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Abstract

We present new polynomial time algorithms
for inference problems in Bayesian networks
(BNs) when restricted to instances that satisfy
the following two conditions: they have bounded
treewidth and the conditional probability table
(CPT) at each node is specified concisely using
an r-symmetric function for some constant r. Our
polynomial time algorithms work directly on the
unmoralized graph. Our results significantly ex-
tend known results regarding inference problems
on treewidth bounded BNs to a larger class of
problem instances. We also show that relaxing
either of the conditions used by our algorithms
leads to computational intractability.

1 INTRODUCTION

Bayesian Networks (BNs) represent dependencies among
a collection of probabilistic domain variables (Darwiche,
2009; Koller and Friedman, 2009; Pearl, 1988). Struc-
turally, a BN G(V,E) is a directed acyclic graph (dag) in
which each node v ∈ V represents a stochastic variable
xv; a directed edge (u, v) in E indicates that variable xv
depends on xu. Each node v is also associated with a table
which gives the probability distribution of xv conditioned
on the variables on which xv depends. Thus, a BN pro-
vides a simple graphical representation of the dependencies
among domain variables.

BNs can be used to formulate and solve many problems
in the context of stochastic decision support systems. For
example, in the inference problem, the input is an obser-
vation (i.e., the observed values of a nonempty subset of
variables) and the goal is to compute the conditional proba-
bility distribution for one specified variable. Such problems
are useful in many application domains including medical
diagnosis, weather forecasting, design of diagnosis-and-
repair modules in computer systems, etc. (Darwiche, 2009;
Koller and Friedman, 2009; Pearl, 1988).

Formal definitions of inference problems for BNs are pro-
vided in Section 2. In general, obtaining exact or approxi-
mate solutions to these problems is known to be computa-
tionally intractable (Abdelbar et al. (2000); Cooper (1990);
Dagum and Luby (1993); Darwiche (2009); de Campos
(2011)). Given the practical importance of these problems,
researchers have tried to identify restricted versions of the
problems which are useful in practice and which can be
solved in polynomial time. An important development in
this direction is the result of Lauritzen and Spiegelhalter
(1988) who showed that for BNs of bounded treewidth, the
inference problems can be solved in polynomial time using
dynamic programming. Their approach uses the moralized
form of the network, where for any node v, the parents of
v are connected together as a clique. As a consequence, a
moralized BN has bounded treewidth only when the maxi-
mum indegree in the unmoralized BN is also bounded.

Our Contributions: Our main result is a new dynamic
programming approach that extends the class of BNs for
which various inference problems can be solved in polyno-
mial time. In particular, our approach does not use mor-
alization. Instead, it works with the given BN and its
tree decomposition. Thus, our algorithms are applicable to
treewidth-bounded BNs, even when the indegrees of nodes
are not bounded. Allowing nodes of unbounded indegree
introduces a difficulty, namely that a fully specified CPT
at a node may be exponentially large. To overcome this
difficulty, we require the conditional probability tables at
each node to be specified concisely using certain restricted
classes of functions, called r-symmetric functions for some
fixed integer r. As will be explained in Section 2, any
CPT for a BN with maximum indegree d can be speci-
fied as a d-symmetric function. In other words, CPTs for
BNs with bounded indegrees are a restricted form of r-
symmetric functions. Thus, our approach identifies a larger
class of BNs for which inference problems can be solved
efficiently. Our results also extend the earlier results in
(Bacchus et al., 2003; Courcelle et al., 2001; Fischer et al.,
2008; Samer and Szeider, 2007) as discussed below. The
results in (Courcelle et al., 2001; Fischer et al., 2008; Samer
and Szeider, 2007) when combined with those of (Bacchus



et al., 2003) can be used to obtain polynomial time results
for treewidth bounded BNs, with no a priori bound on inde-
gree but whose CPTs are specified using certain threshold
functions. As will be explained in Section 2.3, the class
of r-symmetric functions is a strict superset of the class of
threshold functions.

We also present hardness results that provide an indication
of the tightness of our efficient solvability results. In partic-
ular, we show that if the conditional probability tables are
not necessarily r-symmetric, then the inference problems
remain computationally intractable (#P-hard) even when
the BN is a directed tree (whose treewidth is 1). We also
show that if the treewidth of the BN is not bounded, the in-
ference problems remain computationally intractable even
when each conditional probability table is expressed as a
symmetric function. In other words, relaxing either of the
assumptions (treewidth boundedness or r-symmetric func-
tions) makes the problems computationally intractable. We
note that the necessity of bounded treewidth for efficient
inference in BNs was proven in Kwisthout et al. (2010) un-
der a different assumption regarding complexity classes,
namely, the Exponential Time Hypothesis (Impagliazzo
and Paturi, 2001).

The remainder of this paper is organized as follows. Sec-
tion 2 defines the necessary graph theoretic terms and
presents formulations of several computations problems for
BNs. It also discusses some related work on these prob-
lems. For space reasons, Section 3 presents our algorithm
assuming that each CPT is a 1-symmetric function. Ex-
tensions of the result to other inference problems and r-
symmetric functions (for any r ≥ 2) are discussed in a
longer version of this paper (Rosenkrantz et al., 2014). Sec-
tion 4 mentions our hardness results whose proofs also ap-
pear in Rosenkrantz et al. (2014). Section 5 summarizes
the paper and provides directions for future work.

2 DEFINITIONS AND PREVIOUS WORK

2.1 BAYESIAN NETWORKS

As mentioned earlier, a Bayesian network (BN) consists of
a directed acyclic graph G(V,E), where nodes represent
stochastic domain variables and directed edges represent
dependencies between variables. For simplicity, we will as-
sume that each node represents a Boolean variable; the re-
sults in this paper can be extended to variables that assume
values from a finite domain. Also, we do not distinguish be-
tween a node of the graph and the corresponding Boolean
variable. When there is a directed edge (u, v) ∈ E, we say
that u is a parent of v. The indegree of a node v is the
number of parents of v.

At each node v, there is a conditional probability table
(CPT) Tv which specifies the probability values for the
variable v, conditioned on the parents of v. For a node
v with indegree t, there are 2t different combinations of

Boolean values for the parents of v. For each such combi-
nation, the table specifies the probability of v being 1 (or
0) conditioned on the parents assuming the given combina-
tion of values. Thus, the number of entries in Tv is 2t. For
a node v with indegree 0 (i.e., a node which does not have
any parent), the table Tv specifies simply the probability of
v assuming the value 1 (or 0).

Our formulation of the computational problems for BNs
follows the presentation in (Bodlaender, 2004). For a node
v, let P(v) denote the set of parents of v. Given a BN
G(V,E), a configuration cV is an assignment of Boolean
values to each variable in V . Given a subset O ⊆ V , a
partial configuration cO on O specifies a value for each
variable in O. Given a configuration cV (or a partial con-
figuration cO), we use cV (v) (cO(v)) to denote the value
of variable v in that configuration (partial configuration).
With a slight abuse of notation, we also extend this nota-
tion to subsets of variables. Thus, given a configuration
cV (or a partial configuration cO), and a subset W ⊆ V
(W ⊆ O), cV (W ) (cO(W )) denotes the combination of
values assigned to the variables in W . Given a configura-
tion cV , its probability Pr{cV } is given by

Pr{cV } =
∏
v∈V

Pr{cV (v) | cV (P(v))}.

A configuration cV is an extension of a partial configura-
tion cO if for each variable v that is assigned a value in cO,
cV (v) = cO(v). Thus, an extension of a partial configu-
ration cO is obtained by specifying values for the variables
that are not assigned a value in cO.

We now provide formal definitions of two commonly con-
sidered problems in the context of BNs. In all these prob-
lems, we are given a partial configuration cO (also called
an observation) on a set of nodes O ⊆ V .

Definition 2.1 Let G(V,E) denote the given BN.

1. Inference Problem (denoted by INF): Given an ob-
servation cO and a variable v, find Pr{v = 1 | cO},
that is, the probability that v assumes the value 1 con-
ditioned on the observation cO.

2. Most Probable Explanation Problem (denoted by
MPE): Given an observation cO, find an extension of
cO which has the maximum probability among all the
extensions of cO.

For ease of exposition, we will also consider the follow-
ing problem, which we call the Probability Computation
Problem (denoted by PROB): Given an observation cO,
find the probability of cO, that is, the sum of the probabil-
ities of all configurations that are extensions of cO. (Thus,
when an observation does not specify a value for any vari-
able, the answer to the PROB problem is 1.) The reasons for
considering the PROB problem are twofold. First, the so-
lution to INF problem for a node v and observation cO can



be obtained using two calls to the PROB problem: compute
Pr{cO} and Pr{v = 1 ∧ cO} using the algorithm for PROB
and use the fact that

Pr{v = 1 | cO} =
Pr{v = 1 ∧ cO}

Pr{cO}
.

Second, an algorithm for the MPE problem can be devised
along lines that are similar to that for the PROB problem.
The main modification is that while the algorithm for the
PROB problem computes sums of probability values at var-
ious steps, the algorithm for the MPE problem computes
the maximum of the probability values.

2.2 TREE DECOMPOSITIONS

We now recall the standard definition of tree decomposition
and treewidth from (Bodlaender, 1993), which will be used
throughout this paper.

Definition 2.2 Given a BN G(V,E), a tree decomposi-
tion of G is a pair ({Xi | i ∈ I}, T = (I, F )), where
{Xi | i ∈ I} is a family of subsets of V and T = (I, F ) is
an undirected tree with the following properties:

1.
⋃
i∈I Xi = V .

2. For every directed edge e = (v, w) ∈ E, there is a
subset Xi, i ∈ I , with v ∈ Xi and w ∈ Xi.

3. For all i, j, k ∈ I , if j lies on the path from i to k in
T , then Xi

⋂
Xk ⊆ Xj .

The treewidth of a tree decomposition ({Xi | i ∈ I}, T ) is
maxi∈I{|Xi| − 1}. The treewidth of a graph is the mini-
mum over the treewidths of all its tree decompositions.

A class of graphs is treewidth bounded if there is a con-
stant k such that the treewidth of every graph in the class
is at most k.

A number of problems that are NP-hard on general graphs
can be solved efficiently when restricted to the class of
treewidth-bounded graphs. A considerable amount of work
has been done in this area (see for example (Bodlaen-
der, 1997, 1993; Courcelle and Mosbah, 1993; Gottlob and
Szeider, 2008; Robertson and Seymour, 1986) and the ref-
erences therein).

As mentioned earlier, our approach works on the given (un-
moralized) BN. To illustrate the effect of moralization on a
BN, consider the class of directed star graphs defined as
follows. For each n ≥ 2, a directed star graph has n nodes
and n− 1 directed edges; there is one center node and each
of the other n − 1 nodes has just one outgoing edge to the
center node. Thus, the center node has n−1 parents and the
moralized graph has a clique of size n − 1. Consequently,
the moralized graph is not treewidth-bounded. On the other
hand, it can be seen that according to Definition 2.2, this
class of graphs has a treewidth of 1.

2.3 SPECIFYING CPTs CONCISELY

For a node v with q parents, the CPT Tv has 2q entries. For
BNs in which the maximum indegree is bounded, the CPTs
can be given explicitly, since the size of each table is just a
constant. However, when we consider BNs in which node
indegrees may not be bounded, the size of a fully specified
table may be exponential in the size of the BN. Thus, we
need a method of specifying the CPTs concisely. We do
this by identifying restricted classes of functions to specify
the tables.

Consider a node v with q parents w1, w2, . . ., wq . A
CPT Tv for v specifies a probability value (i.e., the value
Pr{v = 1}) for each combination of values of the parents
of v. Thus, Tv represents a function from {0, 1}q to the set
of real values in [0, 1]. By restricting the class of functions,
we can specify Tv concisely. We will now present some
examples of such restrictions.

Definition 2.3 Let q be an integer ≥ 1. A function f from
{0, 1}q to the set of real values in [0, 1] is said to be sym-
metric if the value of f depends only on the number of in-
puts which are 1.

Thus, a symmetric function f of q variables can be con-
cisely described by specifying q + 1 probability values p0,
p1, . . ., pq , where pi is the probability value when i of the
inputs are 1, 0 ≤ i ≤ q.

Example: Consider the BN shown in Figure 1. In that
figure, nodes v1, v2 and v3 don’t have any parents. So,
the probability values assigned to them can be thought of
as symmetric functions where the only possible value for
the number of parents is zero. Node v4 has three parents.
Hence, the CPT for v4 shows the value of Pr{v4 = 1}when
0, 1, 2 or 3 parents of v4 are assigned the value 1. 2

For any integer t ≥ 0, a t-threshold Boolean function on q
inputs takes on the value 1 iff at least t of the inputs are 1. It
is easy to see that each t-threshold function is a symmetric
function. Thus, the class of symmetric functions contains
all threshold functions.

One can define a further generalization of the class of sym-
metric functions as follows (Barrett et al., 2007b).

Definition 2.4 Let r ≥ 1 be a fixed integer. Let q be an
integer ≥ 1. A function f from {0, 1}q to the set of real
values in [0, 1] is said to be r-symmetric if the set of in-
puts can be partitioned into r classes such that the value of
f depends only on the number of 1-valued inputs in each
class.

Note that any symmetric function is 1-symmetric. It can
also be seen that for any r ≥ 1, any r-symmetric function
f of q variables can be concisely described by specifying
O(qr) probability values. Since r is fixed, the size of the
specification of any r-symmetric function is a polynomial
in the size of the BN.



v1 v2 v3

v4

Pr{v1 = 1} = Pr{v2 = 1} = Pr{v3 = 1} = 1/2

CPT for node v4:

|P(v4)| Pr{v4 = 1 | P(v4)}
0 1/2
1 1/3
2 1/4
3 1/5

Figure 1: An Example of a BN where each CPT is a sym-
metric function. (Recall that P(v4) denotes the set of par-
ents of node v4.)

When a node has a bounded indegree, say d, the corre-
sponding CPT can be thought of as a d-symmetric func-
tion, where each of the d classes contains exactly one input.
Thus, the class of BNs in which each node has a bounded
indegree is a special case of BNs in which each CPT is
specified by an r-symmetric function for some fixed r.

2.4 OTHER RELATED WORK

Motivated by the practical importance of inference prob-
lems (Darwiche (2009); Koller and Friedman (2009); Pearl
(1988)), research in this area has proceeded along two pri-
mary directions. The first direction focuses on the develop-
ment of efficient heuristics that can be used to obtain fast
solutions to problems that arise in practice (see for exam-
ple (Chavira, 2007; Dechter, 1999) and the references cited
therein). The second direction is the identification of re-
stricted versions of inference problems that can be solved
efficiently. As mentioned earlier, an important step in that
direction is the work of Lauritzen and Spiegelhalter (1988)
which provides an efficient algorithm for inference prob-
lems for treewidth bounded (moralized) BNs. Other refer-
ences that consider inference problems for restricted ver-
sions of BNs include (Bacchus et al., 2003; Boutilier et al.,
1996; Dechter, 1999; Jensen et al., 1990). The notion of
causal independence used in Zhang and Poole (1996) relies
on conditional probability tables that are essentially sym-
metric functions. We note that symmetric functions have
also been used in the context of lifted inference (Jha et al.,
2010; Milch et al., 2008).

Another approach, called parent divorcing, for dealing
with nodes of large indegrees was introduced in Olesen
et al. (1989). The basic idea of this approach is to modify a
given BN in the following manner: when a node has a large
indegree, the subgraph consisting of the node and its pre-
decessors is replaced by a directed tree in which each node

has a small indegree. An example to illustrate this approach
is shown in Figure 2. There are two main difficulties with
this approach. The first is that the treewidth of the resulting
BN can be much larger than that of the given BN. The sec-
ond difficulty is that the size of domain from which newly
added nodes take on values may become large. These two
aspects can significantly increase the running time of the
algorithms for the inference problems. Our algorithms can
handle nodes with unbounded indegrees without modify-
ing the given BN, provided all the CPTs are described by
r-symmetric functions for some fixed integer r.

ba c

e

a b c dd

e3

e1 e2

Figure 2: An Example for Parent Divorcing Approach

3 POLYNOMIAL TIME ALGORITHMS
FOR TREEWIDTH-BOUNDED BNs
WITH SYMMETRIC CPTs

3.1 OVERVIEW

This section presents polynomial time algorithms for in-
ference problems for treewidth-bounded BNs where each
probability table is represented as symmetric function. We
assume that a BN is given along with its tree decompo-
sition of treewidth k, for some fixed integer k ≥ 1. We
will present the details of the algorithm for the PROB prob-
lem. The modifications needed to solve the INF and MPE
problems and the extension of the algorithm to handle r-
symmetric CPTs for any fixed r ≥ 1 are presented in
Rosenkrantz et al. (2014).

3.2 NOTES ON TREE DECOMPOSITION

This section mentions some known facts about tree decom-
positions and also reviews some related terminology.

We assume that one of the nodes of the tree decompo-
sition is selected as the root so that the tree decomposi-
tion can be viewed as a rooted tree. When a graph G has
bounded treewidth, it is well known that a tree decomposi-
tion ({Xi | i ∈ I}, T = (I, F )) of G can be constructed
in time that is a polynomial in the size of G. Moreover,
this can be done so that all of the following conditions hold
(Barrett et al., 2007a,b; Bodlaender, 1997): (a) T is a bi-
nary tree; that is, each node of T has at most two children.
(b) The number of nodes of T with fewer than two children
is≤ n, the number of nodes inG. (c) The number of nodes
of T with two children is ≤ n. Our algorithm relies on this
special form of tree decomposition.



2

1

3

{v2, v4}

{v3, v4}

{v1, v4}

Tree Xi Y inh
i Y org

i Y hid
i

Node
1 {v1, v4} {v4} {v1} ∅
2 {v2, v4} {v4} {v2} {v1}
3 {v3, v4} ∅ {v3, v4} {v1, v2}

Figure 3: A Tree Decomposition for the BN shown in Fig-
ure 1. For each tree node i, Xi, Y inhi , Y orgi and Y hidi de-
note respectively the set of explicit, inherited, originating
and hidden nodes respectively, 1 ≤ i ≤ 3.

The following terminology regarding nodes in tree decom-
positions is from (Barrett et al., 2007a,b). Let T be the
given tree decomposition of a BN G. For a given node i of
T , the nodes of G in Xi are called explicit nodes of i. If
a given explicit node v of i is also an explicit node of the
parent of i, then v is referred to as an inherited node of i;
and if v does not occur in the parent of i, then v is called an
originating node of i.

We refer to the set of all explicit nodes occurring in the
subtree of T rooted at i that are not explicit nodes of i as
hidden nodes of i. (Thus, the hidden nodes of i are the
union of the originating and hidden nodes of the children
of i.) For any node i in T , we use Y inhi , Y orgi and Y hidi

to denote respectively the set of inherited nodes, the set of
originating nodes and the set of hidden nodes of i.

Example: A tree decomposition for the BN of Figure 1 is
shown in Figure 3. The tree decomposition has three nodes.
For each tree node, the set of explicit nodes is shown. The
table in Figure 3 also shows the explicit, inherited, origi-
nating and hidden sets for each tree node. 2

3.3 CONFIGURATIONS AND SIGNATURES

For all of the computational problems we consider, we are
given a BN G(V,E) and an observation cO. As mentioned
earlier, we also assume that each CPT is specified as a sym-
metric function.

Definition 3.1 (a) Let Y be a set of nodes of the given
BN G. We refer to a partial configuration on Y as a Y –
configuration.

(b) Let Y and W be not necessarily disjoint sets of nodes
of the given BN G. We say that a given Y –configuration
α and a given W–configuration β are consistent if for all
nodes z in Y ∩W , Y (z) = W (z).

(c) Given the observation (i.e., O–configuration) cO, we

say that a given Y -configuration α is valid if for all nodes
w assigned values in both cO and α, cO(w) = α(w), i.e.,
α and cO are consistent.

(d) ΓY denotes the set of all valid Y –configurations.

(e) Let Y and W be sets of nodes of the given BN G such
that W ⊆ Y . Let α be a Y –configuration. We define the
restriction of α to W , denoted as α |W , to be the W–
configuration obtained by restricting α to the members of
W .

The concept of a signature, defined below for the case
where each CPT is a symmetric function, plays an impor-
tant role in our algorithm.

Definition 3.2 Let Y and W be not necessarily disjoint
sets of nodes of the given BN G. (a) Let α be a Y –
configuration. The signature of α with respect to W , de-
noted as sig(α,W ), specifies for each w ∈W , the number
of parents of w that are set to 1 by α. We refer to such a
signature as a (Y,W )–signature.

(b) Suppose Γ is a set of Y –configurations. The signature
of Γ with respect toW is the union of the signature of each
γ ∈ Γ with respect to W .

(c) We say that a given (Y,W )–signature is valid if it is
sig(α,W ) for some valid Y –configuration α.

(d) HY,W denotes the set of all valid (Y,W )–signatures.

Example: Consider the BN shown in Figure 1. Let Y =
{v2, v3} and W = {v1, v4}. Consider the Y -configuration
γ which sets v2 = 0 and v3 = 1. It is easy to see that
γ sets 0 of v1’s parents to 1 and exactly one of v4’s par-
ents to 1. So sig(γ,W ), the signature of γ with respect
to W , can be represented as [v1 : 0, v4 : 1]. Suppose
that the given observation cO does not specify the value of
any node. Then ΓY contains four Y –configurations. By
computing the union of the signatures of these four Y –
configurations, it can be seen that HY,W is the set {[v1 :
0, v4 : 0], [v1 : 0, v4 : 1], [v1 : 0, v4 : 2]}. 2

If σ is (Y,W )–signature, then for any w ∈ W , we use
σ(w) to denote the value specified by σ for w. Using this
notation, we define some operations on signatures which
produce new signatures. These operations are used by our
algorithm.

Definition 3.3 Let G be a BN and let W be a subset of
nodes of G.

(a) Let σ and σ′ be two signatures with respect to a node
set W . The sum of the two signatures is another sig-
nature denoted by σ + σ′, such that for each w ∈ W ,
(σ + σ′)(w) = σ(w) + σ′(w).

(b) Let σ be a signature with respect to a node set W and
let Y be a subset of W . The restriction of σ to Y is an-
other signature denoted by σ|Y , such that for each y ∈ Y ,
(σ|Y )(y) = σ(y).



(c) Let σ be a signature with respect to a node set W
and let X be a superset of W . The extension of σ to
X is another signature denoted by ext(g,X), which is
defined as follows: for each x ∈ X , if x ∈ W , then
ext(σ,X)(x) = σ(x); otherwise, ext(σ,X)(x) = 0.

Suppose w is a node of G and η is a partial configuration
that specifies a value (namely, η(w)) for w and for every
parent of w. Given these values, the CPT for w speci-
fies a probability value for η(w), which will be denoted
by pη(w). Suppose W is a subset of nodes of G and η is
a partial configuration that specifies a value for every node
w ∈ W and for every parent of every node w ∈ W . Thus,
for every node w ∈ W , the value pη(w) is defined. We
define pη(W ) by

pη(W ) =
∏
w∈W

pη(w). (1)

We also need a slight extension of the definition given by
Equation (1). Let X and Y be disjoint sets of nodes of G.
Let η be a X–configuration, and σ be a (Y,X)-signature.
Suppose that for a given node w in X , all the parents of
w are in X ∪ Y . Because the CPT for w is given by a
symmetric function, given the values that η assigns to those
parents of w that are in X , and the value that σ assigns to
w, the CPT for w assigns a probability value to η(w). We
denote this probability value as pη,σ(w). Suppose that W
is a subset of X , such that for every node w in W , all the
parents of w are in X ∪ Y . (Thus, for every node w in W ,
the value pη,σ(w) is defined.) Now, we define pη,σ(W ) by

pη,σ(W ) =
∏
w∈W

pη,σ(w). (2)

3.4 ALGORITHM FOR THE PROB PROBLEM

Recall that in the PROB problem, we are given a BN
G(V,E) and an observation cO. The goal is to find the
probability of cO, that is, the sum of the probabilities of all
(complete) configurations that are extensions of cO. Let the
constant k denote the treewidth ofG. We assume that a tree
decomposition ({Xi | i ∈ I}, T = (I, F )) of G satisfying
all the conditions mentioned in Section 3.2 is also given
and that each CPT is specified as a symmetric function.

3.4.1 Information Maintained by the Algorithm

Our algorithm solves the PROB problem for G by using
bottom-up dynamic programming on the tree decomposi-
tion T . The algorithm maintains information for each node
of T , as summarized in Table 1, and described below.

For each node i of T , the algorithm maintains the two sets
of signatures HY hid

i ,Xi
and H(Y hid

i ∪Y org
i ),Y inh

i
, plus two

tables of probability values, which we denote as Qi and
Ri. We now provide a description of these signature sets
and tables for each tree node i.

(a) HY hid
i ,Xi

is the set of all valid (Y hidi , Xi)–signatures.
(Recall that Y hidi is the set of hidden nodes of i, and
Xi is the set of explicit nodes of i.)

(b) H(Y hid
i ∪Y org

i ),Y inh
i

is the set of all valid (Y hidi ∪
Y orgi , Y inhi )–signatures . (Recall that Y inhi is the set
of inherited nodes of i.)

(c) Table Qi contains a probability value for each pair in
ΓXi
×HY hid

i ,Xi
.

Consider a given element of table Qi, say Qi[α, σ],
where α is a valid Xi–configuration and σ is a valid
(Y hidi , Xi)–signature. The value of Qi[α, σ] is de-
fined by

Qi[α, σ] =
∑
β

pα∪β(Y hidi ) (3)

where the summation is over all β such that β is a
valid Y hidi –configuration and sig(β,Xi) = σ.

Note that the definition of a tree decomposition en-
sures that every parent of a hidden node of i is either
an explicit node or a hidden node of i, so each proba-
bility value occurring in Equation (3) is well defined.

(d) Table Ri contains an entry for each pair in ΓY inh
i
×

H(Y hid
i ∪Y org

i ),Y inh
i

.

Consider a given element of table Ri, say Ri[ψ, θ],
where ψ is a valid Y inhi –configuration and θ is a valid
(Y hidi ∪Y orgi , Y inhi )–signature. The value ofRi[ψ, θ]
is defined by

Ri[ψ, θ] =
∑
β

pψ∪β(Y hidi ∪ Y orgi ) (4)

where the summation is over all β such that β is a valid
(Y hidi ∪ Y orgi )–configuration and sig(β, Y inhi ) = θ.

Note that the definition of a tree decomposition en-
sures that every parent of an hidden or originating
node of i is either an explicit node or a hidden node of
i, so each probability value occurring in Equation (4)
is well defined.

Equation (3) represents the definition of each entry of Qi.
However, for a given α and σ, one cannot use the equation
directly to efficiently compute the value of Qi[α, σ], since
the number of valid configurations to be considered may
be exponential in the number of nodes of G. A similar
comment applies to the computation of Ri[ψ, σ] directly
using Equation (4). How these values can be computed
efficiently is discussed below.

3.4.2 Description of the Algorithm

Having described the information maintained by the algo-
rithm, we can now describe the the bottom-up construction



Table 1: Notation used in Describing the Dynamic Programming Algorithm for the PROB Problem

Symbol Explanation
Xi The set of explicit nodes of tree node i.
Y inhi The set of inherited nodes of tree node i.
Y orgi The set of originating nodes of tree node i.
Y hidi The set of hidden nodes of tree node i.
ΓXi

The set of valid partial configurations on the explicit nodes of i
ΓY inh

i
The set of valid partial configurations on the inherited nodes of i

HY hid
i ,Xi

The set of signatures of all valid partial configurations of the hidden nodes of i
with respect to the explicit nodes of i.

H(Y hid
i ∪Y org

i ),Y inh
i

The set of signatures of all valid partial configurations of the hidden and originat-
ing nodes of i with respect to the inherited nodes of i.

Qi[ΓXi , HY hid
i ,Xi

] Qi[α, σ] maps valid partial configuration α on the explicit nodes of i and signature
σ ∈ HY hid

i ,Xi
to a probability value.

Ri[ΓY inh
i

, H(Y hid
i ∪Y org

i ),Y inh
i

] Ri[ψ, θ] maps valid partial configuration ψ on the inherited nodes of i and signa-
ture θ ∈ H(Y hid

i ∪Y org
i ),Y inh

i
to a probability value.

of the signature sets and tables for each node of the tree de-
composition. We present the construction in the following
order.

1. First, we describe the computation of the setHY hid
i ,Xi

and the Qi table for a leaf node i of the tree decom-
position.

2. Next, we describe the computation of set
H(Y hid

i ∪Y org
i ),Y inh

i
and the Ri table for an arbi-

trary node i of the tree decomposition, given set
HY hid

i ,Xi
and table Qi.

3. Then we describe the computation of set HY hid
i ,Xi

and tableQi for a nonleaf node i of the tree decompo-
sition, given the H(Y org ∪Y hid),Y inh sets and R tables
for the children of node i in the tree decomposition.

4. Finally, we indicate how the solution for the PROB
problem can be computed from the values computed
for the root of the tree decomposition.

We now present the details for each of the four parts above.
The operations on signatures defined in Section 3.3 are
used in the following description.

Part 1: Consider a leaf node i of the tree decomposition.
Note that leaf node i contains no hidden nodes. Conse-
quently, HY hid

i ,Xi
consists of a single signature σ, which

maps each node of Xi into the value 0.

For each valid Xi–configuration α, the table entry Qi[α, σ]
is given the value 1. Pseudocode for Part 1 is presented in
Figure 4.

Part 2: For any node i of the tree decomposition, given set
HY hid

i ,Xi
and table Qi, set H(Y hid

i ∪Y org
i ),Y inh

i
and table

Ri can be constructed as follows.

1. HY hid
i ,Xi

= {σ}, where σ is the signature that maps
each node x ∈ Xi into the value 0.

2. For each valid partial configuration α on Xi,
Qi[α, σ] = 1.

Figure 4: Pseudocode for Part 1 of the Algorithm for the
PROB Problem

Recall that ΓY org
i

denotes the set of all valid Y orgi –
configurations, and that for any γ ∈ ΓY org

i
, sig(γ, Y inhi )

denotes the signature of γ with respect to Y inhi .

Computation of H(Y hid
i ∪Y org

i ),Y inh
i

: This quantity is
computed using the following equation

H(Y hid
i ∪Y org

i ),Y inh
i

=
⋃
γ,σ′

sig(γ, Y inhi ) + (σ′ |Y inhi )

where the union is over each pair γ, σ′ such that γ ∈ ΓY org
i

and σ′ ∈ HY hid
i ,Xi

.

Computation of Ri: Consider an entry in theQi table, say
Qi[α, σ]. The valid Xi–configuration α can be considered
to be the disjoint union of the valid Y inhi –configuration
ψ = α |Y inhi and the valid Y orgi –configuration γ =
α |Y orgi . Similarly, the (Y hidi , Xi)–signature σ can be
considered to be the disjoint union of the (Y hidi , Y inhi )–
signature σ′ = σ |Y inhi and the (Y hidi , Y orgi )–signature
σ′′ = σ |Y orgi . Let θ be the (Y hidi ∪ Y orgi , Y inhi )–
signature σ′ + sig(γ, Y inhi ). The entry Qi[α, σ] of the
Qi table contributes to the value of the entry Ri[ψ, θ] of
the Ri table. The value of this contribution is the product
Qi[α, σ] ∗ pα,σ(Y orgi ).



The value Ri[ψ, θ] can be computed using the following
equation.

Ri[ψ, θ] =
∑

Qi[α, σ] ∗ pα,σ(Y orgi )

where the summation is over each α ∈ ΓXi and σ ∈
HY hid

i ,Xi
such that (ψ = α |Y inhi ) ∧ (θ = (σ|Y inhi ) +

sig(α |Y orgi , Y inhi )).

Alternatively, the Ri table can be computed by first setting
all the entries in the table to zero, and then scanning the
Qi table, adding the contribution of each entry in the Qi

table to the appropriate entry in the Ri table. Pseudocode
for Part 2, using this approach to computing the Ri table,
is shown in Figure 5.

Computation of H(Y hid
i ∪Y org

i ),Y inh
i

:

1. Initialization: H(Y hid
i ∪Y org

i ),Y inh
i

= ∅.

2. for each valid Y orgi –configuration γ do
(i) Compute σ′ = sig(γ, Y inhi ), the signature of γ

with respect to Y inhi .
(ii) for each signature σ ∈ HY hid

i ,Xi
do

(a) σ′′ = σ′ + (σ |Y inhi ).
(b) H(Y hid

i ∪Y org
i ),Y inh

i
=

H(Y hid
i ∪Y org

i ),Y inh
i
∪ {σ′′}.

Computation of Ri:

for each valid Y inhi –configuration ψ do
for each signature θ ∈ H(Y hid

i ∪Y org
i ),Y inh

i
do

Ri[ψ, θ] = 0.

for each valid Xi–configuration α do
1. ψ = α |Y inhi .
2. for each signature σ ∈ HY hid

i ,Xi
do

(a) Compute θ′ = sig(α |Y orgi , Y inhi ),
the signature of α |Y orgi with respect to Y inhi .

(b) θ = (σ |Y inhi ) + θ′.
(c) Ri[ψ, θ] = Ri[ψ, θ] +Qi[α, σ] ∗ pα,σ(Y orgi ).

Figure 5: Pseudocode for Part 2 of the Algorithm for the
PROB Problem

Part 3: We now consider computing set HY hid
i ,Xi

and ta-
ble Qi for a nonleaf node i of the tree decomposition.

Case 1: Nonleaf node i has only one child.

Let i1 denote the child of i in the tree decomposition. We
compute HY hid

i ,Xi
as

HY hid
i ,Xi

= { ext(θ1, Xi) | θ1 is inH(Y hid
i1

∪Y org
i1

),Y inh
i1
}.

Given the table Ri1 for i1, the table Qi is constructed
as follows. Consider a given entry Qi[α, σ], for Xi–

configuration α and (Y hidi , Xi)–signature σ. The value of
this entry is set to the value of Ri1 [α |Y inhi1

, σ |Y inhi1
].

Case 2: Nonleaf node i has two children.

Let i1 and i2 denote the children of i in the tree decompo-
sition. We compute HY hid

i ,Xi
as

HY hid
i ,Xi

=
⋃
θ1,θ2

ext(θ1, Xi) + ext(θ2, Xi).

where the union is over all pairs θ1 and θ2 such that
θ1 ∈ H(Y hid

i1
∪Y org

i1
),Y inh

i1
and θ2 ∈ H(Y hid

i2
∪Y org

i2
),Y inh

i2
.

The tables Ri1 and Ri2 for tree nodes i1 and i2 are com-
bined to produce tableQi for tree node i as follows. For any
θ1 ∈ H(Y hid

i1
∪Y org

i1
),Y inh

i1
and θ2 ∈ H(Y hid

i2
∪Y org

i2
),Y inh

i2
, let

σ = ext(θ1, Xi) + ext(θ2, Xi).

For any valid Xi–configuration α, the table entries
Ri1 [α|Y inhi1

, θ1] andRi2 [α|Y inhi2
, θ2] together contribute to

the value of Qi[α, σ]. The value of this contribution is
Ri1 [α|Y inhi1

, θ1] ∗Ri2 [α|Y inhi2
, θ2].

Consider a given a valid Xi–configuration α and signature
σ in HY hid

i ,Xi
. We can compute Qi[α, σ] as a sum of prod-

ucts:

Qi[α, σ] =
∑
θ1,θ2

Ri1 [α|Y inhi1 , θ1] ∗ Ri2 [α|Y inhi2 , θ2]

where the summation is over all pairs θ1 and θ2 such that
θ1 ∈ H(Y hid

i1
∪Y org

i1
),Y inh

i1
, θ2 ∈ H(Y hid

i2
∪Y org

i2
),Y inh

i2
and

σ = ext(θ1, Xi) + ext(θ2, Xi).

Alternatively, the Qi table can be computed by first setting
all the entries in the table to zero, and then scanning the
Ri1 and Ri2 tables, adding the contribution of each pair
of entries in these tables to the appropriate entries in the
Ri table. Pseudocode for Part 3, using this approach to
computing the Qi table, is shown in Figure 6.

Part 4: Let r be the root node of the tree decomposition.
The root node has no inherited nodes, so Y inhr = ∅. Con-
sequently, ΓY inh

r
contains only the empty partial configura-

tion, which we denote as ψ∅. Also, set H(Y org
r ∪Y hid

r ),Y inh
r

contains only the empty signature, which we denote as σ∅.
Table Rr consists of a single entry, Rr[ψ∅, σ∅]. The value
of Rr[ψ∅, σ∅] is the solution to the PROB problem.

3.4.3 Running Time Analysis

We now state a result that which gives the running time of
the algorithm presented in the previous section. A proof of
this result appears in Rosenkrantz et al. (2014).

Lemma 3.4 The dynamic programming algorithm for the
PROB problem runs in O(n2k+3) time, where n is the num-
ber of nodes in the given Bayesian network G and k is the
treewidth of G.



Case 1: Node i has only one child i1 in the tree decom-
position.

Computation of HY hid
i ,Xi

:

1. Initialization: HY hid
i ,Xi

= ∅.

2. for each signature θ1 ∈ H(Y hid
i1

∪Y org
i1

),Y inh
i1

do
HY hid

i ,Xi
= HY hid

i ,Xi
∪ {ext(θ1, Xi)}.

Computation of Qi:

for each valid Xi–configuration α do
for each signature σ ∈ HY hid

i ,Xi
do

Qi[α, σ] = Ri1 [α |Y inhi1
, σ |Y inhi1

].

Case 2: Node i has two children i1 and i2 in the tree
decomposition.

Computation of HY hid
i ,Xi

:

1. Initialization: HY hid
i ,Xi

= ∅.

2. for each signature θ1 ∈ H(Y hid
i1

∪Y org
i1

),Y inh
i1

do
for each signature θ2 ∈ H(Y hid

i2
∪Y org

i2
),Y inh

i2
do

(a) σ = ext(θ1, Xi) + ext(θ2, x1).
(b) HY hid

i ,Xi
= HY hid

i ,Xi
∪ {σ}.

Computation of Qi:

for each valid Xi–configuration α do
for each signature σ ∈ HY hid

i ,Xi
do

Qi[α, σ] = 0.

for each signature θ1 ∈ H(Y hid
i1

∪Y org
i1

),Y inh
i1

do
for each signature θ2 ∈ H(Y hid

i2
∪Y org

i2
),Y inh

i2
do

(a) σ = ext(θ1, Xi) + ext(θ2, Xi).
(b) for each valid Xi–configuration α do

Qi[α, σ] = Qi[α, σ] +Ri1 [α|Y inhi1
, θ1]∗

Ri2 [α|Y inhi2
, θ2].

Figure 6: Pseudocode for Part 3 of the Algorithm for the
PROB Problem

Since k is fixed, our algorithm for the PROB problem runs
in polynomial time. Thus, the following theorem summa-
rizes the main result of Section 3.4.

Theorem 3.5 The PROB problem can be solved efficiently
for the class of treewidth-bounded BNs where each CPT is
specified as a symmetric function.

4 HARDNESS RESULTS

The results in the previous section show that inference
problems for treewidth bounded BNs can be solved effi-
ciently even when the indegrees of nodes are not bounded,
provided each CPT is expressed as a symmetric function.
The following result points out the tightness of these re-
sults; in particular, the result shows that the problems re-
main computationally intractable even if one of the con-
ditions is violated. A proof of this result appears in
Rosenkrantz et al. (2014).

Proposition 4.1 (a) If CPTs are not required to be r-
symmetric, then the PROB problem is #P-hard even when
the BN is a directed tree (whose treewidth is 1).

(b) When the treewidth of the BN is not bounded, the PROB
problem is #P-hard even when the CPT at each node is
given by a symmetric function.

5 CONCLUSIONS

We presented efficient algorithms for exact inference prob-
lems for BNs when the unmoralized graph is treewidth-
bounded and each CPT is an r-symmetric function for a
fixed r. We also observed that if either of these conditions
is relaxed, the inference problems are computationally in-
tractable.

We conclude by mentioning two general directions for fur-
ther research. First, dynamic programming algorithms for
treewidth-bounded BNs require memory that grows ex-
ponentially with the treewidth. It will be useful to de-
velop practical techniques that can significantly reduce the
amount of memory needed. Second, it is of interest to iden-
tify additional restrictions on BNs (based on problem in-
stances that arise in practice) that can lead to practical al-
gorithms for large problem instances.
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