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Abstract

Ancestral graphs (AGs) are graphical causal
models that can represent uncertainty about the
presence of latent confounders, and can be in-
ferred from data. Here, we present an algo-
rithmic framework for efficiently testing, con-
structing, and enumerating m-separators in AGs.
Moreover, we present a new constructive crite-
rion for covariate adjustment in directed acyclic
graphs (DAGs) and maximal ancestral graphs
(MAGs) that characterizes adjustment sets as m-
separators in a subgraph. Jointly, these results
allow to find all adjustment sets that can iden-
tify a desired causal effect with multivariate ex-
posures and outcomes in the presence of latent
confounding. Our results generalize and improve
upon several existing solutions for special cases
of these problems.

1 INTRODUCTION

Graphical causal models endow researchers with a lan-
guage to codify assumptions about a data generating pro-
cess (Pearl, 2009; Elwert, 2013). Using graphical criteria,
one can asses whether the assumptions encoded in such a
model allow estimation of a causal effect from observa-
tional data, which is a key issue in Epidemiology (Roth-
man et al., 2008), the Social Sciences (Elwert, 2013) and
other fields where controlled experimentation is typically
impossible. Specifically, the famous back-door criterion by
Pearl (2009) can identify cases where causal effect identi-
fication is possible by standard covariate adjustment, and
other methods like the front-door criterion or do-calculus
can even permit identification even if the back-door crite-
rion fails (Pearl, 2009). In current practice, however, co-
variate adjustment is highly preferred to such alternatives
because its statistical properties are well understood, giv-
ing access to useful methodology like robust estimators and
confidence intervals. In contrast, knowledge about the sta-

tistical properties of e.g. front-door estimation is still con-
siderably lacking (VanderWeele, 2009; Glynn and Kashin,
2013)1. Unfortunately, the back-door criterion is not com-
plete, i.e., it does not find all possible options for covari-
ate adjustment that are allowed by a given graphical causal
model.

In this paper, we aim to efficiently find a definitive an-
swer for the following question: Given a causal graph G,
which covariates Z do we need to adjust for to estimate the
causal effect of the exposures X on the outcomes Y? To our
knowledge, no efficient algorithm has been shown to an-
swer this question, not even when G is a directed acyclic
graph (DAG), though constructive solutions do exist for
special cases like singleton X = {X} (Pearl, 2009), and a
subclass of DAGs (Textor and Liśkiewicz, 2011). Here, we
provide algorithms for adjustment sets in DAGs as well as
in maximal ancestral graphs (MAGs), which extend DAGs
allowing to account for unspecified latent variables. Our
algorithms are guaranteed to find all valid adjustment sets
for a given DAG or MAG with polynomial delay, and we
also provide variants to list only those sets that minimize a
user-supplied cost function or to quickly construct a sim-
ple adjustment set if one exists. Modelling multiple, pos-
sibly interrelated exposures X is important e.g. in case-
control studies that screen several putative causes of a dis-
ease (Greenland, 1994). Likewise, the presence of unspeci-
fied latent variables often cannot be excluded in real-world
settings, and the causal structure between the observed
variables may not be completely known. We hope that
the ability to quickly deduce from a given DAG or MAG
whether and how covariate adjustment can render a causal
effect identifiable will benefit researchers in such areas.

We have two main contributions. First, in Section 3, we
present algorithms for verifying, constructing, and listing
m-separating sets in AGs. This subsumes a number of
earlier solutions for special cases of these problems, e.g.

1Quoting VanderWeele (2009), “Time will perhaps tell
whether results like Pearl’s front-door path adjustment theorem
and its generalizations are actually useful for epidemiologic re-
search or whether the results are simply of theoretical interest.”



the Bayes-Ball algorithm for verification of d-separating
sets (Shachter, 1998), the use of network flow calculations
to find minimal d-separating sets in DAGs (Tian et al.,
1998; Acid and de Campos, 2003), and an algorithm to
list minimal adjustment sets for a certain subclass of DAGs
(Textor and Liśkiewicz, 2011). Our verification and con-
struction algorithms for single separators are asymptoti-
cally runtime-optimal. Although we apply our algorithms
only to adjustment set construction, they are likely useful in
other settings as separating sets are involved in most graph-
ical criteria for causal effect identification. Moreover, the
separators themselves constitute statistically testable impli-
cations of the causal assumptions encoded in the graph.

Second, we give a graphical criterion that characterizes
adjustment sets in terms of separating sets, and is sound
and complete for DAGs and MAGs without selection vari-
ables. This generalizes the sound and complete criterion
for DAGs by Shpitser et al. (2010), and the sound but in-
complete adjustment criterion for MAGs without selection
variables by Maathuis and Colombo (2013). Our criterion
exhaustively addresses adjustment set construction in the
presence of latent covariates and with incomplete knowl-
edge of causal structure if at least a MAG can be specified.
We give the criterion separately for DAGs (Section 4) and
MAGs (Section 5) because the same graph usually admits
more adjustment options if viewed as a DAG than if viewed
as a MAG.

2 PRELIMINARIES

We denote sets by bold upper case letters (S), and some-
times abbreviate singleton sets as {S} = S. Graphs are writ-
ten calligraphically (G), and variables in upper-case (X).

Mixed graphs and paths. We consider mixed graphs
G = (V,E) with nodes (vertices, variables) V and directed
(A→ B), undirected (A−B), and bidirected (A↔ B) edges
E. Nodes linked by an edge are adjacent. A walk of length
n is a node sequence V1, . . . ,Vn+1 such that there exists an
edge sequence E1,E2, . . . ,En for which every edge Ei con-
nects Vi,Vi+1. Then V1 is called the start node and Vn+1
the end node of the walk. A path is a walk in which no node
occurs more than once. Given a node set X and a node set
Y, a walk from X ∈ X to Y ∈ Y is called proper if only its
start node is in X. Given a graph G = (V,E) and a node
set V′, the induced subgraph GV′ = (V′,E′) contains the
edges E′ from G that are adjacent only to nodes in V′.

Ancestry. A walk of the form V1 → . . . → Vn is di-
rected, or causal. If there is a directed walk from U to V,
then U is called an ancestor of V and V a descendant of U.
A graph is acyclic if no directed walk from a node to itself
is longer than 0. All directed walks in an acyclic graph are
paths. A walk is anterior if it were directed after replacing
all edges U − V by U → V. If there is an anterior path

from U to V, then U is called an anterior of V. All ances-
tors of V are anteriors of V. Every node is its own ancestor,
descendant, and anterior. For a node set X, the set of all of
its ancestors is written as An(X). The descendant and ante-
rior sets De(X),Ant(X) are analogously defined. Also, we
denote by Pa(X), (Ch(X)), the set of parents (children) of
X.

m-Separation. A node V on a walk w is called a collider
if two arrowheads of w meet at V, e.g. if w contains U ↔
V ← Q. There can be no collider if w is shorter than
2. Two nodes U,V are called collider connected if there
is a path between them on which all nodes except U and
V are colliders. Adjacent vertices are collider connected.
Two nodes U,V are called m-connected by a set Z if there
is a path π between them on which every node that is a
collider is in An(Z) and every node that is not a collider
is not in Z. Then π is called an m-connecting path. The
same definition can be stated simpler using walks: U,V are
called m-connected by Z if there is a walk between them
on which all colliders and only colliders are in Z. If U,V
are m-connected by the empty set, we simply say they are
m-connected. If U,V are not m-connected by Z, we say
that Z m-separates them or blocks all paths between them.
Two node sets X,Y are m-separated by Z if all their nodes
are pairwise m-separated by Z. In DAGs, m-separation is
equivalent to the well-known d-separation criterion (Pearl,
2009).

Ancestral graphs and DAGs. A mixed graphG = (V,E)
is called an ancestral graph (AG) if the following two con-
ditions hold: (1) For each edge A ← B or A ↔ B, A is
not an ancestor of B. (2) For each edge A − B, there are no
edges A ← C, A ↔ C, B ← C or B ↔ C. There can be
at most one edge between two nodes in an AG (Richard-
son and Spirtes, 2002). Syntactically, all DAGs are AGs
and all AGs containing only directed edges are DAGs. An
AG G = (V,E) is a maximal ancestral graph (MAG) if
every non-adjacent pair of nodes U,V can be m-separated
by some Z ⊆ V \ {U,V}. Every AG G can be turned into
a MAGM by adding bidirected edges between node pairs
that cannot be m-separated (Richardson and Spirtes, 2002).

3 ALGORITHMS FOR m-SEPARATION

In this section, we compile an algorithmic framework for
solving a host of problems related to verification, con-
struction, and enumeration of m-separating sets in AGs.
The problems are defined in Fig. 1, which also shows
the asymptotic runtime of their solutions. Throughout, n
stands for the number of nodes and m for the number of
edges in a graph. All of these problems except LISTSEP
can be solved by rather straightforward modifications of ex-
isting algorithms (Acid and Campos, 1996; Shachter, 1998;
Tian et al., 1998; Textor and Liśkiewicz, 2011). We there-



fore refrain in this paper from presenting them in detail,
Pseudocodes of these algorithms are shown for reference
and implementation in the online version of this paper2.
The online version also contains proof details that had to
be omitted from this paper for space reasons.

An important tool for solving similar problems for d-
separation is moralization, by which d-separation can be re-
duced to a vertex cut in an undirected graph. This reduction
allows to solve problems like FINDMINSEP using standard
network flow algorithms (Acid and Campos, 1996). Moral-
ization can be generalized to AGs in the following manner.

Definition 3.1 (Moralization of AGs (Richardson and
Spirtes, 2002)). Given an AGG, the augmented graph (G)a

is an undirected graph with the same node set as G such
that X − Y is an edge in (G)a if and only if X and Y are
collider connected in G.

Theorem 3.2 (Reduction of m-Separation to vertex cuts
(Richardson and Spirtes, 2002)). Given an AG G and three
node sets X,Y and Z, Z m-separates X and Y if and only if
Z is an X-Y node cut in (GAnt(X∪Y∪Z)a.

A direct implementation of Definition 3.1 would lead to a
suboptimal algorithm. Therefore, we first give an asymp-
totically optimal (linear time in output size) moralization
algorithm for AGs. We then solve TESTMINSEP, FIND-
MINSEP, FINDMINCOSTSEP and LISTMINSEP by gener-
alizing existing correctness proofs of the moralization ap-
proach for d-separation (Tian et al., 1998).

Not all our solutions are based on moralization, however.
Moralization takes time O(n2), and TESTSEP and FIND-
SEP can be solved faster, i.e. in asymptotically optimal
time O(n +m).

Lemma 3.3 (Efficient AG moralization). Given an AG G,
the augmented graph (G)a can be computed in time O(n2).

Proof. The algorithm proceeds in four steps. (1) Start by
setting (G)a to G replacing all edges by undirected ones.
(2) Identify all connected components in G with respect
to bidirected edges (two nodes are in the same such com-
ponent if they are connected by a path consisting only of
bidirected edges). Nodes without adjacent bidirected edges
form singleton components. (3) For each pair U,V of nodes
from the same component, add the edge U −V to (G)a if it
did not exist already. (4) For each component, identify all
its parents (nodes U with an edge U→ V where U is in the
component) and link them all by undirected edges in (G)a.
Now two nodes are adjacent in (G)a if and only if they are
collider connected in G. All four steps can be performed in
time O(n2). �

Lemma 3.4. Let X,Y, I,R be sets of nodes with I ⊆ R,
R ∩ (X ∪ Y) = ∅. If there exists an m-separator Z0, with
I ⊆ Z0 ⊆ R then Z = Ant(X∪Y∪I)∩R is an m-separator.

2URL: theory.bio.uu.nl/textor/uai14.pdf

Corollary 3.5 (Ancestry of minimal separators). Given an
AG G, and three sets X,Y, I, every minimal set Z over all
m-separators containing I is a subset of Ant(X ∪ Y ∪ I).

Proof. Assume there is a minimal separator Z with Z *
Ant(X ∪ Y ∪ I). According to Lemma 3.4 we have that
Z′ = Ant(X ∪ Y ∪ I) ∩ Z is a separator with I ⊆ Z′. But
Z′ ⊆ Ant(X ∪ Y ∪ I) and Z′ ⊆ Z, so Z , Z′ and Z is not a
minimal separator. �

Corollary 3.5 applies to minimum-cost separators as well
because every minimum-cost separator must be minimal.
Now we can solve FINDMINCOSTSEP and FINDMIN-
SIZESEP by using weighted min-cut, which takes time
O(n3) using practical algorithms, and LISTMINSEP by us-
ing Takata’s algorithm to enumerate minimal vertex cuts
with delay O(n3) (Takata, 2010).

However, for FINDMINSEP and TESTMINSEP, we can do
better than using standard vertex cuts.

Proposition 3.6. The task FINDMINSEP can be solved in
time O(n2).

Proof. Two algorithms are given in the online appendix,
one with runtime O(n2) and one with runtime O(nm). �

Corollary 3.7. The task TESTMINSEP can be solved in
time O(n2).

Proof. First verify whether Z is an m-separator using mor-
alization. If not, return “no”. Otherwise, set S = Z and
solve FINDMINSEP. Return “yes” if the output is Z and
“no”, otherwise. �

Moralization can in the worst case quadratically increase
the size of a graph. Therefore, in some cases, it may be
preferable to avoid moralization if the task at hand is rather
simple, as are the two tasks considered below.

Proposition 3.8. The task FINDSEP can be solved in time
O(n +m).

Proof. This follows directly from Lemma 3.4, and the fact
that the set Ant(X ∪ Y ∪ I) ∩ R can be found in linear
time from the MAG without moralization. Note that un-
like in DAGs, two non-adjacent nodes cannot always be
m-separated in ancestral graphs. �

By modifying the Bayes-Ball algorithm (Shachter, 1998)
appropriately, we get the following.

Proposition 3.9. The task TESTSEP can be solved in time
O(n +m).

Lastly, we consider the problem of listing all m-separators.
Here is an algorithm to solve that problem with polynomial
delay.



Verification: For given X,Y and Z decide if . . .
TESTSEP Z m-separates X,Y O(n +m)
TESTMINSEP Z m-separates X,Y but no Z′ ( Z does O(n2)

Construction: For given X,Y and auxiliary I,R, output . . .
FINDSEP an m-separator Z with I ⊆ Z ⊆ R O(n +m)
FINDMINSEP a minimal m-separator Z with I ⊆ Z ⊆ R O(n2)
FINDMINCOSTSEP a minimum-cost m-separator Z with I ⊆ Z ⊆ R O(n3)

Enumeration: For given X,Y, I,R enumerate all . . .
LISTSEP m-separators Z with I ⊆ Z ⊆ R O(n(n +m)) delay
LISTMINSEP minimal m-separators Z with I ⊆ Z ⊆ R O(n3) delay

Table 1: Definitions of algorithmic tasks related to m-separation. Throughout, X,Y,R are pairwise disjoint node sets, Z is
disjoint with X,Y which are nonempty, and I,R,Z can be empty. By a minimal m-separator Z, with I ⊆ Z ⊆ R, we mean a
set such that no proper subset Z′ of Z, with I ⊆ Z′, m-separates the pair X and Y. Analogously, we define a minimal and a
minimum-cost m-separator. The construction algorithms will output ⊥ if no set fulfilling the listed condition exists. Delay
complexity for e.g. LISTMINSEP refers to the time needed to output one solution when there can be exponentially many
solutions (see Takata (2010)).

function LISTSEP(G,X,Y, I,R)
if FINDSEP(G,X,Y, I,R) , ⊥ then

if I = R then Output I
else

V ← an arbitrary node of R \ I
LISTSEP(G,X,Y, I ∪ {V},R)
LISTSEP(G,X,Y, I,R \ {V})

Figure 1: ListSep

Proposition 3.10. The task LISTSEP can be solved with
polynomial delay O(n(n +m)).

Proof. Algorithm LISTSEP performs backtracking to enu-
merate all Z with I ⊆ Z ⊆ R aborting branches that will not
find a valid separator. Since every leaf will output a sepa-
rator, the tree height is at most n and the existence check
needs O(n + m), the delay time is O(n(n + m)). The al-
gorithm generates every separator exactly once: if initially
I ( R, with V ∈ R \ I, then the first recursive call returns
all separators Z with V ∈ Z and the second call returns all
Z′ with V < Z′. Thus the generated separators are pairwise
disjoint. This is a modification of the enumeration algo-
rithm for minimal vertex separators (Takata, 2010). �

4 ADJUSTMENT IN DAGS

In this section, we leverage the algorithmic framework of
the last section together with a new constructive, sound
and complete criterion for covariate adjustment in DAGs
to solve all problems listed in Table 1 for adjustment sets
instead of m-separators in the same asymptotic time. First,
however, we need to introduce some more notation pertain-
ing to the causal interpretation DAGs.

Do-operator and adjustment sets. A DAG G encodes
the factorization of joint distribution π for the set of vari-

ables V = {X1, . . . ,Xn} as p(v) =
∏n

j=1 p(x j|pa j), where
pa j denotes a particular realization of the parent variables
of X j in G. When interpreted causally, an edge Xi → X j
is taken to represent a direct causal effect of Xi on X j. For
disjoint X,Y ⊆ V, the (total) causal effect of X on Y is
p(y|do(x)) where do(x) represents an intervention that sets
X = x. In a DAG, this intervention corresponds to remov-
ing all edges into X, disconnecting X from its parents. We
denote the resulting graph as GX. Given DAG G and a joint
probability density π for V the post-intervention distribu-
tion can be expressed in a truncated factorization formula:

p(v|do(x)) =


∏

X j∈V\X

p(x j|pa j) for V consistent with x

0 otherwise.

Definition 4.1 (Adjustment (Pearl, 2009)). Given a DAG
G = (V,E) and pairwise disjoint X,Y,Z ⊆ V, Z is called
covariate adjustment for estimating the causal effect of X
on Y, or simply adjustment, if for every distribution p con-
sistent with G we have p(y | do(x)) =

∑
z p(y | x, z)p(z).

Definition 4.2 (Adjustment criterion (Shpitser et al., 2010;
Shpitser, 2012)3). LetG = (V,E) be a DAG, and X,Y,Z ⊆
V be pairwise disjoint subsets of variables. The set Z sat-
isfies the adjustment criterion relative to (X,Y) in G if

(a) no element in Z is a descendant inG of any W ∈ V\X
which lies on a proper causal path from X to Y and

(b) all proper non-causal paths in G from X to Y are
blocked by Z.

Analogously toGX, byGX we denote a DAG obtained from
G by removing all edges leaving X.

3In Shpitser et al. (2010), the criterion is stated using GX in-
stead of G. However, one can easily prove that both criteria are
equivalent.



4.1 CONSTRUCTIVE BACK-DOOR CRITERION

Definition 4.3 (Proper back-door graph). Let G = (V,E)
be a DAG, and X,Y ⊆ V be pairwise disjoint subsets of
variables. The proper back-door graph, denoted as Gpbd

XY , is
obtained from G by removing the first edge of every proper
causal path form X to Y.

Note the difference between the back-door graph GX and

the proper back-door graph Gpbd
XY : in GX all edges leaving

X are removed while in Gpbd
XY only those that lie on a proper

causal path. However, to construct Gpbd
XY still only elemen-

tary operations are sufficient. Indeed, we remove all edges
X→ D in E such that X ∈ X and D is in the subset, which
we call PCP(X,Y), obtained as follows:

PCP(X,Y) = (DeX(X) \ X) ∩ AnX(Y) (1)

where DeX(W) denotes descendants of W in GX. AnX(W)
is defined analogously forGX. Hence, the proper back-door
graph can be constructed from G in linear time O(m + n).

Now we propose the following adjustment criterion. For
short, we will denote the set De(PCP(X,Y)) as Dpcp(X,Y).

Definition 4.4 (Constructive back-door criterion (CBC)).
Let G = (V,E) be a DAG, and let X,Y,Z ⊆ V be pair-
wise disjoint subsets of variables. The set Z satisfies the
constructive back-door criterion relative to (X,Y) in G if

(a) Z ⊆ V \ Dpcp(X,Y) and

(b) Z d-separates X and Y in the proper back-door graph
G

pbd
XY .

Theorem 4.5. The constructive back-door criterion is
equivalent to the adjustment criterion.

Proof. First observe that the conditions (a) of both criteria
are identical. Assume conditions (a) and (b) of the adjust-
ment criterion hold. We show that (b) of the constructive
back-door criterion follows. Let π be any proper path from
X to Y in Gpbd

XY . Because Gpbd
XY does not contain causal paths

from X to Y, π is not causal and has to be blocked by Z in
G by the assumption. Since removing edges cannot open
paths, π is blocked by Z in Gpbd

XY as well.

Now we show that (a) and (b) of the constructive back-door
criterion together imply (b) of the adjustment criterion. If
that were not the case, then there could exist a proper non-
causal path π from X to Y that is blocked in Gpbd

XY but open

in G. There can be two reasons why π is blocked in Gpbd
XY :

(1) The path starts with an edge X→ D that does not exist
in Gpbd

XY . Then we have D ∈ PCP(X,Y). For π to be non-
causal, it would have to contain a collider C ∈ An(Z) ∩
De(D) ⊆ An(Z)∩Dpcp(X,Y). But because of (a), An(Z)∩
Dpcp(X,Y) is empty. (2) A collider C on π is an ancestor

G GX G
pbd
XY

X1

Z1

Z2

X2

Y1

Y2

X1

Z1

Z2

X2

Y1

Y2

X1

Z1

Z2

X2

Y1

Y2

Figure 2: A DAG where for X = {X1,X2} and Y = {Y1,Y2},
Z = {Z1,Z2} is a valid and minimal adjustment, but no
set fulfills the back-door criterion (Pearl, 2009), and the
parents of X are not a valid adjustment set either.

of Z in G, but not in Gpbd
XY . Then there must be a directed

path from C to Z via an edge X → D with D ∈ An(Z) ∩
PCP(X,Y), contradicting (a). �

4.2 ADJUSTING FOR MULTIPLE EXPOSURES

For a singleton set X = {X} of exposures we know that if
a set of variables Y is disjoint from {X} ∪ Pa(X) then one
obtains easily an adjustment set with respect to X and Y
as Z = Pa(X) (Pearl, 2009, Theorem 3.2.2). The situation
changes drastically if the effect of multiple exposures is es-
timated. Theorem 3.2.5 in Pearl (2009) claims that the ex-
pression for P(y | do(x)) is obtained by adjusting for Pa(X)
if Y is disjoint from X ∪ Pa(X), but, as the DAG in Fig. 2
shows, this is not true: the set Z = Pa(X1,X2) = {Z2}

is not an adjustment set according to {X1,X2} and Y. In
this case one can identify the causal effect by adjusting for
Z = {Z1,Z2} only. Indeed, for more than one exposure, no
adjustment set may exist at all even without latent covari-
ates and even though Y∩ (X∪Pa(X)) = ∅, e.g. in the DAG

X1 X2 Z Y.

Using our criterion, we can construct a simple adjustment
set explicitly if one exists. For a DAGG = (V,E) we define
the set

Adj(X,Y) = An(X,Y) \ (X ∪ Y ∪ Dpcp(X,Y)).

Theorem 4.6. Let G = (V,E) be a DAG and let X,Y ⊆ V
be distinct node sets. Then the following statements are
equivalent:

1. There exists an adjustment in G w.r.t. X and Y.

2. Adj(X,Y) is an adjustment w.r.t. X and Y.

3. Adj(X,Y) d-separates X and Y in the proper back-
door graph Gpbd

XY .

Proof. The implication (3) ⇒ (2) follows directly from
the criterion Def. 4.4 and the definition of Adj(X,Y). Since



the implication (2) ⇒ (1) is obvious, it remains to prove
(1)⇒ (3).

Assume there exists an adjustment set Z0 w.r.t. X and Y.
From Theorem 4.5 we know that Z0 ∩Dpcp(X,Y) = ∅ and
that Z0 d-separates X and Y in Gpbd

XY . Our task is to show

that Adj(X,Y) d-separates X and Y in Gpbd
XY . This follows

from Lemma 3.4 used for the proper back-door graph Gpbd
XY

if we take I = ∅, R = V \ (X ∪ Y ∪ Dpcp(X,Y)). �

From Equation 1 and the definition Dpcp(X,Y) =
De(PCP(X,Y)) we then obtain immediately:

Corollary 4.7. Given two distinct sets X,Y ⊆ V, Adj(X,Y)
can be found in O(n +m) time.

4.3 TESTING, COMPUTING, AND
ENUMERATING ADJUSTMENT SETS

Using our criterion, every algorithm for m-separating sets
Z between X and Y can be used for adjustment sets with
respect to X and Y, by requiring that Z not contain any
node in Dpcp(X,Y). This allows solving all problems
listed in Table 1 for adjustment sets in DAGs instead of m-
separators. Below, we name those problems analogously as
for m-separation, e.g. the problem to decide whether Z is
an adjustment set w.r.t. X,Y is named TESTADJ in analogy
to TESTSEP.

TESTADJ can be solved by testing if Z ∩ Dpcp(X,Y) = ∅
and Z is a d-separator in the proper back-door graph Gpbd

XY .

Since Gpbd
XY can be constructed from G in linear time, the

total time complexity of this algorithm is O(n +m).

TESTMINADJ can be solved with an algorithm that itera-
tively removes nodes from Z and tests if the resulting set
remains an adjustment set w.r.t. X and Y. This can be done
in time O(n(n + m)). Alternatively, one can construct the
proper back-door graph Gpbd

XY from G and test if Z is a min-
imal d-separator, with Z ⊆ V \ Dpcp(X,Y) between X and
Y. This can be computed in time O(n2). The correctness of
these algorithms follows from the proposition below, which
is a generalization of the result in Tian et al. (1998).

Proposition 4.8. If no single node Z can be removed from
an adjustment set Z such that the resulting set Z′ = Z \ Z
is no longer an adjustment set, then Z is minimal.

The remaining problems like FINDADJ, FINDMINADJ etc.
can be solved using corresponding algorithms for finding,
resp. listing m-separations applied for proper back-door
graphs. Since the proper back-door graph can be con-
structed in linear time the time complexities to solve the
problems above are as listed in Table 1.

5 ADJUSTMENT IN MAGS

We now generalize the results from the previous section
to MAGs. Two examples may illustrate why this gener-
alization is not trivial. First, take G = X → Y. If G is
interpreted as a DAG, then the empty set is valid for adjust-
ment. If G is however taken as a MAG, then there exists
no adjustment set as G represents among others the DAG
U X Y where U is an unobserved confounder. Sec-

ond, take G = A → X → Y. In that case, the empty set
is an adjustment set regardless of whether G is interpreted
as a DAG or a MAG. The reasons will become clear as we
move on. First, let us recall the semantics of a MAG. The
following definition can easily be given for AGs in general,
but we do not need this generality for our purpose.

Definition 5.1 (DAG representation by MAGs (Richardson
and Spirtes, 2002)). Let G = (V,E) be a DAG, and let
S,L ⊆ V. The MAG M = G[L

S is a graph with nodes
V \ (S∪L) and defined as follows. (1) Two nodes U and V
are adjacent in G[L

S if they cannot be m-separated by any
Z with S ⊆ Z ⊆ V \ L in G. (2) The edge between U and
V is

U − V if U ∈ An(S ∪ V) and V ∈ An(S ∪U);

U→ V if U ∈ An(S ∪ V) and V < An(S ∪U);

U↔ V if U < An(S ∪ V) and V < An(S ∪U).

We call L latent variables and S selection variables. We
say there is selection bias if S , ∅.

Hence, every MAG represents an infinite set of underlying
DAGs that all share the same ancestral relationships. For a
given MAGM, we can construct a represented DAG G by
replacing every edge X − Y by a path X → S ← Y, and
every edge X↔ Y by X← L→ Y, where S and L are new
nodes; thenM = G[L

S where S and L are all new nodes. G
is called the canonical DAG ofM (Richardson and Spirtes,
2002), which we write as C(M).

Lemma 5.2 (Preservation of separating sets (Richardson
and Spirtes, 2002)). Z m-separates X,Y in G[L

S if and only
if Z ∪ S m-separates X,Y in G.

We now extend the concept of adjustment to MAGs in the
usual way (Maathuis and Colombo, 2013).

Definition 5.3 (Adjustment in MAGs). Given a MAGM =
(V,E) and two variable sets X,Y ⊆ V, Z ⊆ V is an adjust-
ment set for X,Y in M if for every probability distribu-
tion p(v′) consistent with a DAG G = (V′,E′) for which
G[L

S=M for some S,L ⊆ V′ \V, we have

p(y | do(x)) =
∑

z

p(y | x, z, s)p(z | s) . (2)



Selection bias (i.e., S , ∅) substantially complicates ad-
justment, and in fact nonparametric causal inference in gen-
eral (Zhang, 2008)4. Due to these limitations, we restrict
ourselves to the case S = ∅ in the rest of this section.
Note however that recovery from selection bias is some-
times possible with additional population data, and graphi-
cal conditions exist to identify such cases (Barenboim et al.,
2014).

5.1 ADJUSTMENT AMENABILITY

In this section we first identify a class of MAGs in which
adjustment is impossible because of causal ambiguities –
e.g., the simple MAG X → Y falls into this class, but the
larger MAG A→ X→ Y does not.

Definition 5.4 (Visible edge (Zhang, 2008)). Given a MAG
M = (V,E), an edge X → Y ∈ E is called visible if in all
DAGs G = (V′,E′) with G[L

S=M for some S,L ⊆ V′, all
d-connected walks between X and Y in G that contain only
nodes of S ∪ L ∪ X ∪ Y are directed paths.

Intuitively, an invisible directed edge X → Y means that
there may still hidden confounding factors between X and
Y, which is guaranteed not to be the case if the edge is
visible.

Lemma 5.5 (Graphical conditions for edge visibility
(Zhang, 2008)). In a MAGM = (V,E), an edge X → Y
is visible if and only if there is a node A not adjacent
to Y where (1) A → X ∈ E or A ↔ X ∈ E, or (2)
there is a collider path A ↔ V1 ↔ . . . ↔ Vn ↔ X or
A→ V1 ↔ . . .↔ Vn ↔ X where all Vi are parents of Y.

Definition 5.6. We call a MAG M = (V,E) adjustment
amenable w.r.t. X,Y ⊆ V if all proper causal paths from X
to Y start with a visible directed edge.

Lemma 5.7. If a MAG M = (V,E) is not adjustment
amenable w.r.t. X,Y ⊆ V then there exists no adjustment
set W for X,Y inM.

Proof. If the first edge X → D on some causal path to
Y in M is not visible, then there exists a consistent DAG
G where there is a non-causal path between X and Y via
V that could only be blocked inM by conditioning on D
or some of its descendants. But such conditioning would
violate the adjustment criterion in G. �

5.2 ADJUSTMENT CRITERION FOR MAGS

We now show that DAG adjustment criterion generalizes to
adjustment amenable MAGs. The adjustment criterion and

4A counterexample is the graph A ← X → Y, where we can
safely assume that A is the ancestor of a selection variable. A
sufficient and necessary condition for adjustment under selection
bias is Y y S | X (Barenboim et al., 2014), which is so restrictive
that most statisticians would probably not even speak of “selec-
tion bias” anymore in such a case.

DAG G MAGM = G[W1
∅

X

W1 W2

Y

Z

X

W2

Y

Z

Figure 3: Illustration of the case in the proof of Theorem
5.8 where Z descends from W1 which in a DAG G is on a
proper causal path from X to Y, but is not a descendant of
a node on a proper causal path from X to Y in the MAGM
after marginalizing W1. In such cases, conditioning on Z
will m-connect X and Y inM via a proper non-causal path.

the constructive back-door criterion are defined like their
DAG counterparts (Definitions 4.2 and 4.3), replacing d-
with m-separation for the latter.

Theorem 5.8. Given an adjustment amenable MAGM =
(V,E) and three disjoint node sets X,Y,Z ⊆ V, the follow-
ing statements are equivalent:

(i) Z is an adjustment relative to X,Y inM.

(ii) Z fulfills the adjustment criterion (AC) w.r.t. (X,Y) in
M.

(iii) Z fulfills the constructive backdoor criterion (CBC)
w.r.t. (X,Y) inM.

Proof. The equivalence of (ii) and (iii) is established by
observing that the proof of Theorem 4.5 generalizes to m-
separation. Below we establish equivalence of (i) and (ii).

¬(ii) ⇒ ¬(i): If Z violates the adjustment criterion inM,
it does so in the canonical DAG C(M), and thus is not an
adjustment inM.

¬(i) ⇒ ¬(ii): Let G be a DAG with G[L
∅
= M in which Z

violates the AC. We show that (a) if Z∩Dpcp(X,Y) , ∅ in
G then Z ∩ Dpcp(X,Y) , ∅ inM as well, or there exists
a proper non-causal path inM that cannot be m-separated;
and (b) if Z ∩ Dpcp(X,Y) = ∅ in G and Z d-connects a
proper non-causal walk in G, then it m-connects a proper
non-causal walk inM.

(a) Suppose that in G, Z contains a node Z in Dpcp(X,Y),
and let W = PCP(X,Y)∩An(Z). IfM still contains at least
one node W1 ∈ W, then W1 lies on a proper causal path
in M and Z is a descendant of W1 in M. Otherwise, M
must contain a node W2 ∈ PCPG(X,Y) \ An(Z) (possibly
W2 ∈ Y) such that W2 ↔ A, X → W2, and X → A are
edges inM, where A ∈ An(Z) (possibly A = Z; see Fig. 3).
ThenM contains an m-connected proper non-causal path
X→ A↔W →W2 → . . .→ Y.

(b) Suppose that in G, Z∩Dpcp(X,Y) = ∅, and there exists
an open proper non-causal path from X to Y. Then there



DAG G MAGM = G[{L1,L2}

∅
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Y
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X
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Figure 4: Case (b) in the proof of Theorem 5.8: A proper
non-causal path wG = X ← L1 → Z ← Ls → Y in a
DAG is d-connected by Z, but the corresponding proper
non-casual path wM = X← Z→ Y is not m-connected in
the MAG, and its m-connected subpath w′

M
= X → Y is

proper causal. However, this also renders the edge X → Y
invisible, because otherwise A could be m-separated from
Y by U = {X,Z} inM but not in G.

must then also be a proper non-causal walk wG from some
X ∈ X to some Y ∈ Y (Lemma 7.1), which is d-connected
by Z in G. Let wM denote the subsequence of wG formed
by nodes in M, which includes all colliders on wG. The
sequence wM is a path in M, but is not necessarily m-
connected by Z; all colliders on wM are in Z because every
non-Z must be a parent of at least one of its neighbours, but
there can subsequences U,Z1, . . . ,Zk,V on wM where all
Zi ∈ Z but some of the Zi are not colliders on wM. How-
ever, then we can form from wM an m-connected walk by
bypassing some sequences of Z-nodes (Lemma 7.2). Let
w′
M

be the resulting walk.

If w′
M

is a proper non-causal walk, then there must also
exist a proper non-causal path inM (Lemma 7.1), violating
the AC. It therefore remains to show that w′

M
is not a proper

causal path. This must be the case if wG does not contain
colliders, because then the first edge of wM = w′

M
cannot

be a visible directed edge out of X. Otherwise, the only
way for w′

M
to be proper causal is if all Z-nodes in wM

have been bypassed in w′
M

by edges pointing away from
X. In that case, one can show by several case distinctions
that the first edge X → D of w′

M
, where D < Z, cannot be

visible (see Figure 4 for an example of such a case). �

5.3 ADJUSTMENT SET CONSTRUCTION

In the previous section, we have already shown that the
CBC is equivalent to the AC for MAGs as well; hence, ad-
justment sets for a given MAGM can be found by forming
the proper back-door graphMpbd

XY and then applying the al-
gorithms from the previous section. In principle, care must
be taken when removing edges from MAGs as the result
might not be a MAG; however, this is not the case when
removing only directed edges.

Lemma 5.9 (Closure of maximality under removal of di-
rected edges). Given a MAGM, every graphM′ formed
by removing only directed edges fromM is also a MAG.

Proof. Suppose the converse, i.e. M is no longer a MAG
after removal of some edge X→ D. Then X and D cannot
be m-separated even after the edge is removed because X
and D are collider connected via a path whose nodes are all
ancestors of X or D (Richardson and Spirtes, 2002). The
last edge on this path must be C↔ D or C← D, hence C <
An(D), and thus we must have C ∈ An(X). But then we get
C ∈ An(D) inM via the edge X→ V, a contradiction. �

Corollary 5.10. For every MAGM, the proper back-door
graphMpbd

XY is also a MAG.

For MAGs that are not adjustment amenable, the CBC
might falsely indicate that an adjustment set exists even
though that set may not be valid for some represented
graph. Fortunately, adjustment amenability is easily tested
using the graphical criteria of Lemma 5.5. For each child
D of X in Dpcp(X,Y), we can test the visibility of all edges
X → D simultaneously using depth first search. This
means that we can check all potentially problematic edges
in time O(n +m). If all tests pass, we are licensed to apply
the CBC, as shown above. Hence, we can solve all algo-
rithmic tasks in Table 1 for MAGs in the same way as for
DAGs after an O(k(n +m)) check of adjustment amenabil-
ity, where k ≤ |Ch(X)|.

6 DISCUSSION

We have compiled efficient algorithms for solving several
tasks related to m-separators in ancestral graphs, and ap-
plied those together with a new, constructive adjustment
criterion to provide a complete and informative answer to
the question when, and how, a desired causal effect can be
estimated by covariate adjustment. Our results fully gener-
alize to MAGs in the absence of selection bias. One may ar-
gue that the MAG result is more useful for exploratory ap-
plications (inferring a graph from data) than confirmatory
ones (drawing a graph based on theory), as researchers will
prefer drawing DAGs instead of MAGs due to the easier
causal interpretation of the former. Nevertheless, in such
settings the results can provide a means to construct more
“robust” adjustment sets: If there are several options for co-
variate adjustment in a DAG, then one can by interpreting
the same graph as a MAG possibly generate an adjustment
set that is provably valid for a much larger class of DAGs.
This might partially address the typical criticism that com-
plete knowledge of the causal structure is unrealistic.

Our adjustment criterion generalizes the work of Shpitser
et al. (2010) to MAGs and therefore now completely char-
acterizes when causal effects are estimable by covariate ad-
justment in the presence of unmeasured confounders with
multivariate exposures and outcomes. This also general-
izes recent work by Maathuis and Colombo (2013) who
provide a criterion which, for DAGs and MAGs without
selection bias, is stronger than the back-door criterion but



weaker than ours. They moreover show their criterion to
hold also for CPDAGs and PAGs, which represent equiva-
lence classes of DAGs and MAGs as they are constructed
by causal discovery algorithms. It is possible that the con-
structive back-door criterion could be generalized further
to those cases, which we leave for future work.

7 APPENDIX

In this appendix, we prove Lemma 3.4 and two auxiliary
Lemmas that are used in the proof of Theorem 5.8.

Proof of Lemma 3.4. Let us consider a proper walk w =
X,V1, . . . ,Vn,Y with X ∈ X,Y ∈ Y. If w does not con-
tain a collider, all nodes Vi are in Ant(X ∪ Y) and the walk
is blocked by Z, unless {V1, . . . ,Vn} ∩ R = ∅ in which
case the walk is not blocked by Z0 either. If the walk
contains colliders C, it is blocked, unless C ⊆ Z ⊆ R.
Then all nodes Vi are in Ant(X ∪ Y ∪ I) and the walk is
blocked, unless {V1, . . . ,Vn} ∩ R = C. Since C ⊆ Z is a
set of anteriors, there exists a shortest (possible containing
0 edges) path π j = V j → . . . → W j for each V j ∈ C with
W j ∈ X∪Y∪ I (it cannot contain an undirected edge, since
there is an arrow pointing to V j). Let π′j = V j → . . .→W′

j
be the shortest subpath of π j that is not blocked by Z0.
Let w′ be the walk w after replacing each V j by the walk
V j → . . . → W′

j ← . . . ← V j. If any of the W j is in
X ∪ Y we truncate the walk, such that we get the shortest
walk between nodes of X and Y. Since π′j is not blocked,
w′ contains no colliders except w′j and all other nodes of w′

are not in R, w′ is not blocked and Z0 is not a separator. �

Lemma 7.1. Given a DAG G and sets X,Y,Z ⊆ V satisfy-
ing Z∩Dpcp(X,Y) = ∅, Z m-connects a proper non-causal
path between X and Y if and only if it m-connects a proper
non-causal walk between X and Y.

Proof. ⇐: Let w be the m-connected proper non-causal
walk. It can be transformed to an m-connected path π by
removing loops of nodes that are visited multiple times.
Since no nodes have been added, π remains proper, and
the first edges of π and w are the same. So if w does not
start with a → edge, π is non-causal. If w starts with an
edge X→ D, there exists a collider with a descendant in Z
which is in De(D). So π has to be non-causal, or it would
contradict Z ∩ Dpcp(X,Y) = ∅.

⇒: Let π be an m-connected proper non-causal path. It can
be changed to an m-connected walk w by inserting Ci →

. . . → Zi ← . . . ← Ci for every collider Ci on π and a
corresponding Zi ∈ Z. Since no edges are removed from
π, w is non-causal, but not necessarily proper, since the
inserted walks might contain nodes of X. However, in that
case, w can be truncated to a proper walk w′ starting at

the last node of X on w. Then w′ is non-causal, since it
contains the subpath X← . . .← Ci. �

Lemma 7.2. Let G = (V,E) be a DAG and let wG be a
walk from X ∈ V to Y ∈ V that is d-connected by Z ⊆ V.
Let M = G[L

∅
, where L ⊆ V \ (Z ∪ X ∪ Y). Let wM =

V1, . . . ,Vn+1 be the subsequence of wG consisting only of
the nodes inM. Then Z m-connects X and Y inM via a
path along a subsequence w′

G
formed from wG by removing

some nodes of Z (possibly w′
G
= wG).

Proof. (Sketch) The subsequences removed from wM cor-
respond to maximally long inducing walks in wG with re-
spect to L. An inducing walk is a collider connected path on
which all nodes are ancestors of one of the endpoints, and
all non-colliders are in L. The endpoints of inducing walks
with respect to L must be adjacent to each other inM (sim-
ilar to Richardson and Spirtes, 2002, for inducing paths); It
is easy to see that all Z-nodes which are not colliders on
wM can be removed in this way, e.g. X ← Z1 ↔ Z2 → Y
can be truncated to X,Y because there must have been an
inducing walk in G via Z1,Z2. Additionally, it can be nec-
essary to remove nodes that are colliders on wM, e.g. if
wM = X ← Z1 → Z2 ← Y and Z2 ∈ An(X), then wG
must have been an inducing walk, and w′

M
contains only X

and Y even though Z2 is a collider. To obtain the Lemma, it
remains to be shown that no new colliders are created when
bypassing nodes in this way. This is done by case distinc-
tions; e.g., in the example wM = X ← Z1 → Z2 ← Y
and Z2 ∈ An(X), we also have Y ∈ An(X) and hence w′

M

cannot be X→ Y or x↔ y. �
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