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Abstract

We study the problem of a user who has both
public and private data, and wants to re-
lease the public data, e.g. to a recommenda-
tion service, yet simultaneously wants to pro-
tect his private data from being inferred via
big data analytics. This problem has previ-
ously been formulated as a convex optimiza-
tion problem with linear constraints where
the objective is to minimize the mutual in-
formation between the private and released
data. This attractive formulation faces a
challenge in practice because when the un-
derlying alphabet of the user profile is large,
there are too many potential ways to distort
the original profile. We address this funda-
mental scalability challenge. We propose to
generate sparse privacy-preserving mappings
by recasting the problem as a sequence of lin-
ear programs and solving each of these in-
crementally using an adaptation of Dantzig-
Wolfe decomposition. We evaluate our ap-
proach on several datasets and demonstrate
that nearly optimal privacy-preserving map-
pings can be learned quickly even at scale.

1 Introduction

Finding the right balance between privacy risks and
big data rewards is one of the biggest challenges fac-
ing society today. Big data creates tremendous oppor-
tunity, especially for all of the services that offer per-
sonalized advice. Recommendation services are ram-
pant today and offer advice on everything including
movies, TV shows, restaurants, music, sleep, exercise,
vacation, entertainment, shopping, and even friends.
On one hand, people are willing to part with some of
their personal data (e.g. movie watching history) for
the sake of these services. On the other hand, many
users have some data about themselves they would
prefer to keep private (e.g. their political affiliation,
salary, pregnancy status, religion). Most individuals
have both public and private data and hence they need
to maintain a boundary between these different ele-

ments of their personal information. This is an enor-
mous challenge because inference analysis on publicly
released data can often uncover private data [27, 6, 21].

A number of research efforts have explored the idea of
distorting the released data [29, 26, 17, 7, 11, 3] to pre-
serve user’s privacy. In some of these prior efforts,
distortion aims at creating some confusion around user
data by making its value hard to distinguish from other
possible values; in other efforts, distortion is designed
to counter a particular inference threat (i.e. a specific
classifier or analysis). Recently [7] proposed a new
framework for data distortion, based on information
theory, that captures privacy leakage in terms of mu-
tual information. Minimizing the mutual information
between a user’s private data and released data is at-
tractive because it reduces the correlation between the
private data and the publicly released data, and thus
any inference analysis that tries to learn the private
data from the public data is rendered weak, if not use-
less. In other words, this approach is agnostic to the
type of inference analysis used in a given threat.

This promising framework, while theoretically sound,
faces some challenges in terms of bridging the gap
between theory and practicality. Distorting data, in
the context of recommendation systems, means alter-
ing a user’s profile. The framework casts this privacy
problem as a convex optimization problem with lin-
ear constraints, where the number of variables grows
quadratically with the size of the underlying alphabet
that describes user’s profiles. In real world systems,
the alphabet can be huge, thus the enormous number
of options for distorting user profiles presents a scala-
bility challenge, that we address in this paper.

We make two contributions to handle scalability. First,
by studying small scale problems, both analytically
and empirically, we identify that mappings to dis-
tort profiles are in fact naturally sparse. We leverage
this observation to develop sparse privacy-preserving
mappings (SPPM). Second, we propose an algorithm,
called SPPM that handles scalability through two in-
sights. Although the underlying optimization problem
has linear constraints, its objective function is non-
linear. We use the Frank-Wolfe algorithm that approx-
imates the objective via a sequence of linear approx-
imations that can be solved quickly. To do this, we



adapt the Dantzig-Wolfe decomposition to the struc-
ture of our problem. Overall we reduce the number
of variables from quadratic to linear in the number of
user profiles. To the best of our knowledge, this work
is the first to apply large scale linear programming op-
timization techniques to privacy problems.

A salient feature of our novel approach is that the dis-
tortion applied to each user is personalized, meaning
that it is tailored for that user. Our solution does
not require applying distortion to profiles in a uniform
way, nor requires any monotonistic behavior such as
mapping a profile to a far neighbor with decreasing
likelihood (such as in [19]. We will see that the flex-
ibility our system allows for a better use of the dis-
tortion budget where it is needed, and avoids wasting
this budget on unnecessary distortions.

Our third contribution is a detailed evaluation on three
datasets, in which we compare our solution to an opti-
mal one (when feasible) and to a state-of-the-art solu-
tion based on differential privacy (called the Exponen-
tial Mechanism [19]). We find that our solutions are
close to optimal, and consistently outperform the ex-
ponential mechanism (ExpMec) approach in that we
achieve more privacy with less distortion. We show
that our methods scale well with respect to the num-
ber of user profiles and their underlying alphabet.

Related Work. We consider the framework for pri-
vacy against statistical inference in [7, 18, 24]. In [24],
a method based on quantization was proposed to re-
duce the number of optimization variables. It was
shown that the reduction in complexity does not affect
the privacy levels that can be achieved, but comes at
the expense of additional distortion. In [18], privacy
mappings in the class of parametric additive noise were
considered, which allow the number of optimization
variables to be reduced to the number of noise parame-
ters. However, this suboptimal solution is not suitable
for perfect privacy, as it requires a high distortion. In
this paper, we propose to exploit the structure of the
optimization to achieve computational speed-ups that
will allow scalability. To the best of our knowledge,
this is the first paper that evaluates the privacy-utility
framework in [7] on such a large scale.

Our use of the information theoretic framework [7] re-
lies on a local privacy setting, where users do not trust
the entity collecting data, thus each user holds his
data locally, and passes it through a privacy-preserving
mechanism before releasing it to the untrusted entity.
Local privacy dates back to randomized response in
surveys [28], and has been considered in privacy for
data mining and statistics [2, 12, 20, 16, 4, 7, 18, 9].
Information theoretic privacy metrics have also been
considered in [23, 29, 12, 22, 25]. Finally, differen-
tial privacy [10] is currently the prevalent notion of
privacy in privacy research. In particular, the expo-

nential mechanism, to which we compare our privacy
mapping in Section 4.3, was introduced in [19].

The general problem of minimizing a convex function
under convex constraints has been studied extensively,
and is of crucial importance in many machine learn-
ing tasks. The idea of a sparse approximate solutions
to those problems has also been studied in the litera-
ture and is often called Sparse Greedy Approximation
[8, 15, 14, 13, 30]. This type of algorithm has been
used with success in many applications such as Neu-
ral Network [15], Matrix Factorization [14], SVM [13],
Boosting [30], etc. We apply this approach to a new
problem and adapt it to efficiently handle our scala-
bility challenges. Another common approach to mini-
mizing a convex function is stochastic gradient descent
[31]. This approach is preferable when the feasible set
has a simple form and is easy to project to. In our
case, the feasible set is defined by many constraints,
thus we opted for the Frank-Wolfe algorithm.

2 Problem Statement and Challenges

Privacy-Utility Framework: We consider the set-
ting described in [7], where a user has two kinds of
data: a vector of personal data A ∈ A that he would
like to remain private, e.g. his income level, his po-
litical views, and a vector of data B ∈ B that he is
willing to release publicly in order to receive a use-
ful service (such as releasing his media preferences to
a recommender service to receive content recommen-
dations). A and B are the sets from which A and
B can assume values. We assume that the user pri-
vate attributes A are linked to his data B by the joint
probability distribution pA,B. Thus, an adversary who
would observe B could infer some information about
A. To reduce this inference threat, instead of releasing
B, the user releases a distorted version of B, denoted
B̂ ∈ B̂, generated according to a conditional prob-
abilistic mapping p

B̂|B, called the privacy-preserving

mapping. Note that the set B̂ may differ from B.
This setting is reminiscent of the local privacy setting
(e.g. randomized response, input perturbation) [28],
where users do not trust the entity collecting data,
thus each user holds his data locally, and passes it
through a privacy-preserving mechanism before releas-
ing it. The privacy mapping p

B̂|B is designed to render

any statistical inference of A based on the observation
of B̂ harder, while preserving some utility to the re-
leased data B̂, by limiting the distortion caused by the
mapping. Following the framework for privacy-utility
against statistical inference in [7], the inference threat

is modeled by the mutual information I(A; B̂) between
the private attributes A and the publicly released data
B̂, while the utility requirement is modeled by a con-
straint on the average distortion E

B,B̂
[d(B, B̂)] ≤ ∆,

for some distortion metric d : B×B̂ → R
+, and ∆ ≥ 0.



In the case of perfect privacy (I(A; B̂) = 0), the pri-

vacy mapping p
B̂|B renders the released data B̂ statis-

tically independent from the private data A.

In general, a system that provides privacy protection
does not know in advance the inference algorithm that
the adversary will run on released data. This frame-
work is appealing because it works regardless of the
inference algorithm used by an adversary. In addition,
this framework allows for the use of any distortion
metric, either generic metrics such as Hamming, lp,
or weighted norms, or specific utility metrics tailored
to a given learning algorithm that will run on the re-
leased user data. The use of a generic distance in the
utility constraint is relevant in several cases. First, the
learning algorithm that will run on the released data
may not be known in advance to the system providing
privacy protection, as it may be proprietary informa-
tion that belongs to the service provider. Second, the
released user data may be used by numerous analyses
tasks based on multiple different ML algorithms, in
which case the utility constraint should not be limited
to one specific distortion metric.

Both the mutual information I(A; B̂) and the average

distortion EB,B̂[d(B, B̂)] depend on both the prior dis-
tribution pA,B and the privacy mapping p

B̂|B, since

A → B → B̂ form a Markov chain. To stress these
dependencies, we will denote I(A; B̂) = J(pA,B, pB̂|B).

Consequently, given a prior pA,B linking the private at-
tributes A and the data B, the privacy mapping p

B̂|B

minimizing the inference threat subject to a distortion
constraint is obtained as the solution to the following
convex optimization problem [7] 1

minimize
p
B̂|B∈Simplex

J(pA,B, pB̂|B)

s.t. Ep
B,B̂

[

d(B, B̂)
]

≤ ∆,
(1)

where Simplex denotes the probability simplex
(
∑

x p(x) = 1, p(x) ≥ 0 ∀x).

Sparsity of the privacy mapping: When apply-
ing the aforementioned privacy-accuracy framework
to large data, we encounter a challenge of scalabil-
ity. Designing the privacy mapping requires charac-
terizing the value of p

B̂|B(b̂|b) for all possible pairs

(b, b̂) ∈ B × B̂, i.e. solving the convex optimization

problem over |B||B̂| variables. When B̂ = B, and the
size of the alphabet |B| is large, solving the optimiza-
tion over |B|2 variables may become intractable.

1Solving Optimization (1) for different values of ∆ al-
lows to generate the whole privacy-utility curve, as in
Fig. 2. Any point on or above this curve is achievable.
Using this curve, one can efficiently solve the related prob-
lem of maximizing utility given a constraint on privacy: for
a given privacy requirement, the curve gives the operating
point corresponding to the smallest loss in utility.
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Figure 1: Optimal mappings for Toy example

A natural question is whether B̂ = B is a necessary as-
sumption to achieve the optimal privacy-utility trade-
off. In other words, does Optimization (1) need to be
solved over |B|2 variables to achieve optimality? The
following theoretical toy example motivates a sparser
approach to the design of the privacy mapping.

Example: Let A ∈ {0, 1}, and B ∈ {1, 2, . . . , 2m},
and define the joint distribution pA,B such that p(A =
0) = p(A = 1) = 1

2 , and for i ∈ {1, 2, . . . , 2m}, let

p(B = i|A = 0) = 1
2m−1 if i ≤ 2m−1, 0 otherwise, and

let p(B = i|A = 1) = 1
2m−1 if i > 2m−1, 0 otherwise.

For this example, the privacy threat is the worse it
could be, as observing B determines deterministically
the value of the private random variable A (equiva-
lently, I(A;B) = H(A) = 1). In Fig. 2, we consider

an l2 distortion measure d(B; B̂) = (B− B̂)2 and illus-
trate the optimal mappings solving Problem ((1)) for
different distortion values. For small distortions, the
red diagonal in Figure 2 shows that most points B = b
are only mapped to themselves B̂ = b. As we increase
the distortion level, each point B = b gets mapped to
a larger number of points B̂ = b̂.

This theoretical example, as well as experiments on
real world datasets such as the census data have shown
that the optimal privacy preserving mapping may turn
out to be sparse, in the sense that the support of
p
B̂|B(b̂|b) may be of much smaller size than B, and

may differ for different values of B = b. We propose
to exploit sparsity properties of the privacy mapping
to speed up the computation, by picking the support of
p
B̂|B(b̂|b), i.e. the set of points B̂ = b̂ to which B = b

can be mapped with a non-zero probability, in an it-
erative greedy way. Although we a priori motivate the
sparse approach using one theoretical example, and
limited empirical evidence from some datasets, our ex-
perimental results demonstrate, a posteriori, that the
sparse approach performs close to optimally on other
datasets, and thus justifies empirically its relevance.

3 Sparse and Greedy Algorithm

Before we describe our algorithm, we rewrite Opti-
mization (1) compactly. Let X be a n × n matrix
of optimized variables, whose entries are defined as



xi,j = p
B̂|B(b̂i | bj), and let xj be the j-th column

of X. To highlight the optimization aspect of our
problem, we write the objective function J(pA,B, pB̂|B)

as a function f(X), with the understanding that f
depends on pA,B, which is not optimized, and on
X, which is optimized. Similarly the distortion con-
straint can be written as

∑n
j=1 d

T

jxj ≤ ∆, where each

dj = pB(bj)(d(b̂1, bj), d(b̂2, bj), . . . , d(b̂n, bj))
T is

a vector of length n that represents the distortion
metric scaled by the probability of the correspond-
ing symbol bj. The marginal of B is computed as
pB(bj) =

∑

a pA,B(a, bj). Finally, the simplex con-
strain can be written as 1nxj = 1 for all j, where 1n is
an all-ones vector of length n. Given the new notation,
our original problem (1) can be written compactly as:

minimize
X

f(X) (2)

subject to

n
∑

j=1

dT

jxj ≤ ∆

1T

nxj = 1 ∀j = 1, . . . , n

X ≥ 0

where X ≥ 0 is an entry-wise inequality.

3.1 Franke-Wolfe Linearization

The optimization problem (1) has linear constraints
but its objective function is non-linear. In this paper,
we solve the problem as a sequence of linear programs,
also known as the Frank-Wolfe method. Each iteration
ℓ of the method consists of three major steps. First,
we compute the gradient ∇Xf(Xℓ−1) at the solution
from the previous step Xℓ−1. The gradient is a n ×
n matrix C, where ci,j = ∂

∂xi,j
f(Xℓ−1) is a partial

derivative of the objective function with respect to the
variable xi,j . Second, we find a feasible solution X′ in
the direction of the gradient. This problem is solved
as a linear program with the same constraint as the
original problem:

minimize
X

n
∑

j=1

cT

jxj (3)

subject to

n
∑

j=1

dT

jxj ≤ ∆

1T

nxj = 1 ∀j = 1, . . . , n

X ≥ 0

where cj is the j-th column of C. Finally, we find the
minimum of f between Xℓ−1 and X′, Xℓ, and make
it the current solution. Since f is convex, this mini-
mum can be found efficiently by ternary search. The
minimum is also feasible because the feasible region is
convex, and both X′ and Xℓ−1 are feasible.

Algorithm 1 SPPM: Sparse privacy preserving maps

Input: Starting point X0, number of steps L

for all ℓ = 1, 2, . . . , L do

C← ∇Xf(Xℓ−1)
V ← DWD

Find a feasible solution X′ in the direction of the
gradient C:

minimize
X

n
∑

j=1

cT

jxj (4)

subject to
n
∑

j=1

dT

jxj ≤ ∆

1T

nxj = 1 ∀j = 1, . . . , n

X ≥ 0

xi,j = 0 ∀(i, j) /∈ V

Find the minimum of f between Xℓ−1 and X′:

γ∗ ← argmin
γ∈[0,1]

f((1− γ)Xℓ−1 + γX′) (5)

Xℓ ← (1 − γ∗)Xℓ−1 + γ∗X′

Output: Suboptimal feasible solution XL

3.2 Sparse Approximation

The linear program (3) has n2 variables and there-
fore is hard to solve when n is large. In this section,
we propose an incremental solution to this problem,
which is defined only on a subset of active variables
V ⊆ {1, 2, . . . , n} × {1, 2, . . . , n}. The active variables
are the non-zero variables in the solution to the prob-
lem (3). Therefore, solving (3) on active variables V is
equivalent to restricting all inactive variables to zero.
The corresponding linear program is shown in (4) in
Algorithm 1. This linear program has only |V| vari-
ables. Now the challenge is in finding a good set of
active variables V . This set should be small, and such
that the solutions of (3) and (4) are close.

We grow the set V greedily using the dual linear pro-
gram of (4). In particular, we incrementally solve the
dual by adding most violated constraints, which corre-
sponds to adding most beneficial variables in the pri-
mal. The dual of (4) is (6) in Algorithm 2, where λ ∈ R

is a variable associated with the distortion constraint
and µ ∈ R

n is vector of n variables associated with the
simplex constraints. Given a solution (λ∗, µ∗) to the
dual, the most violated constraint for a given j is the
one that minimizes:

ci,j − λ∗di,j − µ∗
j . (8)

This quantity, called the reduced cost, has an intuitive
interpretation. We choose an example i in the direc-



Algorithm 2 DWD: Dantzig-Wolfe decomposition

Initialize the set of active variables:
V ← {(1, 1), (2, 2), . . . , (n, n)}

while the set V grows do
Solve the master problem for λ∗ and µ∗:

maximize
λ,µ

λ∆+
n
∑

j=1

µj (6)

subject to λ ≤ 0

λdi,j + µj ≤ ci,j ∀(i, j) ∈ V

for all j = 1, 2, . . . , n do

Find the most violated constraint in the master
problem for fixed j:

i∗ = argmin
i
[ci,j − λdi,j − µj ] (7)

if (ci∗,j − λdi∗,j − µj < 0) then
V ← V ∪ {(i∗, j)}

Output: Active variables V

tion of the steepest gradient of f(X), so ci,j is small;
which is close to j, so di,j is close to zero (as λ∗ ≤ 0).
The search for the most violated constraint leverages
the problem structure. Therefore, our approach can be
viewed as an instance of Dantzig-Wolfe decomposition.

The pseudocode of our search procedure is in Algo-
rithm 2. This is an iterative algorithm, where each
iteration consists of three steps. First, we solve the
reduced dual linear program (6) on active variables.
Second, for each point j, we identify a point i∗ that
minimize the reduced cost. Finally, if the pair (i∗, j)
corresponds to a violated constraint, we add it to the
set of active variables V .

The pseudocode of our final solution is in Algorithm 1.
We refer to Algorithm 1 as Sparse Privacy Preserving
Mappings (SPPM), because of the mappings learned by
the algorithm. Algorithm 2 is a subroutine of Algo-
rithm 1, which identifies the set of active variables V .
SPPM is parameterized by the number of iterations L.

3.3 Convergence

Algorithm SPPM is a gradient descent method. In each
iteration ℓ, we find a solution X′ in the direction of the
gradient at the current solution Xℓ−1. Then we find
the minimum of f between Xℓ−1 and X′, and make it
the next solution Xℓ. By assumption, the initial so-
lution X0 is feasible in the original problem (1). The
solution X′ to the LP (4) is always feasible in (1), be-
cause it satisfies all constraints in (1), and some addi-
tional constraints xi,j = 0 on inactive variables. After
the first iteration of SPPM, X1 is a convex combina-

tion of X0 and X′. Since the feasible region is convex,
and both X0 and X′ are feasible, X1 is also feasible.
By induction, all solutions Xℓ are feasible.

The value of f(Xℓ) is guaranteed to monotonically de-
crease with ℓ. When the method converges, f(Xℓ) =
f(Xℓ−1). The convergence rate of the Frank-Wolfe al-
gorithm is O(1/L) in the worst case [5].

3.4 Computational Efficiency

The computation time of our method is dominated
by the search for n2 violated constraints in Algo-
rithm 2. To search efficiently, we implement the fol-
lowing speedup in the computation of the gradients
ci,j . The marginal and conditional distributions:

p
B̂
(b̂) =

∑

a,b

pA,B(a, b)pB̂|B(b̂ | b)

p
B̂|A(b̂ | a) =

∑

b pA,B(a, b)pB̂|B(b̂ | b)
∑

b pA,B(a, b)

are precomputed, because these terms are common for
all elements of C. Then each gradient is computed as:

∂

∂p(b̂i | bj)
J(pa,b, pb̂|b) =

∑

a

p(a, bj) log
p(b̂i | a)

p(b̂i)

+
∑

a

p(a, b̂)

(

p(bj | a)

p(b̂i | a)
−

p(a, bj)

p(b̂i)

)

.

Since all marginals and conditionals are precomputed,
each gradient can be computed in O(|A|) time.

The space complexity of our method is O(|V|), because
we operate only on active variables V .

We point out that the complexity of the algorithm
is closely linked to the sparsity of the optimal solu-
tion, which itself is related to the value of the distor-
tion constraint ∆. This means that some distortion
regimes may not be achievable with a given computa-
tional budget. Therefore one has to reduce ∆ in order
to have a sparser solution. In practice however, we did
not run into problems, and were able to generate map-
pings efficiently even when high distortion was needed
to drive the mutual information close to 0.

4 Evaluation

4.1 Datasets

Census Dataset: The Census dataset is a sample of
the United States population from 1994, and contains
both categoric and numerical features. Each entry in
the dataset contains features such as age, workclass,
education, gender, and native country, as well as in-
come category (smaller or larger than 50k per year).
For our purposes, we consider the information to be
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Figure 2: Left. Effect of parameters on privacy-distortion tradeoff. Synthetic data. Middle. Privacy distortion
tradeoff. Census data. Right. Privacy distortion tradeoff. Movie data.

released publicly as the seven attributes shown in Ta-
ble 1, while the income category is the private infor-
mation to be protected. In this dataset, roughly 76%
of the people have an income smaller than 50k. Due to
the categorical nature of these features, a natural dis-
tortion metric for this data is the Hamming distance,
and thus we use this metric in our experiments on this
data. Fig. 3 shows that the user profile consisting of
these 7 attributes can be a threat to income; the ROC
curve illustrates the success rate of a simple classifier
that tries to guess a user’s income category when there
is no privacy protection.

Movie Dataset: The well knownMovieLens dataset
[1] consists of 1M ratings of 6K users on 4K movies.
Each movie comes annotated with metadata indicating
its genre. In MovieLens, there are 19 genres, that we
expanded as follows. We gathered the more extended
set of 300 genre tags from Netflix. From these, we se-
lect those that appear in at least 5% of movies, yielding
31 genres. For user j, we compute the preference for
genre i as the probability that the user chooses a movie
from the genre times the reciprocal of the number of
movies in that genre. We capture the user profile using
a binary vector of length 31; the bits corresponding to
the six most prefered genres are set to one. We treat
the preference vector as public but the gender of the
user as private. The fact that this profile can be a
threat to gender is illustrated in Fig. 4 which shows
the success of a classifier that tries to guess gender
when there is no privacy protection. Once more, as
the features are categorical, we use the Hamming dis-
tance for our evaluations on this dataset.

Synthetic Dataset: We consider synthetic data as
well since this allows us to freely vary the problem
size. The input distribution is specified in our exam-
ple in Sec. 2, namely the private attribute is a binary
variable A ∈ {0, 1}, and the public attribute B is per-
fectly correlated with A. By varying the parameter m
as defined in the example, we modify the size of the
alphabet of B, which allow us to asses the scalability.

The distortion metric is the squared l2 distance.

4.2 Benchmarks

Optimal mapping: The optimal mapping is the
solution to (1); for small scale problems we were able
to compute this using CVX without running out of
memory. On our server, we could solve optimally (1)
with alphabet size up to |B| = 212 = 4096.

Exponential Mechanism: The differential privacy
metric is most commonly used in a database privacy
setting, in which an analyst asks a query on a private
database of size n containing data from n users. The
privacy-preserving mechanism, which computes and
releases the answer to the query, is designed to satisfy
differential privacy under a given notion of neighbor-
ing databases. In the strong setting of local differential
privacy [16], users do not trust the entity collecting
the data in a database, thus each user holds his data
locally, and passes it through a differentially private
mechanism before releasing it to the untrusted entity.
In this case, the privacy-preserving mechanism works
on a database of size n = 1, and all possible databases
are considered to be neighbors. This local differential
privacy setting, based on input perturbation at the
user end, is comparable to our local privacy setting,
where user data is distorted before its release, but it
differs from our setting by the privacy metric that the
privacy mechanism is required to satisfy. More pre-
cisely, the local differential privacy setting considers a
database of size 1 which contains the vector b of a user.
The local differentially private mechanism pDP satis-
fies pDP (b̂|b) ≤ eε pDP (b̂|b′), ∀b, b′ ∈ B and ∀b̂ ∈ B̂.

As the non-private data in our 3 datasets is categor-
ical, we focus on the exponential mechanism [19], a
well-known mechanism that preserves differential pri-
vacy for non-numeric valued queries. More precisely,
in our experiments, we use the exponential mecha-
nism pDP (b̂|b) that maps b to b̂ with a probability

that decreases exponentially with the distance d(b̂, b)
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Figure 3: ROC for Naive Bayes Classifier with ∆ = 0.02 (Left), 0.14 (Middle) and 0.44 (Right). Census Data.
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Figure 4: ROC for Logistic Regression with ∆ = 0.04 (Left), 0.13 (Middle) and 0.22 (Right). Movie Data.

pDP (b̂|b) ∝ exp
(

−βd(b̂, b)
)

, where β ≥ 0. Let dmax =

sup
b,b̂∈B d(b̂, b). This exponential mechanism satisfies

(2βdmax)-local differential privacy. Intuitively, the dis-

tance d(b̂, b) represents how appealing substituting b̂

for b is: the larger the distance d(b̂, b), the less ap-
pealing the substitution. To make a fair comparison
between the exponential mechanism and SSPM, the
distance d(b̂, b) used to define the exponential mech-
anism will be the same as the distance used in the
distortion constraint of the optimization problem (1).

In Section 4.3, d(b̂, b) will be the Hamming distance
for experiments on the census and the movie datasets,
and the squared l2 distance for the synthetic datasets.

In [7], it was shown that in general, differential pri-
vacy with some neighboring database notion, does not
guarantee low information leakage I(A; B̂) , for all pri-
ors pA,B. However, it was also shown in [18], that
strong ε-differential privacy, i.e. ε-differential privacy
under the neighboring notion that all databases are
neighbors, implies that I(A; B̂) ≤ ε. Local differential
privacy is a particular case of strong differential pri-
vacy. Consequently, the mutual information between
private A and the distorted B̂DP resulting from the
exponential mechanism pDP will be upperbounded as

I(A; B̂DP ) <= 2βdmax. We acknowledge that differ-
ential privacy was not defined with the goal of mini-
mizing mutual information. However, regardless of the
mechanism, mutual information is a relevant privacy
metric [7, 18, 24, 25, 22, 12], thus we can compare
these 2 algorithms with respect to this metric.

4.3 Results

Parameter Choices. Using synthetic data, we ex-
plore the privacy distortion tradeoff curve (in Fig. 2
Left) for different values of our algorithm’s parameter
L. First we observe that for small values of distortions,
the difference between the various curves is insignifi-
cant, which suggests that in this regime the optimal
mapping is indeed sparse. Second, as we increase L
accuracy improves as we approach the optimal solu-
tion. Since the gain of using L = 500 compared to
L = 100 seems small, and using 100 rather than 500
approximations is clearly much faster, we elect to use
L = 100 for further experiments.

Privacy Performance. We provide two ways of com-
paring SSPM and our benchmarks on two datasets.
We first compare them in Fig. 2 terms of tradeoff be-
tween privacy leakage, as measured by I(A; B̂), and
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distortion. Then we draw another more general, mean-
ingful, and fair comparison, in Fig. 3 and Fig. 4, by
comparing the ability of SSPM and our benchmarks
to defeat two different inference algorithms that would
try to infer private data by using the privatized data B̂.
ROC curves are agnostic and meaningful measures pri-
vacy that do not a priori favor a privacy metric (dif-
ferential privacy or mutual information).

We start by illustrating the privacy versus distortion
tradeoff for SPPM and our benchmarks, on the Cen-
sus dataset, in which each user is represented by a
vector of 7 attributes. We do not consider all possi-
ble values of this vector, as it would be prohibitive for
an exact solver and prevent us from comparing to an
optimal solution. Instead, we restrict the alphabet |B|
to the 300 most probable vectors of 7 attributes, since
we are mainly focused on a relative comparison. In
Fig. 2(Middle) we see that SPPM is nearly indistin-
guishable from the optimal solution whereas the expo-
nential mechanism (ExpMec) is much further away. To
bring the mutual information down from 0.5 to 0.07,
SPPM needs 0.05 distortion to achieve perfect privacy,
while ExpMec needs more than 8 times as much. Note
that for a given level of distortion, e.g. 0.1, 0.2, SPPM
achieves much better privacy than ExpMec as the mu-
tual information is significantly lower.

Next we consider the Movie dataset which is one order
of magnitude larger than the Census dataset. The re-
sults in Fig. 2(Right) mirror what we observed with
the Census data, namely that a given level of privacy
can be achieved with less distortion using SPPM as
opposed to ExpMec. For example, to reduce our pri-
vacy leakage metric from 0.6 to 0.05, SPPM requires
roughly 0.03 distortion whereas ExpMec needs approx-
imately 0.17, nearly 6 times as much. For both the
Census and Movie datasets, SPPM can achieve per-
fect or near-perfect privacy with a small distortion.

Differential privacy does not aim to minimize mutual

information, which explains why ExpMec does not per-
form as well as SSPM in Fig. 2. Another metric to
gage the success of our privacy mapping is to consider
its impact on a classifier attempting to infer the pri-
vate attribute. Recall that the goal of our mapping is
to weaken any classifier that threatens to infer the pri-
vate attribute. First, we consider a simple Naive Bayes
classifier that analyzes the Census data to infer each
user’s income category. We quantify the classifier’s
success, in terms of true positives and false negatives
(in an ROC curve) in Fig. 3. Recall that in an ROC
curve, the y = x line corresponds to a blind classi-
fier that is no better than an uninformed guess. The
weaker a classifier the closer it is to this line, and it
becomes useless when it matches this line. We con-
sider three bounds on distortion that allow us to ex-
plore the extremes of nearly no distortion (∆ = 0.02
in Fig. 3(a)), a large amount of distortion (∆ = 0.44
in Fig. 3(c)), and something in between (∆ = 0.14
in Fig. 3(b)). In the case of small distortion, all algo-
rithms make modest improvements over the no privacy
case. However even in this scenario, SPPM performs
close to optimal, unlike ExpMec that only slightly out-
performs the no privacy case. With only a very small
amount of distortion, not even the optimal solution
can render the classifier completely useless (i.e. equiv-
alent to the blind uninformed guess). On the other
hand, when a large distortion is permitted, then all al-
gorithms do naturally well (Fig. 3(c)). For a value of
∆ between these extremes, SPPM is close to optimal,
while ExpMec can only weaken the classifier a little.

In a second scenario, we study a logistic regression
classifier that analyzes the movie dataset to infer gen-
der. We focus on logistic regression for movie data
because it has been shown to be an effective classi-
fier for inferring gender [27]. Again we see in Fig. 4
that the findings essentially mimic those of the previ-
ous case. We thus conclude that, for a given distor-
tion budget, SPPM is more successful against inference



threats because it can diminish the success of a clas-
sifier more than the exponential mechanism. In other
words, SPPM can provide more privacy than the ex-
ponential mechanism for the same level of distortion.

Why is it that SPPM consistently outperforms Exp-
Mec? Fig. 5 illustrates how these mappings work.
We plot the average probability of being mapped to
the kth closest point, together with the standard er-
ror that measures the variability among points. In
ExpMec, the probability of mapping one point to an-
other decreases exponentially with distance and the
same mapping is applied to all points (in other words
the standard deviation is null). With SPPM, many
points are mapped to themselves. This means that
the privacy of these points cannot be improved within
the distortion constraint. This can happen if a given
profile is already very private, or if there is no hope of
providing privacy. In both cases, the distortion budget
should not be wasted on such profiles, and SPPM is
able to detect these cases and save its budget for other
cases. ExpMec wastes some distortion on those points
which are forced to be mapped to close neighbours.
The key difference between SPPM and ExpMec is that
SPPM is not required to apply the same mapping to
each user, and can thus personalize the distortion, or
adapt it as needed. This flexibility leads to a fair bit of
variance as seen in Fig. 5. Because the probability of
mapping to another point does not decrease with the
distance from that point, we see a non-monotonically
decreasing curve with distance: some points are bet-
ter off being mapped to far neighbors rather than close
ones; e.g. users whose profile is hard to disguise.

To further understand the effect of the mappings that
SPPM proposes, we examine which features in a user
profile are impacted most by our distortions. In Tab. 1
we list the mutual information between a single pub-
lic feature (e.g., Education) and the private attribute
we wish to hide (e.g., income category). We see that
I(A;F ) is largest for Education, Marital status and
Occupation, indicating these features are the most cor-
related with the private attribute. This is intuitive
as, for example, more highly educated people tend to
make larger salaries. The table shows that these 3 fea-
tures experience the largest reduction in mutual infor-
mation after distortion, indicating that SPPM spent
its distortion budget on the biggest threats. This in-
tuitive property shows that the mappings learned de-
pend on the underlying prior distribution in a smart
way, such that with limited distortion budget the pri-
ority is on the biggest privacy threats. Another point
can be easily seen in the movie data in Tab. ??; here
the single features mutual information are rather low,
whereas the mutual information of the full vector of
features is significant. This means that a big part of
the privacy threat comes from co-occurrence of fea-
tures rather than individual features. This explains

I(A;F )
Feature F Examples before after
Age 10-20, 20-30,... 0.1064 0.0408
Education Bachelor, PhD,... 0.1502 0.0702
Marital status Divorced, Married,... 0.1241 0.0440
Occupation Manager, Scientist,... 0.1126 0.0367
Race Black, White,... 0.0192 0.0084
Gender Female, Male 0.0123 0.0082
Country Mexico, USA,... 0.0470 0.0203

Table 1: Mutual information between private at-
tribute A and public attributes F before and after
SPPM on Census dataset.

why it is not enough to simply reduce the mutual in-
formation of a single feature to obtain good privacy.

Scalability. Having established good privacy perfor-
mance, we now assess how the runtime performance
scales in terms of the size of the problem, shown in
Fig. 6. We fix the distortion constraint to be propor-
tional to the size of the problem, in order to keep a
similar difficulty as we grow the size. As stated in
Sec. 3.1, the time complexity is linear in L. This
trend is evident as we observe the gaps between the
lines for L = 3, 10, and 100. Importantly, we see that
our method scales with problem size better than the
optimal solution. We observe that the computation
speed of the exponential mechanism is very quick, and
note that indeed this is one of the salient properties
of this mechanism. Overall, this figure shows that our
method is indeed tractable and can compute the dis-
tortion maps within a few minutes for problems whose
alphabet size is on the order of tens of thousands.

Recall that we designed for computation efficiency by
smartly selecting a limited number of alternate user
profiles to map each original profile to. This corre-
sponds to the support size of p(B̂|bi) for all bi. In
Fig. 7 we show the histogram of the support sizes for
our SPPM mapping on the movie data. Although the
initial alphabet size is very large (above 3500), for most
users we don’t consider more than 10 alternate pro-
files, and in the worst case we consider up to 30. This
amounts to huge savings in computation and memory,
without sacrificing privacy.

5 Conclusion

In this paper, for the first time, we apply large scale LP
optimization techniques to the problem of data distor-
tion for privacy. We show that our privacy-preserving
mappings can be close to optimal, and consistently
outperform a state of the art technique called the Ex-
ponential Mechanism. Our solution achieves better
privacy with less distortion than existing solutions,
when privacy leakage is measured by a mutual infor-
mation metric. We demonstrated that our method can
scale, even for systems with many users and a large
underlying alphabet that describes their profiles.
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