̂ ∈ Rn×2n from B̂ ∈ Rn×2n, û ∈ Rn, v̂ ∈ R2n;
however, we still extract M̂ ∈ Rn×m from Ω̂ in the same
way to form the word embedding.

Input: vectors µ(1), . . . , µ(n) ∈ Rm corresponding to word types
[n] ordered in decreasing frequency.
Output: hierarchical clustering of the input vectors.
Tightening: Given a set of clusters C, the subroutine tighten(c)
for c ∈ C consists of the following three steps:

nearest(c) := arg min
c′∈C:c′ 6=c

d(c, c′)

lowerbound(c) := min
c′∈C:c′ 6=c

d(c, c′)

tight(c) := True

Main body:
1. Initialize active clusters C = {{µ(1)}, . . . , {µ(m)}} and

call tighten(c) for all c ∈ C.
2. For i = m+ 1 to n+m− 1:

(a) If i ≤ n: let c := {µ(i)}, call tighten(c), and let
C := C ∪ {c}.

(b) Let c∗ := arg minc∈C lowerbound(c).
(c) While tight(c∗) is False,

i. Call tighten(c∗).
ii. Let c∗ := arg minc∈C lowerbound(c).

(d) Merge c∗ and nearest(c∗) in C.
(e) For each c ∈ C: if nearest(c) ∈ {c∗, nearest(c∗)}, set

tight(c) := False.

Figure 5: Variant of Ward’s algorithm from Section 5.4.

5.4 AGGLOMERATIVE CLUSTERING
As established in Theorem 5.2, the word embedding ob-
tained by mapping words to their corresponding rows of
M̂ permits distance-based clustering algorithms to recover
the correct clustering. However, with small sample sizes
and model approximation errors, the property from Theo-
rem 5.2 may not hold exactly. Therefore, we propose to
compute a hierarchical clustering of the word embeddings,
with the goal of finding the correct clustering (or at least
a good clustering) as some pruning of the resulting tree.
Simple agglomerative clustering algorithms can provably
recover the correct clusters when idealized properties (such
as that from Theorem 5.2) hold (Balcan et al., 2008), and
can also be seen to be optimizing a sensible objective re-
gardless (Dasgupta and Long, 2005). These algorithms also
yield a hierarchy of word types—just as the original Brown
clustering algorithm.

We use a form of average-linkage agglomerative clustering
called Ward’s algorithm (Ward Jr, 1963), which is particu-
larly suited for hierarchical clustering in Euclidean spaces.
In this algorithm, the cost of merging clusters c and c′ is
defined as

d(c, c′) =
|c||c′|
|c|+ |c′|

||µc − µc′ ||2 (2)

where |c| refers to the number of elements in cluster c and
µc = |c|−1

∑
u∈c u is the mean of cluster c. The algorithm

starts with every point (word) in its own cluster, and repeat-



edly merges the two clusters with cheapest merge cost.

Figure 5 sketches a variant of Ward’s algorithm that only
considers merges among (at most) m+ 1 clusters at a time.
The initial m + 1 (singleton) clusters correspond to the
m+ 1 most frequent words (according to û); after a merge,
the next most frequent word (if one exists) is used to initial-
ize a new singleton cluster. This heuristic is also adopted
by the original Brown algorithm, and is known to be very
effective.

Using an implementation trick from Franti et al. (2000), the
runtime of the algorithm is O(γnm2), where γ is a data-
dependent constant often much smaller thanm, as opposed
to O(nm3) in a naive implementation in which we search
for the closest pair among O(m2) pairs at every merge.

The basic idea of Franti et al. (2000) is the following. For
each cluster, we keep an estimation of the lower bound on
the distance to the nearest cluster. We also track if this
lower bound is tight; in the beginning, every bound is tight.
When searching for the nearest pair, we simply look for
a cluster with the smallest lower bound among m clusters
instead of O(m2) cluster pairs. If the cluster has a tight
lower bound, we merge it with its nearest cluster. Oth-
erwise, we tighten its bound and again look for a cluster
with the smallest bound. Thus γ is the effective number of
searches at each iteration. At merge, the bound of a cluster
whose nearest cluster is either of the two merged clusters
becomes loose. We report empirical values of γ in our ex-
perimental study (see Table 3).

6 EXPERIMENTS

To evaluate the effectiveness of our approach, we used the
clusters from our algorithm as additional features in super-
vised models for NER. We then compared the improvement
in performance and also the time required to derive the
clusters against those of the Brown clustering algorithm.
Additionally, we examined the mutual information (MI) of
the derived clusters on the training corpus:∑

c,c′

count(c, c′)
N

log
count(c, c′)N

count(c)count(c′)
(3)

where N is the number of tokens in the corpus, count(c)
is the number of times cluster c appears, and count(c, c′)
is the number of times clusters c, c′ appear consecutively.
Note that this is the quantity the Brown algorithm directly
maximizes (Brown et al., 1992).

6.1 EXPERIMENTAL SETTINGS

For NER experiments, we used the scripts provided by
Turian et al. (2010). We used the greedy perceptron for
NER experiments (Ratinov and Roth, 2009) using the stan-
dard features as our baseline models. We used the CoNLL

Table 1: Performance gains in NER.
vocab context dev test

Baseline — — 90.03 84.39
Spectral 50k LR1 92 86.72

(κ = 200) 300k LR2 92.31 87.76
Brown 50k — 92 88.56

300k 92.68 88.76

Table 2: Mutual information computed as in Eq. (3) on the
RCV1 corpus.

vocab size context MI
Spectral 50k LR2 1.48

(κ = 5000) 300k LR2 1.54
Brown 50k — 1.52

300k — 1.6

2003 dataset for NER with the standard train/dev/test split.

For the choice of unlabeled text data, we used the Reuters-
RCV1 corpus which contains 205 million tokens with 1.6
million distinct word types. To keep the size of the vocab-
ulary manageable and also to reduce noise from infrequent
words, we used only a selected number of the most frequent
word types and replaced all other types in the corpus with
a special token. For the size of the vocabulary, we used
50,000 and 300,000.

Our algorithm can be broken down into two stages: the
SVD stage (Figure 4) and the clustering stage (Figure 5).
In the SVD stage, we need to choose the number of clus-
ters m and the smoothing parameter κ. As mentioned, we
can easily define Ω to incorporate information beyond one
word to the right. We experimented with the following con-
figurations for context:

1. R1 (Ω ∈ Rn×n): 1 word to the right. This is the
version presented in Figure 4.

2. LR1 (Ω ∈ Rn×2n): 1 word to the left/right.

3. LR2 (Ω ∈ Rn×4n): 2 words to the left/right.

6.2 COMPARISON TO THE BROWN
ALGORITHM: QUALITY

There are multiple ways to evaluate the quality of clusters.
We considered the improvement in the F1 score in NER
from using the clusters as additional features. We also ex-
amined the MI on the training corpus. For all experiments
in this section, we used 1,000 clusters for both the spectral
algorithm (i.e., m = 1000) and the Brown algorithm.

6.2.1 NER

In NER, there is significant improvement in the F1 score
from using the clusters as additional features (Table 1).



Table 3: Speed and performance comparison with the Brown algorithm for different numbers of clusters and vocabulary
sizes. In all the reported runtimes, we exclude the time to read and write data. We report the F1 scores on the NER dev set;
for the spectral algorithm, we report the best scores.

m vocab Spectral runtime Brown runtime Ratio (%) Spectral F1 Brown F1
γ SVD cluster total

200 50k 3.35 4m24s 13s 4m37s 10m37s 43.48 91.53 90.79
400 5.17 6m39s 1m8s 7m47s 37m16s 20.89 91.73 91.21
600 9.80 5m29s 3m1s 8m30s 1h33m55s 9.05 91.68 91.79
800 12.64 9m26s 6m59s 16m25s 2h20m40s 11.67 91.81 91.83
1000 12.68 11m10s 10m25s 21m35s 3h37m 9.95 92.00 92.00
1000 300k 13.77 59m38s 1h4m37s 2h4m15s 22h19m37s 9.28 92.31 92.68

The dev F1 score is improved from 90.03 to 92 with ei-
ther spectral or Brown clusters using 50k vocabulary size;
it is improved to 92.31 with the spectral clusters and to
92.68 with the Brown clusters using 300k vocabulary size.
The spectral clusters are a little behind the Brown clusters
in the test set results. However, we remark that the well-
known discrepancy between the dev set and the test set in
the CoNLL 2003 dataset makes a conclusive interpretation
difficult. For example, Turian et al. (2010) report that the
F1 score using the embeddings of Collobert and Weston
(2008) is higher than the F1 score using the Brown clus-
ters on the dev set (92.46 vs 92.32) but lower on the test set
(87.96 vs 88.52).

6.2.2 MI

Table 2 shows the MI computed as in Eq. (3) on the RCV1
corpus. The Brown algorithm optimizes the MI directly
and generally achieves higher MI scores than the spectral
algorithm. However, the spectral algorithm also achieves
a surprisingly respectable level of MI scores even though
the MI is not its objective. That is, the Brown algorithm
specifically merges clusters in order to maximize the MI
score in Eq. (3). In contrast, the spectral algorithm first
recovers the model parameters using SVD and perform hi-
erarchical clustering according to the parameter estimates,
without any explicit concern for the MI score.

6.3 COMPARISON TO THE BROWN
ALGORITHM: SPEED

To see the runtime difference between our algorithm and
the Brown algorithm, we measured how long it takes to ex-
tract clusters from the RCV1 corpus for various numbers of
clusters. In all the reported runtimes, we exclude the time
to read and write data. We report results with 200, 400,
600, 800, and 1,000 clusters. All timing experiments were
done on a machine with dual-socket, 8-core, 2.6GHz Intel
Xeon E5-2670 (Sandy Bridge). The implementations for
both algorithms were written in C++. The spectral algo-
rithm also made use of Matlab for matrix calculations such
as the SVD calculation.

Table 3 shows the runtimes required to extract these clus-
ters as well as the F1 scores on the NER dev set obtained
with these clusters. The spectral algorithm is considerably
faster than the Brown algorithm while providing compa-
rable improvement in the F1 scores. The runtime differ-
ence becomes more prominent as the number of clusters
increases. Moreover, the spectral algorithm scales much
better with larger vocabulary size. With 1,000 clusters and
300k vocabulary size, the Brown algorithm took over 22
hours whereas the spectral algorithm took 2 hours, 4 min-
utes, and 15 seconds—less than 10% of the time the Brown
algorithm takes.

We also note that for the Brown algorithm, the improve-
ment varies significantly depending on how many clusters
are used; it is 0.76 with 200 clusters but 1.97 with 1,000
clusters. For the spectral algorithm, this seems to be less
the case; the improvement is 1.5 with 200 clusters and 1.97
with 1,000 clusters.

6.3.1 Discussion on Runtimes

The final asymptotic runtime isO(N+γnm2) for the spec-
tral algorithm and O(N + nm2) for the Brown algorithm,
where N is the size of the corpus, n is the number of dis-
tinct word types, m is the number of clusters, and γ is a
data-dependent constant. Thus it may be puzzling why the
spectral algorithm is significantly faster in practice. We ex-
plicitly discuss the issue in this section.

The spectral algorithm proceeds in two stages. First, it con-
structs a scaled covariance matrix in O(N) time and per-
forms a rank-m SVD of this matrix. Table 3 shows that
SVD scales well with the value of m and the size of the
corpus.

Second, the algorithm performs hierarchical clustering in
O(γnm2) time. This stage consists of O(γnm) calls to an
O(m) time function that computes Eq. (2), that is,

d(c, c′) =
|c||c′|
|c|+ |c′|

||µc − µc′ ||2

This function is quite simple: it calculates a scaled distance
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Figure 6: Effect of the choice of κ and context on (a) MI and (b) NER dev F1 score. We used 1,000 clusters on RCV1 with vocabulary
size 50k. In (a), the horizontal line is the MI achieved by Brown clusters. In (b), the top horizontal line is the F1 score achieved with
Brown clusters and the bottom horizontal line is the baseline F1 score achieved without using clusters.

computeL2usingOld(s, t, u, v, w) = L2[v][w]

− q2[v][s]− q2[s][v]− q2[w][s]− q2[s][w]

− q2[v][t]− q2[t][v]− q2[w][t]− q2[t][w]

+ (p2[v][s] + p2[w][s]) ∗ log((p2[v][s] + p2[w][s])/((p1[v] + p1[w]) ∗ p1[s]))
+ (p2[s][v] + p2[s][w]) ∗ log((p2[s][v] + p2[s][w])/((p1[v] + p1[w]) ∗ p1[s]))
+ (p2[v][t] + p2[w][t]) ∗ log((p2[v][t] + p2[w][t])/((p1[v] + p1[w]) ∗ p1[t]))
+ (p2[t][v] + p2[t][w]) ∗ log((p2[t][v] + p2[t][w])/((p1[v] + p1[w]) ∗ p1[t]))
+ q2[v][u] + q2[u][v] + q2[w][u] + q2[u][w]

− (p2[v][u] + p2[w][u]) ∗ log((p2[v][u] + p2[w][u])/((p1[v] + p1[w]) ∗ p1[u]))
− (p2[u][v] + p2[u][w]) ∗ log((p2[u][v] + p2[u][w])/((p1[v] + p1[w]) ∗ p1[u]))

Figure 7: A O(1) function that is called O(nm2) times in
Liang’s implementation of the Brown algorithm, account-
ing for over 40% of the runtime. Similar functions ac-
count for the vast majority of the runtime. The values in
the arrays L2,q2,p2,p1 are precomputed. p2[v][w] =
p(v, w), i.e, the probability of cluster v being followed by
cluster w; p1[v] = p(v) is the probability of cluster v;
q2[v][w] = p(v, w) log((p(v)p(w))−1p(v, w)) is the con-
tribution of the mutual information between clusters v and
w. The function recomputes L2[v][w], which is the loss in
log-likelihood if clusters v and w are merged. The function
updates L2 after clusters s and t have been merged to form
a new cluster u. There are many operations involved in this
calculation: 6 divisions, 12 multiplications, 36 additions
(26 additions and 10 subtractions), and 6 log operations.

between two vectors in Rm. Moreover, it avails itself read-
ily to existing optimization techniques such as vectoriza-
tion.1 Finally, we found that the empirical value of γ was
typically small: it ranged from 3.35 to 13.77 in our experi-
ments reported in Table 3 (higher m required higher γ).

In contrast, while the main body of the Brown algorithm
requires O(N + nm2) time, the constant factors are high
due to fairly complex book-keeping that is required. For
example, the function in Figure 7 (obtained from Liang’s

1Many linear algebra libraries automatically support vector-
ization. For instance, the Eigen library in our implementation
enables vectorization by default, which gave a 2-3 time speedup
in our experiments.

implementation) is invoked O(nm2) times in total: specif-
ically, whenever two clusters s and t are merged to form
a new cluster u (this happens O(n) times), the function is
called O(m2) times, for all pairs of clusters v, w such that
v and w are not equal to s, t, or u. The function recom-
putes the loss in likelihood if clusters v and w are merged,
after s and t are merged to form u. It requires a relatively
large number of arithmetic operations, leading to high con-
stant factors. Calls to this function alone take over 40% of
the runtime for the Brown algorithm; similar functions ac-
count for the vast majority of the algorithm’s runtime. It is
not clear that this overhead can be reduced.

6.4 EFFECT OF THE CHOICE OF κ AND
CONTEXT

Figure 6 shows the MI and the F1 score on the NER dev
set for various choices of κ and context. For NER, around
100-200 for the value of κ gives good performance. For the
MI, the value of κ needs to be much larger.

LR1 and LR2 perform much better than R1 but are very
similar to each other across the results, suggesting that
words in the immediate vicinity are necessary and nearly
sufficient for these tasks.

7 CONCLUSION

In this paper, we have presented a new and faster alterna-
tive to the Brown clustering algorithm. Our algorithm has a
provable guarantee of recovering the underlying model pa-
rameters. This approach first uses SVD to consistently es-
timate low-dimensional representations of word types that
reveal their originating clusters by exploiting the implicit
disjoint-cluster assumption of the Brown model. Then ag-
glomerative clustering is performed over these represen-
tations to build a hierarchy of word types. The resulting
clusters give a competitive level of improvement in perfor-
mance in NER as the clusters from the Brown algorithm,



but the spectral algorithm is significantly faster.

There are several areas for the future work. One can try to
speed up the algorithm even more via a top-down rather
than bottom-up approach for hierarchical clustering, for
example recursively running the 2-means algorithm. Ex-
periments with the clusters in tasks other than NER (e.g.,
dependency parsing), as well as larger-scale experiments,
can help further verify the quality of the clusters and high-
light the difference between the spectral algorithm and the
Brown algorithm.
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A INCORPORATING RICHER
CONTEXT

We assume a function φ such that for i ∈ [N ], it returns a
set of positions other than i. For example, we may define
φ(i) = {i− 1, i+ 1} to look at one position to the left and
to the right. Let s = |φ(i)| and enumerate the elements of
φ(i) as j1, . . . , js. Define B(j) ∈ Rn×n, v(j) ∈ Rn for all
j ∈ φ(i) as follows:

B
(j)
x,x′ = P (Xi = x,Xj = x′) ∀x, x′ ∈ [n]

v(j)x = P (Xj = x) ∀x ∈ [n]

The new definitions of B ∈ Rn×ns, v ∈ Rns are given by
B = [B(j1), . . . , B(js)] and v = [(v(j1))>, . . . , (v(js))>]>.
Letting Ω ∈ Rn×ns as in Eq. (1), it is easy to verify Theo-
rem 5.1 using similar techniques.

B PROOF OF THEOREM 5.2

Write the rank-m SVD of Ω as Ω = USV >, and similarly
write the rank-m SVD of Ω̂ as Û ŜV̂ >. Since Ω has rank
m, it follows by Eckart-Young that

‖Û ŜV̂ > − Ω̂‖ ≤ ‖Ω− Ω̂‖.

Therefore, by the triangle inequality,

‖Û ŜV̂ > − USV >‖ ≤ 2‖Ω− Ω̂‖ = 2εσm(Ω).

This implies, via applications of Wedin’s theorem and
Weyl’s inequality,

‖U>⊥ Û‖ ≤ 2ε and ‖Û>⊥U‖ ≤
2ε

1− 2ε
(4)

where U⊥ ∈ Rn×(n−m) is a matrix whose columns form
an orthonormal basis for the orthogonal complement of the

range of U , and Û⊥ ∈ Rn×(n−m) is similarly defined (and
note that ε < 1/2 by assumption).

Recall that by Theorem 5.1, there exists an orthogonal
matrix Q ∈ Rm×m such that U =

√
OQ>. Define

Q̂ := Û>
√
O = Û>UQ, and, for all c ∈ [m], q̂c := Q̂ec.

The fact that ‖UQec‖ = 1 implies

‖q̂c‖ =

√
1− ‖Û⊥Û>⊥UQec‖2 ≤ 1.

Therefore, by Eq. (4),

1 ≥ ‖q̂c‖ ≥ ‖q̂c‖2 ≥ 1−
(

2ε

1− 2ε

)2

. (5)

We also have, for c 6= c′,

q̂>c q̂c′ ≤ ‖Û>⊥UQec‖‖Û>⊥UQec′‖ ≤
(

2ε

1− 2ε

)2

, (6)

where the first inequality follows by Cauchy-Schwarz, and
the second inequality follows from (4). Therefore, by
Eq. (5) and Eq. (6), we have for c 6= c′,

‖q̂c − q̂c′‖2 ≥ 2

(
1− 2

(
2ε

1− 2ε

)2
)
. (7)

Let ōx := O
1/2
x,C(x). Recall that

√
O
>
ex = ōxeC(x) ∈ Rm,

so Q̂
√
O
>
ex = ōxq̂C(x) and ‖Q̂

√
O
>
ex‖ = ōx‖qC(x)‖.

By the definition of Q̂, we have

Û −
√
OQ̂> = Û − UU>Û = U⊥U

>
⊥ Û

This implies, for any x ∈ [n],

‖Û>ex − ōxq̂C(x)‖ = ‖(Û −
√
OQ̂>)>ex‖

= ‖Û>U⊥U>⊥ ex‖ ≤ 2ε (8)

by Eq. (4). Moreover, by the triangle inequality,

|‖Û>ex‖ − ōx‖qC(x)‖| ≤ 2ε. (9)

Since M̂>ex = ‖Û>ex‖−1Û>ex, we have

‖M̂>ex − q̂C(x)‖ =

∣∣∣∣∣
∣∣∣∣∣ 1

‖Û>ex‖
Û>ex − q̂C(x)

∣∣∣∣∣
∣∣∣∣∣

≤ 1

ōx
‖Û>ex − ōxq̂C(x)‖+ |1− ‖q̂C(x)‖|

+
|ōx‖q̂C(x)‖ − ‖Û>ex‖|

ōx

≤ 4ε

ōx
+

(
2ε

1− 2ε

)2

, (10)

where the first inequality follow by the triangle inequal-
ity and norm homogeneity, and the second inequality uses
Eq. (8), Eq. (9), and Eq. (5). Using Eq. (10), we may up-
per bound the distance ‖M̂>ex − M̂>ex′‖ when C(x) =
C(x′); using Eq. (7) and Eq. (10), we may lower bound the
distance ‖M̂>ex − M̂>ex′′‖ when C(x) 6= C(x′′). The
theorem then follows by invoking the assumption on ε.
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