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Abstract

The distance dependent Chinese restaurant pro-
cess (ddCRP) provides a flexible framework for
clustering data with temporal, spatial, or other
structured dependencies. Here we model mul-
tiple groups of structured data, such as pixels
within frames of a video sequence, or paragraphs
within documents from a text corpus. We pro-
pose a hierarchical generalization of the ddCRP
which clusters data within groups based on dis-
tances between data items, and couples clusters
across groups via distances based on aggregate
properties of these local clusters. Our hddCRP
model subsumes previously proposed hierarchi-
cal extensions to the ddCRP, and allows more
flexibility in modeling complex data. This flexi-
bility poses a challenging inference problem, and
we derive a MCMC method that makes coordi-
nated changes to data assignments both within
and between local clusters. We demonstrate the
effectiveness of our hddCRP on video segmenta-
tion and discourse modeling tasks, achieving re-
sults competitive with state-of-the-art methods.

1 INTRODUCTION

The recent explosive growth of image and video reposito-
ries, and of structured data collections more broadly, moti-
vates methods for the unsupervised discovery of informa-
tive latent structures. Image sequences of course exhibit
strong spatio-temporal dependencies: objects typically oc-
cupy blocks of spatially contiguous pixels, and their move-
ments induce strong dependencies among video frames.
Nevertheless, many previous nonparametric models for vi-
sual data have mostly ignored such relationships, relying
on careful feature engineering to make local likelihoods in-
formative (Sudderth et al., 2008; Haines & Xiang, 2012).
While accounting for spatial dependencies can be techni-
cally challenging, it produces image partitions which much
more accurately reflect real-world scene structure (Orbanz

& Buhmann, 2008; Sudderth & Jordan, 2008). However,
these methods treat images as an unordered, or exchange-
able, collection; they thus fail to capture the strong tempo-
ral dependencies found in video sequences.

Blei & Frazier (2011) proposed the distance dependent
Chinese restaurant process (ddCRP) as a flexible distribu-
tion over partitions of data with temporal, spatial, or other
non-exchangeable structure. The ddCRP represents parti-
tions via links between data instances: each observation
links to one other, and the probability of linking to nearby
instances is higher. Closeness is measured according to a
distance which may be arbitrarily specified to capture do-
main knowledge. The connected components of the in-
duced link graph then partition the dataset into clusters.
Previous work has used the ddCRP to effectively cluster
data with sequential, temporal, or spatial structure (Ghosh
et al., 2011; Socher et al., 2011; Ghosh et al., 2012).

In this paper, we propose a hierarchical ddCRP (hddCRP)
that captures local relationships like these, but also uses
distances among latent clusters to extract further global de-
pendencies. After an initial ddCRP partitioning, local clus-
ters are grouped via additional links that depend on a user-
specified measure of cluster similarity. This framework al-
lows the hddCRP to model relationships that depend on ag-
gregate properties of clusters such as size and shape, which
may be difficult to capture with likelihoods alone. Given
arbitrary cluster and data affinity functions, which need not
arise from true distance metrics, the hddCRP always de-
fines a valid joint probability distribution on partitions.

The hddCRP is a hierarchical generalization of the ddCRP
which unifies and generalizes existing models. Simpler hi-
erarchical extensions of the ddCRP employing restricted
distance functions (Ghosh et al., 2011; Kim & Oh, 2011),
as well as the “Chinese restaurant franchise” representa-
tion of the hierarchical Dirichlet process (HDP, Teh et al.
(2006)), are special cases of the hddCRP. The HDP and
related dependent Dirichlet process models (MacEachern,
1999) define dependent random measures from which al-
locations of data to clusters are sampled, indirectly induc-
ing dependencies in the resulting partitions. For example,



Griffin & Steel (2006), Dunson & Park (2008), Rao & Teh
(2009), and Lin et al. (2010) define priors which encourage
“close” data points to have similar allocation distributions.

In contrast, the hddCRP directly specifies distributions over
partitions via a flexible set of user-specified affinity func-
tions. This allows structural constraints on clusters, such as
connectivity (Ghosh et al., 2011), to be directly enforced.
The hddCRP does not require its “distance” functions to be
true metrics or have any special properties, and thus pro-
vides an extremely flexible framework for modeling com-
plex data. Alternative models based on latent Gaussian pro-
cesses (Duan et al., 2007; Sudderth & Jordan, 2008) require
appropriate positive-definite kernel functions, whose spec-
ification can be challenging in non-Euclidean spaces (e.g.,
of object shapes). By working directly with discrete parti-
tions, rather than latent continuous measures, the hddCRP
also allows more computationally efficient inference.

The hddCRP generative process defined in Section 2 is sim-
ple, but the data-level and cluster-level link variables are
strongly coupled in the posterior. Section 3 develops a
Markov chain Monte Carlo (MCMC) method that makes
coordinated changes to links at both levels, and thus more
effectively explores clustering hypotheses. This sampler is
also a novel inference algorithm for the HDP that makes
large changes to the partition structure, without needing to
explicitly craft split or merge proposals (Jain & Neal, 2004;
Wang & Blei, 2012). By reasoning about data and cluster
links, our sampler changes cluster allocations at varying
resolutions, perturbing both memberships of data instances
to local clusters and clusters to global components.

In Section 4, we demonstrate the versatility of the hdd-
CRP by applying it to the problems of video segmenta-
tion and discourse analysis. In addition to having diverse
data types (video sequences versus text documents), these
two problems exhibit very different kinds of relationships
among data instances and latent clusters. Nevertheless, our
hddCRP model and inference framework easily applies to
both domains by selecting appropriate data and cluster-
level affinity functions. In both domains, explicit model-
ing of dependencies between latent clusters boosts perfor-
mance over models that ignore such relationships.

2 HIERARCHICAL DISTANCE
DEPENDENT CLUSTERS

The distance-dependent CRP (Blei & Frazier, 2011) de-
fines a distribution over partitions indirectly via distribu-
tions over links between data instances. A data point i has
an associated link variable ci which links to another data
instance j, or itself, according to the following distribution:

p (ci = j | A,α) ∝
{

Aij i ̸= j,
α i = j.

(1)

The affinity Aij = f(d(i, j)) depends on a user-specified
distance d(i, j) between pairs of data points, and a mono-

tonically decreasing decay function f(d) which makes
links to nearby data more likely. The resulting link struc-
ture induces a partition, where two data instances are as-
signed to the same cluster if and only if one is reachable
from the other by traversing the link edges. Larger self-
affinity parameters α favor partitions with more clusters.

2.1 THE HIERARCHICAL ddCRP

We propose a novel generative model that applies the dd-
CRP formalism twice, first for clustering data within each
group into local clusters, and then for coupling the local
clusters across groups. Like the ddCRP, our hddCRP de-
fines a valid distribution over partitions of a dataset. It
places higher probability mass on partitions that group
nearby data points into latent clusters, and couple similar
local clusters into global components. Examples of these
data and cluster links are illustrated in Figure 1.

Consider a collection of G groups, where group g contains
Ng observations. We denote the ith data point of group g
by xgi, and the full dataset by x. The data link variable cgi
for xgi is sampled from a group-specific ddCRP:

p(cgi = gj | αg, A
g) ∝

{
Ag

ij i ̸= j,

αg i = j.
(2)

At this first level of link variables, we set the probability of
linking observations in different groups to zero. The con-
nected components of the links cg = {cgi | i = 1, . . . , Ng}
then determine the local clustering for group g.

Data links c = {c1, . . . , cG} across all groups divide
the dataset into group-specific local clusters T (c). The
hddCRP then associates each cluster t ∈ T (c) with a clus-
ter link kt drawn from a global ddCRP distribution:

p(kt = s | α0, A
0(c)) ∝

{
A0

ts(c) t ̸= s,
α0 t = s.

(3)

Here α0 is a global self-affinity parameter, and A0(c) is
the set of pairwise affinities between the elements of T (c).
We let A0

ts(c) = f0(d0(t, s, c)), where d0(t, s, c) is a “dis-
tance” based on arbitrary properties of clusters t and s, and
f0(d0) a decreasing decay function. The connected compo-
nents of k = {kt | t ∈ T (c)} then couple local clusters into
global components shared across groups. Let zgi denote the
component associated with observation i in group g, and
z = {zgi | g = 1, . . . , G; i = 1, . . . , Ng}. Data instances
xgi and xhj are clustered (zgi = zhj) if and only if they are
reachable via some combination of data and cluster links.

Given this partition structure, we endow component m with
likelihood parameters ϕm ∼ G0(λ), and generate observa-
tions xgi ∼ p(xgi | ϕzgi). Let M(c,k) equal the number of
global components induced by the cluster links k and data
links c. Because data links c are conditionally independent
given A1:G, and cluster links k are conditionally indepen-
dent given c and the cluster affinities A0(c), the hddCRP
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Figure 1: An example link variable configuration for a hierarchical ddCRP model of three groups (rectangles). Observed data points
(customers, depicted as diamonds) link to other data points in the same group (black arrows), producing local clusters (dashed circles,
labeled A through I). Cluster links (colored arrows) then join clusters to produce (in this case, four) global mixture components.

joint distribution on partitions and observations equals

p(x,k, c | α1:G, α0, A
1:G, A0, λ) =

M(c,k)∏
m=1

p(xz=m | λ)
G∏

g=1

Ng∏
i=1

p(cgi | αg, A
g)

∏
kt∈k

p(kt | c, α0, A
0(c)) (4)

The set of data in component m is denoted by xz=m, and

p(xz=m | λ) =
∫ ∏

gi|zgi=m

p(xgi | ϕm) dG0(ϕm | λ), (5)

where λ are hyperparameters specifying the prior distribu-
tion G0. Our inference algorithms assume this integral is
tractable, as it always is when an exponential family like-
lihood is coupled with an appropriate conjugate prior. We
emphasize that for arbitrary data and cluster affinities, the
sequential hddCRP generative process defines a valid joint
distribution p(x,k, c) = p(c)p(k | c)p(x | k, c).

2.2 RELATED HIERARCHICAL MODELS

The hddCRP subsumes several recently proposed hierar-
chical extensions to the ddCRP, as well as the HDP itself,
by defining appropriately restricted data affinities and lo-
cal cluster affinities. Blei & Frazier (2011) show that the
CRP is recovered from the ddCRP by arranging data in an
arbitrary sequential order, and defining affinities as

Aij =

{
1 if i < j,

0 if i > j.
(6)

Data points link to all previous observations with equal
probability, and thus the probability of joining any existing
cluster is proportional to the number of other data points
already in that cluster. The probability of creating a new

cluster is proportional to the self-connection weight α. The
resulting distribution on partitions can be shown to be in-
variant to the chosen sequential ordering of the data, and
thus the standard CRP is exchangeable (Pitman, 2002).

Hierarchical Chinese Restaurant Process (hCRP) The
hCRP representation of the HDP, which Teh et al. (2006)
call the “Chinese restaurant franchise”, is recovered from
the hddCRP by first defining group-specific affinities as
in Eq. (6). We then arrange local clusters (tables, in the
CRF metaphor) t sequentially with distances A0

ts(c) = 1
if t < s, and A0

ts(c) = 0 if t > s. Just as the two-level
hCRP arises from a sequence of CRPs, the hddCRP is de-
fined from a sequence of two ddCRP models.

Naive Hierarchical ddCRP (naive-hddCRP) The im-
age segmentation model of Ghosh et al. (2011) clusters
data within each group via a ddCRP based on an informa-
tive distance (in their experiments, spatial distance between
image pixels). A standard CRP, as in the upper level of the
HDP, is then used to combine these clusters into larger seg-
ments. Inference is substantially simpler for this special
case, because cluster distances do not depend on properties
of the data assigned to those clusters.

Distance Dependent Chinese Restaurant Franchise
An alternate approach to capturing group-specific metadata
uses a standard CRP to locally cluster data, but then uses
the group labels to define affinities between clusters. Kim
& Oh (2011) use this model to learn topic models of time-
stamped documents. By constraining cluster affinities to
depend on group labels, but not properties of the data as-
signed to within-group clusters, inference is simplified.



3 MCMC INFERENCE

The posterior distribution over the data and cluster links
p(c,k | x, α1:G, α0, A

1:G, A0, λ) is intractable, and we
thus explore it via a Metropolis-Hastings MCMC method.
Our approach generalizes the non-hierarchical ddCRP
Gibbs sampler of Blei & Frazier (2011), which iteratively
samples single data links conditioned on the observations
and other data links. Evolving links lead to splits, merges,
and other large changes to the partition structure. In the
hddCRP, local clusters belong to global components, and
these component memberships must be sampled as well.

3.1 MARKOV CHAIN STATE SPACE

The number of possible non-empty subsets (clusters) of N
data points is 2N − 1. The state space of our Markov chain
consists of the data links c, and the set of all possible clus-
ter links K, one for each candidate non-empty cluster. For
instance, given three observations {h, i, j} the set of non-
empty subsets is T = {[h], [i], [j], [hi], [ij], [jh], [hij]},
and the corresponding set of possible cluster links is
K = {kh, ki, kj , khi, kij , kjh, khij}, where |K| = 23 − 1.

For any configuration of c, a strict subset of T will have
data associated with it. We call this the active set. For
instance, if ch = h, ci = i, cj = j, then only the clusters
{[h], [i], [j]} and the corresponding links {kh, ki, kj} are
active. Given c, we split K into the active set k, and the
remaining inactive cluster links k̃ = K\k. We account for
the inactive clusters by augmenting A0(c) as follows:

Ã0(c) =

[
A0(c) 0
0 α0I

]
. (7)

Here, we have sorted the links so that affinities among
the active clusters are listed in the upper-left quadrant of
Ã0(c). As indicated by the identity matrix I, inactive clus-
ters have zero affinity with all other clusters, and link to
themselves with probability one. Under this augmented
model, the joint probability factorizes as follows:

p(x,k, k̃, c) = p(c)p(k | c)p(k̃ | c)p(x | c,k, k̃) =
p(c)p(k | c)p(k̃ | c)p(x | c,k) = p(x,k, c)p(k̃ | c). (8)

Here, we have recovered the joint distribution of Eq. (4)
because given c, the observations x are conditionally inde-
pendent of the inactive links k̃. Crucially, because inactive
cluster links have no uncertainty, we must only explicitly
represent the active clusters at each MCMC iteration.

As the Markov chain evolves, clusters are swapped in and
out of the active set. Although the number of active clus-
ters varies with the state of the chain, the dimensionality
of the augmented state space (c,k, k̃) remains constant, al-
lowing us to ignore complications that arise when dealing
with chains whose state spaces have varying dimensional-
ity. In particular, we employ standard Metropolis-Hastings
(MH) proposals to change data and cluster links, and need
not resort to reversible jump MCMC (Green, 1995).
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Figure 2: Illustration of changes induced by a data link proposal.
Changing c22 (in the left configuration) splits cluster C into two
clusters C′ and C′′. The cluster links associated with C (shown
in red) must also be resampled. The MH step of the sampler pro-
poses a joint configuration of the links {c22, kC′ , kC′′ , kD, kE}.
The dashed red arrows illustrate the possible values the resam-
pled cluster links could take. A single data link can create large
changes to the partition structure, with local clusters splitting or
merging, and groups of clusters shifting between components.

3.2 LINK PROPOSAL DISTRIBUTIONS

In samplers previously developed for the hCRP (Teh et al.,
2006) and the naive-hddCRP (Ghosh et al., 2011), local
clusters directly sample their global component member-
ships. However for the hddCRP, cluster links indirectly de-
termine global component memberships. This complicates
inference, as any change to the cluster structure necessi-
tates coordinated changes to the cluster links. As illustrated
in Figure 2, consider the case where a data link proposal
causes a cluster to break into two components. The new
cluster must sample a cluster (outgoing) link, and cluster
links pointing to the old cluster (incoming links) must be
divided among the newly split clusters. Thus, we use a MH
proposal to jointly resample data and affected cluster links.

To simplify the exposition, we focus on a particular group
g and denote cgi as ci. Let the current state of the sampler
be k(c) and c = {c−i, ci = j}, so that i and j are members
of the same cluster tij . Let Ktij = {ks | ks = tij , s ̸= tij}
denote the set of other clusters linking to tij .

Split? To construct our link proposal, we first set ci = i.
This may split current cluster tij into two new clusters, in
which case we let ti denote the cluster containing data i,
and tj the cluster containing formerly linked data j. Or, the
partition structure may be unchanged so that ti = tij .



Incoming links ks ∈ Ktij to a split cluster are indepen-
dently assigned to the new clusters with equal probability:

qin(Ktij ) =
∏

ks∈Ktij

(
1

2

)δ(ks,ti)(1

2

)δ(ks,tj)

. (9)

The current outgoing link is retained by one of the split
clusters, ktj = ktij . To allow likelihood-based link pro-
posals, we temporarily fix the other cluster link as kti = ti.

Propose Link We compare two proposals for ci, the
ddCRP prior distribution q(ci) = p(ci | α,A), and a data-
dependent “pseudo-Gibbs” proposal distribution:

q(ci) ∝ p(ci | α,A)Γ(x, z(ci, c−i,k)), (10)
Γ(x, z(ci, c−i,k))

=


p(xz=ma ∪ xz=mb

| λ)
p(xz=ma | λ)p(xz=mb

| λ)
if ci merges ma, mb,

1 otherwise.

The prior proposal, although naı̈ve, can perform reasonably
when A is sparse. The pseudo-Gibbs proposal is more so-
phisticated, as data links are proposed conditioned on both
the observations x and the current state of the sampler. Our
experiments in Sec. 4 show it is much more effective.

Merge? Let ci = j∗ denote the new data link sampled
according to either the ddCRP prior or Eq. (10). Relative
to the reference configuration in which ci = i, this link
may either leave the partition structure unchanged, or cause
clusters ti and tj∗ to merge into tij∗ . In case of a merge, the
new cluster retains the current outgoing link ktij∗ = ktj∗ ,
and inherits the incoming links Ktij∗ = Kti ∪ Ktj∗ .

If a merge does not occur, but tij was previously split into
ti and tj , the outgoing link ktj = ktij is kept fixed. For
newly created cluster ti, we then propose a corresponding
cluster link kti from its full conditional distribution:

qout(kti) = p(kti | α0, A
0(c),x,k−ti , c). (11)

Note that the proposal ci = j∗ may leave the original par-
tition unchanged if ci = i does not cause tij to split, and
ci = j∗ does not result in a merge. In this case, the corre-
sponding cluster links are also left unchanged.

Accept or Reject Combining the two pairs of cases
above, our overall proposal distribution equals

q(c∗,k∗|c,k,x)=


q(c∗i )qin(K∗

tij ) split, merge,

q(c∗i ) no split, merge,

q(c∗i )qout(k
∗
ti)qin(K∗

tij ) split, no merge,

p(c∗i | α,A) otherwise.

Here, c∗ and k∗ denote the proposed values, which are
then accepted or rejected according to the MH rule. For
acceptance ratio derivations and further details, please see
the supplemental material. After cycling through all data
links c, we use the Gibbs update of Eq. (11) to resample
the cluster links k, analogously to a standard ddCRP.

Figure 3: Experiments on synthetic data. Top: Ground truth
partitions of a toy dataset containing four groups. Each group
contains four objects exhibiting motion and color gradients. Mid-
dle: MAP partitions inferred by an hddCRP using size and optical
flow-based cluster affinities. Bottom: MAP partitions discovered
by a baseline hCRP using only color-based likelihoods.

4 EXPERIMENTS

In this section we present a series of experiments investi-
gating the properties of the hddCRP model and our pro-
posed MCMC inference algorithms. We examine a pair
of challenging real-world tasks, video and discourse seg-
mentation. We quantify performance by measuring agree-
ment with held-out human annotations via the Rand in-
dex (Rand, 1971) and the WindowDiff metric (Pevzner &
Hearst, 2002), demonstrating competitive performance.

To provide intuition, we first compare the hddCRP with the
hCRP on a synthetic dataset (Figure 3) with four 30 × 30
frames (groups). Each frame contains four objects mov-
ing from top to bottom at different rates, and object ap-
pearances exhibit small color gradients. The hddCRP uti-
lizes data link affinities that allow pixels (data instances) to
connect to one of their eight spatial neighbors with equal
probability. To exploit the differing motions of the objects,
we define optical flow-based cluster affinities (Sun et al.,
2010). Letting w(t) denote the spatial positions occupied
by cluster t after being warped by optical flow, and w(s) the
corresponding support of cluster s, the affinity is defined as
A0

ts(c) = (w(t)∩w(s))/(w(t)∪w(s)), t ̸= s, encouraging
clusters to link to other clusters with similar spatial support.
Given this affinity function, hddCRP was able to robustly
disambiguate the four uniquely moving objects, while the
hCRP produced noisy segmentations and consistently con-
fused objects with local similarity but distinct motion.

4.1 VIDEO SEGMENTATION

Likelihood As a preprocessing step, we divide each
frame into approximately 1200 superpixels using the
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Figure 4: Data link proposal comparisons. Left: Two frames from the “garden” sequence, and partitions corresponding to the best and
worst MAP samples using prior or pseudo-Gibbs proposals. Right: Joint log-likelihood trace plots for 25 trials of each proposal.

method proposed by Chang et al. (2013).1 Each super-
pixel is described by L2 unit-normalized 120-bin HSV
color and 128-bin local texton histograms. Unit normal-
ization projects raw histograms to the surface of a hyper-
sphere, where we use von-Mises Fisher (vMF) distribu-
tions (Mardia & Jupp, 2009) shared across all clusters of
a global component. In preliminary experiments, we found
that the vMF produced more accurate segmentations than
multinomial models of raw histograms; similar L2 normal-
izations are useful for image retrieval (Arandjelović & Zis-
serman, 2012). We also extracted optical flow using the
“Classic+NL” algorithm (Sun et al., 2010), and associated
a two-dimensional flow vector to each super-pixel, the me-
dian flow of its constituent pixels.

The color, texture, and flow features for super-pixel i in
video frame g are denoted by xgi = {xc

gi, x
t
gi, x

f
gi}, where

xc
gi ∼ vMF(µc

zgi , κ
c), µc

zgi ∼ vMF(µc
0, κ

c
0), (12)

where κc, µc
0, and κc

0 are hyper-parameters controlling the
concentration of color features around the direction µc

zgi ,
the mean color direction µc

0, and the concentration of µc
zgi

around µc
0. Texture features are generated similarly. Flow

features are modeled via Gaussian distributions with con-
jugate, normal-inverse-Wishart priors:

xf
gi ∼ N (µfg

zgi ,Σ
fg
zgi), Σ

fg
zgi ∼ IW(n0, S0),

µfg
zgi | Σ

fg
zgi ∼ N (µ0, τ0Σ

fg
zgi).

(13)

Requiring all clusters in a global component, which may
span several video frames, to share a single flow model is
too restrictive. Instead we model the flow for each frame
independently, requiring only that clusters in frame g as-
signed to the same component share a common flow model.
Our model requires motion of a component to be locally
(within a frame) coherent, but allows for large deviations
between frames.2 This assumption more closely reflects
the motion statistics of objects in real videos.

Prior We used data affinities that encourage spatial
neighbors not separated by strong intervening contours to

1Chang et al. (2013) also estimate temporal correspondences
between superpixels, but we do not utilize this information.

2See the supplement for specific hyper-parameter settings.

connect to one another. We computed them by indepen-
dently running the Pb edge detector (Martin et al., 2004) on
each video frame and computing Aij = (1− bij)

3×1[i, j]
for each superpixel pair. Here, 0 ≤ bij ≤ 1 is the maximum
edge response along a straight line segment connecting the
centers of superpixels i, j, and 1[i, j] takes a value of 1 if i
and j are spatial neighbors, and 0 otherwise.

Flow-based affinities, as in the earlier toy example, were
used to specify the cluster affinity functions. All α1:G

and α0 were set to 10−8. The naive-hddCRP used iden-
tical data affinities and hyper-parameters, but used sequen-
tial distances between clusters (see Sec. 2.2). The hCRP
used sequential affinities to govern both the data and clus-
ter links. For a CRP, the expected number of clusters given
N data points is roughly αlog(N). We set α1:G such that
the expected number of clusters in a video frame matches
the number of observed ground truth clusters, and α0 = 1.

Data link proposals We compare the two data link pro-
posals on 10 frames from the classic “garden” sequence.
For each proposal, we ran 3000 iterations of 25 MCMC
chains. The results, including MAP samples from the high-
est and lowest probability chains and log-likelihood trace
plots, are summarized in Figure 4. The visualized MAP
partitions demonstrate that all chains eventually reach rea-
sonable configurations, but segmentations nevertheless im-
prove qualitatively with increasing model likelihood. This
suggests a correspondence between the biases captured by
the hddCRP and the statistics of video partitions.

We find that pseudo-Gibbs proposals reach higher proba-
bility states more rapidly than prior proposals, and have
much lower sensitivity to initialization. Overall, 24 of the
25 pseudo-Gibbs chains reach states that are more probable
than the best prior proposal trial. Subsequent experiments
thus focus solely on the superior pseudo-Gibbs proposal.

Empirical evaluation We compare our performance
against a popular non-probabilistic hierarchical graph-
based video segmentation (HGVS) algorithm (Grundmann
et al., 2010), against the naive-hddCRP variant that was
recently used for video co-segmentation (Chiu & Fritz,
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2013), and against the hCRP (Teh et al., 2006). For a
controlled comparison, all three CRP models use identical
likelihoods and hyperparameters. We use the MIT human
annotated video dataset (Liu et al., 2008), which contains
9 human annotated videos, to quantitatively measure seg-
mentation performance. We benchmark performance using
the first 10 frames of each sequence.

Figure 6 summarizes this experiment. For HGVS the dis-
played segmentations were produced at 90 percent of the
highest hierarchy level, which appears to produce the best
visual and quantitative results. For the hddCRP variants,
the segmentations correspond to the MAP sample of five
MCMC chains, each run for 400 iterations3. We decided
to run the samplers for 400 iterations based on the results
shown in Figure 4, where a large majority of the pseudo-
Gibbs chains converged within the first 300 iterations.

The Rand index was computed by treating the entire video
sequence as one spatio-temporal block. This penalizes spa-
tially coherent, but temporally inaccurate, segmentations
that exhibit frequent “label switching” between frames.
HGVS operates on pixels rather than superpixels and con-
sequently produces finer-scale segmentations. However,
these segmentations exhibit large segmentation errors (for
instance, the neck and face regions get merged with the
background in the second sequence). The hddCRP pro-
duces more coherent segmentations and in terms of Rand
index, outperforms HGVS on all but one video sequence.
The hddCRP also performs substantially better than the
hCRP which ignores both superpixel and segment-level
correlations; “bag of feature” assumptions are insufficient
for this task. The gains over the naive-hddCRP appear to
be more modest. However, a closer inspection (Figure 5)

3Roughly 6 hours on a 2.3 GHz intel core i7.

reveals that the hddCRP segments are visually cleaner and
more coherent. Additionally, naive-hddCRP often falsely
merges visually similar but distinctly moving objects to-
gether, while the hddCRP recognizes them as distinct seg-
ments. The videos in our dataset have large background re-
gions with no significant motion. Both the hddCRP and the
naive-hddCRP models tend to agree on such regions, while
disagreeing on smaller foreground objects with distinct mo-
tions. Large regions dominate the Rand index, which ex-
plains the similar global performance by that metric.

4.2 DISCOURSE SEGMENTATION

Next we consider the problem of discourse segmentation.
Given a collection of documents, the goal is to partition
each document into a sequence of topically coherent non-
overlapping discourse fragments. Previous work by Riedl
& Biemann (2012) found that sharing information across
documents tends to produce better segmentations, moti-
vating the development of several text segmentation algo-
rithms that exploit document relationships.

We conducted experiments on the wikielements
dataset (Chen et al., 2009), which consists of 118
Wikipedia articles (at paragraph resolution) describing
chemical elements. Although not explicitly made available
in the dataset, each article corresponds to a chemical
element that is characterized by its chemical properties
and has a unique location in the periodic table. Our
distance-dependent models are capable of exploiting
this additional information to produce better discourse
segmentations. As an illustration, consider the alternative
problem of clustering articles. Figure 7 illustrates such
a clustering where we leverage element properties by
defining distances between documents as the Manhattan
distance between corresponding element locations in the
periodic table. The discovered clustering corresponds well
with known element groupings. Discourse segmentation
requires clustering the paragraphs describing documents,
instead of the documents themselves. Nonetheless, we
find that exploiting the periodic table location of each
document’s element leads to noticeable performance gains.

We compare two versions of the hddCRP to the naive-
hddCRP and hCRP. To encourage topic contiguity, naive-
hddCCRP and hddCRP allowed paragraphs to either link
to themselves or to other paragraphs immediately preced-
ing or succeeding them. We experimented with two affinity
functions to capture the intuitions that similar documents
tend to present similar topics in similar orders, and that
clusters are more likely to be shared among articles about
similar elements. The first function (hddCRP1) biased
clusters of paragraphs to connect to those that occur at simi-
lar locations within other documents. Further, clusters were
constrained to connect to only those that were contained in
documents with lower atomic numbers. A second variant
(hddCRP2) modeled distances between articles using the
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Figure 6: Video segmentation results. The top eight rows show the first and tenth frames of four videos from the MIT human
annotated video dataset. Left to right: original video frames, segmentations produced by HGVS, hCRP, naive-hddCRP, and hddCRP,
and the ground truth segmentations. Bottom row: Scatter plots comparing hddCRP, HGVS, naive-hddCRP, and hCRP in terms of Rand
index achieved on all nine human annotated videos. Higher scores are better, and more points above the diagonal indicate favorable
performance of hddCRP over competitors.
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Figure 7: Discourse segmentation results on the wikielements dataset. Left: A partial visualization of the inferred customer links when
clustering Wikipedia articles describing 118 chemical elements. The distance between articles equals the Manhattan distance between
their locations in the periodic table. Only three of the nine discovered clusters have been visualized. Right: windowDiff scores achieved
by competing methods, where lower scores indicate better performance. Asterisks indicate numbers reproduced from Chen et al. (2009).

Manhattan distance between the corresponding element lo-
cations in the periodic table, and defined cluster affinities
as the logistic decay f(d) = (1 + exp(d))−1 of distances
between their corresponding documents. In all cases, we
model observed word counts using cluster-specific multi-
nomial distributions with Dirichlet priors. The reported re-
sults correspond to the MAP sample of 5 MCMC chains,
each run for 400 iterations.

We also compared against established text segmentation
methods (Chen et al., 2009; Eisenstein & Barzilay, 2008;
Utiyama & Isahara, 2001), and a naı̈ve baseline that groups
the entire dataset into one segment. We quantified perfor-
mance using the windowDiff metric, which slides a win-
dow through the text incurring a penalty on discrepancies
between the number of segmentation boundaries in the in-
ferred segmentation and a gold standard segmentation. Fig-
ure 7 summarizes the performance of the competing mod-
els 7. Both hddCRP1 and hddCRP2 outperform naive-
hddCRP and hCRP, showing that our cluster-level affini-
ties capture important additional dataset structure. The hd-
dCRP2 model was superior to all other hddCRP variants,
as well as to the specialized text segmentation algorithms
of Eisenstein & Barzilay (2008) and Utiyama & Isahara
(2001). However, the generalized Mallows model (Chen
et al., 2009) achieved the best performance; it is able to
both globally bias segment orderings to be similar across
related documents, while guaranteeing spatially connected
topics. In contrast, the hddCRP weakly constrains segment
order through local cluster affinities and while it encour-
ages contiguity, the likelihood may prefer disconnected
segments, resulting in a poorer match with the reference
segmentation. We nevertheless find it encouraging that the
general hddCRP framework, with appropriate affinities, is
competitive with specialized text segmentation methods.

5 DISCUSSION AND FUTURE WORK

We have developed a versatile probabilistic model for clus-
tering groups of data with complex structure. Applying it
to diverse domains is straightforward: one need only spec-
ify appropriate distance functions. Our hierarchical ddCRP
defines a valid joint probability distribution for any choice
of “distances”, which need not be metrics or have any spe-
cial properties. Using distances based on pixel locations
and optical flow estimates, the hddCRP compares favor-
ably to contemporary video segmentation methods. Using
distances based on paragraph order and element positions
in the periodic table, it outperforms several established tex-
tual discourse segmentation techniques.

While our MCMC inference methods are highly effective
for moderate-sized datasets, further innovations will be
needed for computational scaling to very large datasets. In
cases where training examples of appropriate clusterings
are available, we would also like to automatically learn ef-
fective hddCRP distance functions.
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