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Abstract

The Pitman-Yor process provides an elegant way
to cluster data that exhibit power law behavior,
where the number of clusters is unknown or un-
bounded. Unfortunately, inference in Pitman-
Yor process-based models is typically slow and
does not scale well with dataset size. In this
paper we present new auxiliary-variable repre-
sentations for the Pitman-Yor process and a spe-
cial case of the hierarchical Pitman-Yor process
that allows us to develop parallel inference algo-
rithms that distribute inference both on the data
space and the model space. We show that our
method scales well with increasing data while
avoiding any degradation in estimate quality.

1 INTRODUCTION

Bayesian nonparametric priors such as the Dirichlet pro-
cess allow us to create flexible probabilistic models with
an unbounded number of parameters. These models are
appropriate when the latent dimensionality of our data is
unknown or may grow with sample size. Unfortunately, in-
ference in such models is often unwieldy, due to the high
number of instantiated parameters and the need to discover
the appropriate number of parameters for a given data set.

There has been growing interest in scalable inference al-
gorithms for Bayesian nonparametric models. Earlier at-
tempts at distributing inference were either highly model-
specific (Doshi-Velez et al., 2009), or introduced addi-
tional approximation into the inference procedure and were
mostly concentrated at distributed learning on data and
not on the model (Asuncion et al., 2008). More recent
approaches (Williamson et al., 2013; Lovell et al., 2012;
Chang and Fisher III, 2013) have used both model- and
data-parallel design to infer the latent structure without in-
troducing additional approximation.

Most previous research on scalable inference in Bayesian

nonparametrics has focused on parallel inference for
Dirichlet process-based models. Dirichlet process models
are not ideal for modeling language, as they do not cap-
ture the power-law behavior often found in text data (Zipf,
1935). The Pitman-Yor process (Perman et al., 1992; Pit-
man and Yor, 1997) is a two-parameter extension to the
Dirichlet process that allows heavier-tailed distributions
over partitions. It is therefore often used in text and lan-
guage applications, because it more accurately matches the
statistics of natural language (Goldwater et al., 2006; Teh,
2006a), and can be used to build hierarchical models for
text that out-perform their Dirichlet process-based counter-
parts (Teh, 2006b; Wood et al., 2009; Blunsom and Cohn,
2011). However, inference remains a bottleneck.

In this paper, we address this issue using an approach pio-
neered for the Dirichlet process by Williamson et al. (2013)
and Lovell et al. (2012): We construct an alternative repre-
sentation of a nonparametric process that incorporates con-
ditional independencies, and use these conditional indepen-
dencies to divide our model (and in doing so, our data) into
sub-models that can be learned in parallel.

The key to achieving this lies in the introduction of new
representations for the Pitman-Yor process and a hierarchi-
cal extension, presented in Section 3. These representations
afford the conditional independence structure required to
develop model- and data-parallel inference algorithms, as
demonstrated in Section 4. In Section 5, we perform a
thorough evaluation of our inference algorithms and of the
modeling assumptions made.We show that our hierarchical
model, which is a special case of the hierarchical Pitman-
Yor process (Teh, 2006b), is a good fit for natural language.
We empirically demonstrate that we can speed up computa-
tion in Pitman-Yor process mixture models and hierarchical
Pitman-Yor process models with no deterioration in per-
formance, and show good results across a range of dataset
sizes and data dimensionalities.



2 BACKGROUND

In this section, we will review the Pitman-Yor process and
the hierarchical Pitman-Yor process, and discuss existing
approaches for parallelization in Bayesian nonparametric
models.

2.1 THE PITMAN-YOR PROCESS

The Dirichlet process (Ferguson, 1973) is a distribution
over probability measures of the form D :=

∑∞
k=1 πkδφk ,

parametrized by a concentration parameter α > 0 and a
probability measure H . The order statistics of the atom
sizes πk are described by the following stick-breaking dis-
tribution:

πk =wk

k−1∏
j=1

(1− wj)

wj ∼ Beta(1, α)

(1)

and the atom locations φk are sampled i.i.d. from H . The
resulting probability measure D can be used to cluster ob-
servations; a finite number of observations will belong to a
finite (but random) number of clusters.

The Pitman-Yor process (Perman et al., 1992; Pitman and
Yor, 1997) is a two-parameter extension of the Dirichlet
process, parametrized by a discount parameter 0 ≤ d ≤ 1,
a concentration parameter α > −d, and a probability mea-
sure H . When the discount parameter is zero, we recover
the Dirichlet process. As the discount parameter increases,
we get increasingly heavy-tailed distributions over the atom
sizes in the resulting probability measure. We can see this
behavior by considering the stick-breaking process for the
Pitman-Yor process:

πk =wk

k−1∏
j=1

(1− wj)

wj ∼ Beta(1− d, α+ jd).

(2)

As d increases, the rate of decay of the ordered atom sizes
will decrease. When d = 0, we recover the stick-breaking
construction for the Dirichlet process given in Equation 2.
This behavior makes the Pitman-Yor process particularly
appropriate for applications in language modeling. Natural
language has long been known to exhibit power-law be-
havior (Zipf, 1935), and the Pitman-Yor process is able to
capture this (Teh, 2006a).

We can use the Pitman-Yor process to cluster data using the
following mixture model:

D ∼ PY(α, d,H) θi|D ∼ D xi|θi ∼ f(θi).
(3)

We can also construct a hierarchy of Pitman-Yor processes
(Teh, 2006a) that allows us to jointly cluster multiple re-
lated groups of data. Each group is associated with a

Pitman-Yor process-distributed random measure, and the
group-specific Pitman-Yor processes are coupled via a
shared, Pitman-Yor process-distributed base measure. For
M groups, each containing Nm data points, the generative
process is

D0 ∼ PY(α, d,H)

Dm|D0 ∼ PY(γ, c,D0), m = 1, . . . ,M

θmi|Dm ∼ Dm, i = 1, . . . , Nm

xmi|θmi ∼ f(θmi).

(4)

This distribution has found a number of applications in text
and language modeling (Teh, 2006b; Wood et al., 2009;
Blunsom and Cohn, 2011).

2.2 PARALLEL METHODS FOR BAYESIAN
NONPARAMETRICS

Bayesian nonparametric models allow an unbounded num-
ber of parameters, and can increase the number of parame-
ters used as we see more data. This makes them appealing
for large, complex, and potentially growing datasets. Un-
fortunately, naive implementation of Gibbs samplers, such
as those developed in Ishwaran and James (2001), Neal
(1998) and Teh et al. (2006), do not scale well to such
datasets.

To counter issues of scalability, a number of authors have
attempted to parallelize inference in Bayesian nonparamet-
ric models. Such algorithms typically rely on data paral-
lelization – data is split onto multiple processors, and mes-
sages are passed between processors. Often, this involves
making approximations that break long-range dependen-
cies. For example in Asuncion et al. (2008) and Doshi-
Velez et al. (2009), each processor maintains local suffi-
cient statistics for the data stored on it, and approximates
the full sufficient statistics by combining the local statistics
with snapshots of the local statistics from other processors.

Such an approach typically leads to inaccuracies in the
estimates of the global parameters or sufficient statistics.
This is particularly true in Bayesian nonparametric models,
where we have many components with a small number of
observations. Combining the local statistics for these com-
ponents is difficult, and Williamson et al. (2013) show that
this leads to estimate deterioration in the case of Dirichlet
processes and hierarchical Dirichlet processes. In models
with power law behavior, this effect is likely to be more
pronounced, due to the larger number of components with
very few associated data points.

An alternative approach is to explicitly partition the model
into sub-models that are independent or conditionally inde-
pendent. Inference is performed on each sub-model inde-
pendently, and the results are combined globally. We call



such algorithms model-parallel. Such models are typically
also data-parallel, with different sub-models governing dif-
ferent subsets of the data. They also have the advantage
that the sub-models typically have a smaller space of latent
parameters than the full model.

Recent examples of algorithms that are both data-parallel
and model-parallel are given by Williamson et al. (2013)
and Lovell et al. (2012), who use auxiliary variable model
representations for Dirichlet processes and hierarchical
Dirichlet processes to obtain conditional independence.
These algorithms hinge on the fact that we can write a
Dirichlet process mixture model as a mixture of Dirichlet
process mixture models, as follows:

Dj ∼ DP(αj , Hj),

φ ∼ Dirichlet(α1, . . . , αP ),

µi|φ ∼ φ,
θi|µi, D1, . . . , DP ∼ Dµi ,

xi ∼ f(θi).

(5)

The marginal distribution over the xis is the equal in dis-
tribution to that obtained by the Dirichlet process mixture
model

D ∼ DP
(∑

j

αj ,

∑
j αjHj∑
j αj

)
,

θi|D ∼ D,
xi|θi ∼ f(θi).

(6)

Conditioned on the µis in Equation 5, we can split our
model into conditionally independent sub-models involv-
ing disjoint subsets of the data, achieving both model- and
data-parallelization.

3 AUXILIARY VARIABLE
REPRESENTATIONS

In this section, we introduce new representations for the
Pitman-Yor process and hierarchical Pitman-Yor process,
that will allow us to develop model- and data-parallel in-
ference algorithms.

3.1 AUXILIARY VARIABLE REPRESENTATION
FOR THE PITMAN-YOR PROCESS

To obtain an auxiliary variable representation, we first show
that a Pitman-Yor mixture model with positive concentra-
tion parameter α and continuous base measure H can be
constructed as a finite mixture of Pitman-Yor mixture mod-
els. We start with a little-used representation of the atom
sizes of the Pitman-Yor process.

Theorem 1 (Mixture model representation of a Pitman-Yor
process). Let G0 :=

∑
k ρkδθk ∼ DP(α,H0), and let

Gk :=
∑
j πj,kδφj,k

i.i.d.∼ PY(0, d,H), where H is a
continuous probability measure (note that this is a nor-
malized stable process with stable parameter d). Then
D =

∑
k ρkGk is distributed according to a Pitman-Yor

process with concentration parameter α, discount parame-
ter d, and base measure H .

Proof. This is a direct consequence of Proposition 22 in
Pitman and Yor (1997).

By extension, we can express a Pitman-Yor mixture model
as a Dirichlet process mixture of normalized stable process
mixture models, provided the concentration parameter α
of the Pitman-Yor process is strictly positive and the base
measure H is continuous.

Corollary 1. The marginal distribution over the data
(xi, i = 1, . . . , N) implied by the generative procedure

G ∼ GEM(α)

Dj ∼ PY(d, 0, H)

ti|G ∼ G
θi|ti, D1, D2, . . . ∼ Dti

xi|θi ∼ f(θi)

(7)

is the same as the marginal distribution over the xi ob-
tained using the Pitman-Yor mixture model of Equation 3.

Proof. The proof is a straightforward extension of Theo-
rem 1.

We have therefore reduced a Pitman-Yor mixture model
with concentration parameter α > 0 to a Dirichlet pro-
cess mixture model. This allows us to apply Equation 5
and write our Pitman-Yor mixture model as a finite Dirich-
let mixture of Pitman-Yor mixture models, providing the
conditional independence required to construct a model-
parallel sampler.

Theorem 2 (Auxiliary variable representation for Pit-
man-Yor mixture models). Provided the concentration pa-
rameter α > 0 and the base probability measure H is
continuous, we can rewrite the generative process for the
Pitman-Yor mixture model given in Equation 3 as:

Dj ∼ PY
(
α

P
, d,H

)
,

φ ∼ Dirichlet
(
α

P
, . . . ,

α

P

)
,

µi|φ ∼ φ,
θi|µi, D1, . . . , DP ∼ Dµi ,

xi|θi ∼ f(θi),

(8)

for j = 1, . . . P and i = 1, . . . , N . The marginal distribu-
tion over the xi remains the same.



Proof. Since we can write the Pitman-Yor mixture model
as a Dirichlet process mixture model, this follows as a di-
rect application of Equation 5. An alternative proof is given
in the supplement.

3.2 AUXILIARY VARIABLE REPRESENTATION
FOR THE HIERARCHICAL PITMAN-YOR
PROCESS

The results in Section 3.1 can be extended to certain spe-
cial cases of the hierarchical Pitman-Yor process described
in Equation 4. Unfortunately, we can only apply Theorem 1
and Corollary 1 when the base measure of the Pitman-Yor
process is continuous. For the group-level Pitman-Yor pro-
cesses in Equation 4, this is not the case.

The auxiliary variable representation for the Dirichlet pro-
cess given in Equation 5, however, does not require a con-
tinuous base measure. We note that the Dirichlet process
is a special case of the Pitman-Yor process, with discount
parameter d = 0. We therefore work with the following
special case of the hierarchical Pitman-Yor process:

D0 ∼ PY(α, d,H)

γ ∼ Gamma(α)

Dm|D0 ∼ DP(γ,D0), m = 1, . . . ,M

θmi|Dm ∼ Dm, i = 1, . . . , Nm

xmi|θmi ∼ f(θmi).

(9)

We will refer to this construction as a hierarchical Pitman
Yor/Dirichlet process (HPY/DP). The use of a gamma de-
pendence between the concentration parameters was first
introduced by Williamson et al. (2013) in the context of the
hierarchical Dirichlet process.

In Section 5, we investigate the performance of this special
case of the hierarchical Pitman-Yor process on a text cor-
pus. We find that it performs nearly as well as the more
general model of Equation 4, and out-performs the hierar-
chical Dirichlet process (Teh et al., 2006). We therefore
propose this model for large-scale text data, since it allows
scalable parallel inference without significant deterioration
in performance.

Theorem 3 extends the auxiliary variable representation of
Theorem 2 to the hierarchical model of Equation 9.

Theorem 3 (Auxiliary variable representation for the hier-
archical Pitman-Yor process). We can rewrite the genera-

tive process for the hierarchical model of Equation 9 as:

ζj ∼ Gamma(α/P ) ,

D0j ∼ PY(α/P, d,H) ,

νm ∼ Dirichlet(ζ1, . . . , ζP ) ,

Dmj |D0j ∼ DP(ζj , D0j) ,

µmi|νm ∼ νm

θmi|µmi, Dm1, . . . , DmP ∼ Dmµmi

xmi|θmi ∼ f(θmi) ,

(10)

for j = 1, . . . , P , m = 1, . . . ,M , and i = 1, . . . , Nm. The
marginal distribution over the xi remains the same as in
Equation 9.

Proof. Let γ :=
∑
j ζj . The normalized vector ζ1,...,ζP

γ

is distributed according to Dirichlet
(
α
P , . . . ,

α
P

)
, so from

Theorem 1 we find that

D0 :=

P∑
j=1

ζj
γ
D0j ∼ PY (α, d,H).

Now, for m = 1, . . . ,M and j = 1, . . . , P , let ηmj ∼
Gamma(ζj) and Dmj ∼ DP(ζj , D0j). The normalized
vector (ηm1, . . . , ηmP )/

∑P
j=1 ηmj is therefore distributed

according to Dirichlet(ζ1, . . . , ζP ). From Equation 5, we
see that

Dm :=

P∑
j=1

ηmjDmj ∼ DP(γ,D0).

The representation in Theorem 3 provides the conditional
independence structure required to construct a data- and
model-parallel inference algorithm.

4 INFERENCE

The auxiliary variable representation introduced in Theo-
rem 2 makes the cluster allocations for data points {xi :
µi = j} conditionally independent of the cluster alloca-
tions for data points {xi : µi 6= j}. A similar conditional
independence relationship for the hierarchical model is im-
plied by Theorem 3. We can therefore split the data onto P
parallel processors or cores, based on the values of µi (or
µmi in the hierarchical case). We will henceforth call µi
(µmi) the “processor indicator” for the ith data point (ith
data point in the mth group).

The resulting samplers allow both model and data paral-
lelization. Inference in Pitman-Yor mixture models and hi-
erarchical Pitman-Yor processes scales with both the num-
ber of data points and the number of clusters. Since each



conditionally-independent sub-model only uses a subset of
the data points and of the clusters, we are able to obtain
significant computational advantage, as we will show em-
pirically in Section 5.

4.1 PARALLEL INFERENCE IN THE
PITMAN-YOR PROCESS

We consider first the Pitman-Yor mixture model of Equa-
tion 3. Under the auxiliary variable representation of Equa-
tion 8, each data point xi is associated with a processor in-
dicator µi and parameter θi. We introduce cluster indicator
variables zi, such that zi = zj iff θi = θj . Provided the
base measure H is continuous, all data points associated
with a single cluster will have the same processor indica-
tor, meaning that we can assign each cluster to one of the
P processors (i.e., all data points in a single cluster are as-
signed to the same processor). Note that the jth processor
will typically be associated with multiple clusters, corre-
sponding to the local Pitman-Yor process Dj . Conditioned
on the assignments of the processor indicators µi, the data
points xi in Equation 8 depend only on the local Pitman-
Yor process Dµi and the associated parameters.

We can easily marginalize out the Dj and φ. Assume
that each data point xi is assigned to a processor µi ∈
{1, . . . , P}, and a cluster zi residing on that processor. We
will perform local inference on the cluster assignments zi,
and intermittently we will perform global inference on the
µi.

4.1.1 Local inference: Sampling the zi

Conditioned on the processor assignments, the distribution
over cluster assignments zi is given by

P (zi = k|{zj : j 6= i, µj = µi}, xi, rest)

∝


n¬iµi,k

−d
α+n¬iµi,·

fk(xi) for existing cluster k
α+Kd
α+n¬iµi,·

f∗(xi) new cluster k

where nj,k is the number of data points in the kth cluster
on processor j, fk(x) is the likelihood of data point x for
the kth cluster, and f∗(x) is the likelihood of data point x
under a new cluster.

4.1.2 Global inference: Sampling the µi

Under the auxiliary variable scheme, each cluster is associ-
ated with a single processor. We jointly resample the pro-
cessor allocations of all data points within a given cluster,
allowing us to move an entire cluster from one processor to
another. We use a Metropolis Hastings step with a proposal
distribution Q(k, j1, j2) that independently assigns cluster
k from processor j1 to processor j2. We discuss choices of
proposal distribution Q(k, j1, j2) in Section 4.3.

The accept/reject probability is given by r ·Q(k,j2,j1)
Q(k,j1,j2)

where
r is the likelihood ratio

r =

P∏
j=1

Γ(N∗j + α/P )

Γ(Nj + α/P )

(α/P )(d;K
∗
j−1)

(α/P )(d;Kj−1)

(α/P + 1− d)(1;Nj−1)

(α/P + 1− d)(1;N
∗
j −1)

max(Nj ,N
∗
j )∏

i=1

[(1− d)(1;i−1))](a
∗
ij−aij) aij !

a∗ij !
,

(11)

where Nj is the number of data points on processor j, aij
is the number of clusters of size i on processor j and

(a)(b;c) =

{
1 if c = 0
a(a+ b) . . . (a+ (c− 1)b) for c = 1, 2, . . .

A derivation of Equation 11 is given in the supplement. In
fact, we can simplify Equation 11 further, since many of
the terms in the ratio of factorials will cancel.

The reassignment of clusters can be implemented in a num-
ber of different manners. Actually transferring data from
one processor to another will lead to bottlenecks, but may
be appropriate if the entire data set is too large to be stored
in memory on a single machine. If we can store a copy of
the dataset on each machine, or we are using multiple cores
on a single machine, we can simply transfer updates to lists
of which data points belong to which cluster on which ma-
chine. We note that the reassignments need not occur at the
same time, reducing the bandwidth required.

4.2 PARALLEL INFERENCE IN THE
HIERARCHICAL PITMAN-YOR/DIRICHLET
PROCESS

Again, we can assign tokens xmi to one of P processors
according to µmi. Conditioned on the processor assign-
ment and the values of ζj , the data on each processor is
distributed according to an HPY/DP. We instantiate the pro-
cessor allocations µmi and the bottom-level DP parame-
ters, plus sufficient representation to perform inference in
the processor-specific HPY/DPs. We assume a Chinese
restaurant franchise representation (Teh et al., 2006) – each
group is represented using a “restaurant”; data points in the
lower-level Dirichlet processes are clustered into “tables”;
in the upper-level Pitman-Yor process, these “tables” are
clustered and each cluster is assigned a “dish”.

4.2.1 Local inference: Sampling the table and dish
allocations

Conditioned on the processor assignments, we simply have
P independent HPY/DPs, and can use any existing infer-
ence algorithm for the hierarchical Pitman-Yor process. In
our experiments, we used the Chinese restaurant franchise



sampling scheme (Teh et al., 2006; Teh, 2006a); other rep-
resentations could also be used.

4.2.2 Global inference: Sampling the µmi and the ζj

We can represent the ζj as ζj := γξj , where
γ ∼ Gamma(α, 1) and ξ := (ξ1, . . . , ξP ) ∼
Dirichlet(α/P, . . . , α/P ). We sample ξ and the µmi
jointly, and then sample γ, in order to improve the accep-
tance ratio of our Metropolis Hastings steps.

Again, we want to reallocate whole clusters rather than
independently reallocate individual tokens. So, our pro-
posal distribution again assigns cluster k from processor
j1 to processor j2 with probability Q(k, j1, j2). Note
that this means that a single data point does not neces-
sarily reside on a single processor – its tokens may be
split among multiple processors. We also propose ξ∗ ∼
Dirichlet(α/P, . . . , α/P ), and accept the resulting state
with probability min(1, rQ(k,j2,j1)

Q(k,j1,j2)
), where

r =

P∏
j=1

(ξ∗j )(T
∗
.j+α/P )

((ξj)(T.j+α/P ))

T ∗.j !

T ∗.j !

(α/P )(d;U
∗
j −1)

(α/P )(d;Uj−1)

· (α/P + 1− d)(1;T.j−1)

(α/P + 1− d)(1;T
∗
.j−1)

·
{∏max(T·j ,T

∗
·j)

i=1 [(1− d)(1;i−1)]b
∗
ji−bji bji!

b∗ji!

}

·
M∏
m=1

max(Nj ,N
∗
j )∏

i=1

ajmi!

a∗jmi!
.

(12)

Here, Tmj is the total number of occupied tables from the
mth restaurant on processor j, Uj is the total number of
unique dishes on processor j, ajmi is the total number of
tables in restaurant m on processor j with exactly i cus-
tomers, and bji is the total number of dishes on processor j
served at exactly i tables. Many of the ratios can be simpli-
fied further, reducing computational costs. A derivation of
Equation 12 is given in the supplement.

As with the sampler described in Section 4.1, we can either
transfer the data between machines, or simply update lists
of which data points are “active” on each machine. We can
resample γ after sampling ξ and the µmi using a standard
Metropolis Hastings step.

4.3 CHOICE OF PROPOSAL DISTRIBUTION

There are many valid choices for the proposal distributions
Q(k, j1, j2) used to sample the µi and µmi in Sections 4.1
and 4.2. We tried several different proposal distributions
and found we obtained good mixing when

Q(k, j1, j2) =

{
1

P−1sj1 if j1 6= j2

1− sj1 if j1 = j2
(13)

where sj1 is the fraction of data in processor j1. As dis-
cussed by Gal and Ghahramani (2013), due to cluster size
imbalance inherent to the Pitman-Yor process, we do not
expect to see even load balance; however this proposal dis-
tribution encourages processors with a larger proportion of
the data (higher load) to transfer data to under-used data.
Since at any point the fraction of points in any cluster is
small it also reduces the number of transfer and hence net-
work load. We will show in Section 5 that this not only
gives good performance but also gives good load sharing
among multiple processors.

5 EVALUATION

We expect the inference algorithms presented in Section 4
to yield faster inference than a non-parallel implemen-
tation. Each processor is locally performing inference
in a Pitman-Yor mixture model or a hierarchical Pitman-
Yor/Dirichlet process. These models only contain a sub-
set of the total number of clusters and of the total data set.
Since inference in these models scales at least linearly (de-
pending on likelihood) with both the number of data points
and the number of latent components, we expect them to
converge much more quickly than a Pitman-Yor mixture
model or hierarchical Pitman-Yor/Dirichlet process on the
entire data set. Provided the computational cost of the
global steps remains relatively low, and provided the global
steps achieve sufficiently fast mixing, we expect to see
overall speed-ups. Further, we expect the estimate qual-
ity to remain high, since our algorithms do not introduce
approximations.

In both cases, we evaluate via comparison with non-parallel
implementations of the model. We are unaware of any
other parallelizable inference algorithms for the Pitman-
Yor process and its extensions.

5.1 PITMAN-YOR MIXTURE OF GAUSSIANS

We first evaluate performance of the parallel sampler for
the Pitman-Yor mixture model, described in Section 4.1,
using synthetic data. We generated data sets of vary-
ing size N and data dimensionality D, to evaluate per-
formance on different sized datasets. Each data set con-
tained N/2000 clusters of size 500, N/4000 clusters of
size 1000, N/10000 clusters of size 2500, and N/20000
clusters of size 5000, giving K = 9N/10000 clusters in
total. This was designed to give many smaller clusters and
fewer larger clusters. Each cluster parametrized a univari-
ate Gaussian with unit variance and mean sampled accord-
ing to a Uniform((−K/2,K/2)D) distribution.

We ran our algorithm on 90% of the resulting data sets us-
ing the algorithm described in Section 4.1, on 1,2,4 and 8
cores of a multi-core machine. Each algorithm was initial-
ized by clustering the data into 80 clusters. We performed
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Figure 1: Evaluation on synthetic data modeled using a Pitman-Yor mixture model. a: F1 score vs run time; b: Amount
of time spent on global vs local computation; c: Time taken to reach convergence (< 0.1% change in training set log
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Figure 2: Maximum, median, and minimum loads per global iteration, using (a) a uniform proposal distribution; (b) the
proposal distribution given in Equation 13.

100 iterations of the local inference step for each iteration
of the global inference step. The concentration parameter
α was set to 0.5 and d was set to 0.1; these values were
selected via grid search. We evaluated by calculating the
test set log likelihood for the remaining 10% of the data.

Figure 1(a) shows how the log likelihood of the test sample
varies with time, for one million datapoints with D = 3.
We see that we get good speedup by increasing the num-
ber of processors, while converging to (approximately) the
same value for all experiments. Figure 1(b) shows that the
amount of time spent on local computation far exceeds that



Data Size 1M 2.5M 5M 10 M
Efficiency 0.864 0.873 0.877 0.879
Dimension 1 3 5 10
Efficiency 0.893 0.864 0.866 0.877
Processors 2 4 8
Efficiency 0.880 0.865 0.864

Table 1: Efficiency with varying data size (with D = 3 and
P = 8 ), varying data dimension (with N = 1M P = 8)
and number of processor (with N = 1M and D = 3).

spent on global steps, explaining why we have a faster per-
iteration time. Figures 1(c) and 1(d) show that the decrease
in computational speed is apparent at different sizes of data
set N and data dimensionality D.

Following Asuncion et al. (2008), we report the efficiency
of our model. If a model running on P processor converges
in time Tp while the single processor model converges in
time T then the efficiency is calculated as T

P ·Tp . Table 1
shows how efficiency varies if we change the number of
data points, the dimensionality of each data point, and the
number of processors. An efficiency of 1 would indicate
a linear speed-up – using P processors is P times as fast
as using one processor. We get efficiency very close to the
linear speedup as shown in Table 1.

Next we evaluate how evenly computation is split between
the cores. Figure 2 shows the how the data is split between
cores over time. Figure 2(b) shows the load distribution ob-
tained using the proposal distribution of Equation 13, and
Figure 2(a) shows the load distribution obtained using the
uniform distribution used by Williamson et al. (2013). The
maximum load governs the amount of time spend perform-
ing local computation (which was seen in Figure 1(b) to
dominate the computation time). While, as we would ex-
pect (Gal and Ghahramani, 2013), we have uneven loads in
both cases, we achieve better load balancing using the new
proposal.

5.2 HIERARCHICAL PITMAN-YOR/DIRICHLET
PROCESS

In this section, we evaluate the sampler described in Sec-
tion 4.2 on two text data sets:

• NIPS1: A collection of 2470 papers from the NIPS
conference, collected between 1988 and 2003 which
includes 14300 unique words and a total of 3, 280, 697
words.

• ENRON2: A collection of 39861 emails including
28102 unique words and a total of 6, 400, 000 words.

1http://ai.stanford.edu/ ∼ gal/data.html
2https://archive.ics.uci.edu/ml/datasets/Bag+of+Words

Dataset HDP HPY/DP HPY
NIPS 1706.52 1650.44 1621.34
ENRON 2110.98 2054.85 2018.36

Table 2: Test set perplexity for different models.

Processors 2 4 8
NIPS 0.855 0.805 0.824
ENRON 0.854 0.807 0.817

Table 3: Efficiency of the HPY/DP algorithm with varying
number of processors.

In each case, we held out 10% of the data for testing, and
evaluated our algorithms using perplexity on the held out
test set, as calculated in Asuncion et al. (2008).

We begin by considering how much performance is gain-
ing by restricting the lower-level stochastic processes to
be Dirichlet processes, rather than Pitman-Yor processes.
Table 2 compares the full hierarchical Pitman-Yor process
described in Equation 4 (denoted HPY), the model imple-
mented using our algorithm and described in Equation 9
(denoted HPY/DP), and the hierarchical Dirichlet process
Teh et al. (2006) (denoted HDP).

We find that, while the full hierarchical Pitman-Yor process
obtains the best perplexity, the HPY/DP model still per-
forms better than the hierarchical Dirichlet process. Since
there is not, currently, a scalable inference algorithm for the
full hierarchical Pitman-Yor process, we argue that the pro-
posed algorithm and model offer a good trade-off between
scalability and performance

Having established the applicability of the model, we con-
sider scalability. Figures 3(a) and 3(b) show how the sam-
ple test set perplexity changes with time using 1,2,4 and
8 processors on the NIPS and ENRON data sets, respec-
tively. As with the Pitman-Yor mixture model, we see that
increasing the number of processors yields improvements
in computation time. Figures 3(c) and 3(d) show that, as
before, this occurs because the cost of the local computa-
tions decreases as we add more processors, and remains
high relative to the cost of the global computations. This is
reflected in the efficiencies obtained for different numbers
of processors (Table 3), which remain close to one.

6 DISCUSSION AND FUTURE WORK

In this paper, we have presented new auxiliary variable rep-
resentations for certain cases of the Pitman-Yor process and
the hierarchical Pitman-Yor process. These representations
allowed us to make use of conditional independencies to
develop inference schemes that are both data- and model-
parallel.

While this paper provides a significant step forward in
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Figure 3: Evaluation on text corpora using the HPY/DP model. a: Test set perplexity vs run time (NIPS); b: Test set
perplexity vs run time (ENRON); c: Amount of time spent on global vs local computation (NIPS); d: Amount of time
spent on global vs local communication (ENRON).

the development of parallel inference algorithms for the
Pitman-Yor process, it does not cover all algorithms of in-
terest. The auxiliary variable representation introduced in
Theorem 2 requires a positive concentration parameter. It
remains an open question whether there exist alternative
representations for α < 0 that yield the desired conditional
independence structure. Further, our auxiliary variable rep-
resentation requires a continuous base measure H . While
this is typically the case for Pitman-Yor mixture models, it
is not the case for the more general hierarchical Pitman-Yor
process described in Equation 4. We hope that this work
inspires further research into scalable inference for models
beyond the Dirichlet process, allowing parallel algorithms
for this and other models.
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