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Abstract

Determining conditional independence (CI) re-
lationships between random variables is a chal-
lenging but important task for problems such as
Bayesian network learning and causal discovery.
We propose a new kernel CI test that uses a sin-
gle, learned permutation to convert the CI test
problem into an easier two-sample test problem.
The learned permutation leaves the joint distri-
bution unchanged if and only if the null hypoth-
esis of CI holds. Then, a kernel two-sample test,
which has been studied extensively in prior work,
can be applied to a permuted and an unpermuted
sample to test for CI. We demonstrate that the
test (1) easily allows the incorporation of prior
knowledge during the permutation step, (2) has
power competitive with state-of-the-art kernel CI
tests, and (3) accurately estimates the null distri-
bution of the test statistic, even as the dimension-
ality of the conditioning variable grows.

1 INTRODUCTION

A distribution Pxyz over variables X , Y , and Z satisfies a
conditional independence relationship X⊥⊥Y | Z (“X is
conditionally independent of Y given Z”) when the joint
distribution factorizes as Pxyz = Px|z Py|z Pz , assum-
ing the existence of conditional density functions. There
are several other equivalent characterizations of conditional
independence (Dawid, 1979). Determining whether such
conditional independence relationships hold between vari-
ables is important for problems such as Bayesian network
learning, causal discovery, and counterfactual analysis. Us-
ing a conditional independence test as a subroutine, the PC
algorithm (Spirtes, Glymour, and Scheines, 2000), for ex-
ample, can be used to determine a set of causal graphs
based on the conditional independence relationships be-
tween variables. Moreover, counterfactual analysis of-
ten requires assumptions of ignorability, which involve

conditional independences among counterfactual variables
(Rosenbaum and Rubin, 1983).

Numerous approaches exist to measure conditional depen-
dence or test for conditional independence. For exam-
ple, under the assumption of Gaussian variables with lin-
ear dependence relationships, partial correlation can be
used to test for conditional independence (Baba, Shibata,
and Sibuya, 2004). Another characterization of conditional
independence is that Px|yz = Px|z . Some tests use this
characterization to determine conditional independence by
measuring the distance between estimates of these con-
ditional densities (Su and White, 2008). When the con-
ditioning variable is discrete, X⊥⊥Y | Z if and only if
X⊥⊥Y | Z = zi for every possible value zi that Z takes.
Permutation-based tests have been successfully applied to
conditional independence testing in this discrete-variable
case (Tsamardinos and Borboudakis, 2010). Other tests
use this characterization by discretizing continuous condi-
tioning variables and testing for independence within each
discrete “bin” of Z (Margaritis, 2005).

Generally, conditional independence testing is a challeng-
ing problem (Bergsma, 2004). The “curse of dimension-
ality” in terms of the dimensionality of the conditioning
variable Z can make the problem even more difficult to
solve. To see why, first consider the case when Z takes
a finite number of values {z1, . . . , zk}; then X⊥⊥Y | Z
if and only if X⊥⊥Y | Z = zi for each value zi. Given
a sample of size n, even if the data points are evenly dis-
tributed across values of Z, we must show independence
within every subset of the sample with identical Z values
using only approximately n/k points within each subset.
When Z is real-valued and Pz is continuous, the observed
values of Z are almost surely unique. To extend the pro-
cedure to the continuous case, we must infer conditional
independence using nonidentical but nearby values of Z,
where “nearby” must be quantified with some distance met-
ric. Finding nearby points becomes difficult (without addi-
tional assumptions) as the dimensionality of Z grows. To
guarantee that conditional independence reduces to uncon-
ditional independence between X and Y within each subset,



we need a large number of subsets of Z. On the other hand,
with many subsets, in each subset one may not have enough
points to assess independence.

Recently, kernel-based tests have also been proposed for
conditional as well as unconditional independence testing
(see Section 3 for a more detailed discussion). Kernel func-
tions can be used to implicitly map objects from an input
space into a “feature space,” or reproducing kernel Hilbert
space (RKHS) (Aizerman, Braverman, and Rozoner, 1964;
Schölkopf and Smola, 2002). Some tests use the kernel
mean embedding, which is an embedding of distributions
into an RKHS (Berlinet and Thomas-Agnan, 2004; Smola
et al., 2007; Sriperumbudur et al., 2010). When the ker-
nel used is characteristic, the embeddings of two distri-
butions are equal (under the distance metric imposed by
the RKHS norm) if and only if the distributions are iden-
tical. For example, all universal kernels such as the radial
basis function (RBF) kernel are characteristic (Sriperum-
budur et al., 2010). The Hilbert–Schmidt independence
criterion (HSIC) is an unconditional independence test that
measures the distance in the RKHS between the embedding
of a joint distribution and the embedding of the product of
its marginal distributions. The HSIC can also be interpreted
as the Hilbert–Schmidt norm of a cross-covariance opera-
tor, a generalization of the covariance matrix, between the
RKHSs corresponding to the marginal distributions (Gret-
ton et al., 2008). The intuition behind the test is that a joint
distribution Pxy is equal to the product of its marginals if
and only ifX⊥⊥Y . The HSIC has been extended to the con-
ditional independence setting using the norm of the con-
ditional cross-covariance operator to measure conditional
dependence (Fukumizu et al., 2008). However, this ap-
proach also degrades as the dimensionality of the condi-
tioning variable increases. A more recent approach, the
kernel conditional independence test (KCIT), proposed by
Zhang et al. (2011), uses a characterization of conditional
independence defined in terms of the partial association un-
der all square-integrable functions relating the variablesX ,
Y , and Z (Daudin, 1980). The test relaxes this character-
ization to use a smaller, but sufficiently rich class of func-
tions from some universal RKHS. For this test, the distri-
bution of the test statistic is known and can be estimated ef-
ficiently. However, as the dimensionality of the condition-
ing variable grows larger or the relationships between the
variables grow more complex, the distribution of the KCIT
test statistic under the null distribution becomes harder to
accurately estimate in practice.

In contrast to a conditional independence test, a kernel two-
sample test (Gretton et al., 2006, 2009, 2012a) merely tests
whether two samples have been drawn from the same dis-
tribution. The two-sample problem is conceptually simpler
than testing for conditional independence, and has been
studied extensively in prior work. Thus, the behavior of
the null distributions for two-sample test statistics are well-

Figure 1: An overview of the proposed approach. First, we
observe a sample from the joint distribution (left), and per-
mute the sample to simulate a sample from the factorized
distribution (right). The permutation is chosen to induce
conditional independence while preserving Px|z , Py|z , and
Pz . Then, a two-sample test is used to compare the per-
muted sample to an independent, unpermuted sample from
the joint distribution.

understood.

We propose a new approach to test for conditional indepen-
dence that uses a permutation to reduce the problem to a
two-sample test. An overview of the approach is illustrated
in Figure 1. First, a single, carefully chosen permutation is
applied to a sample to simulate a sample from the factor-
ized distribution Px|z Py|z Pz , which equals the underlying
joint distribution if and only if the null hypothesis holds.
Then, a kernel two-sample test (Gretton et al., 2012a) is
performed between the permuted sample and an indepen-
dent, unpermuted sample from the original distribution to
determine whether the null hypothesis of conditional inde-
pendence should be rejected. The approach permits var-
ious strategies for “learning” an appropriate permutation
given prior knowledge about relationships between X , Y ,
and Z. The p-values for our test can be accurately, effi-
ciently approximated using the approaches studied previ-
ously for kernel two-sample tests. We show using synthetic
datasets that the proposed test has power competitive with
state-of-the-art approaches, and can accurately estimate the
distribution of the test statistic under the null hypothesis as
the dimensionality of Z grows to produce a well-calibrated
test. We also illustrate using a real-world dataset the prac-
ticability of the test for inferring conditional independence
relationships.

2 DESCRIPTION OF THE TEST

In testing for unconditional independence, we observe an
independent and identically distributed (i.i.d.) sample Ω =
{(xi, yi)}ni=1 drawn from Pxy . The variables X and Y are
independent if and only if the joint distribution factorizes as



Pxy = Px Py . Here, P denotes a density function, but we
use the same notation to represent the distribution itself. If
we managed to draw a sample Ω′ from Px Py , we could use
a two-sample test between Ω and Ω′ to determine whether
to reject the null hypothesis H0 : X⊥⊥Y . Since we do not
have access to the underlying joint distribution, but only a
sample Ω, we must “simulate” a sample from the factorized
distribution. By the i.i.d. assumption, the joint distribution
of (X1, Y1), . . . , (Xn, Yn) is a product of identical factors
Pxy(Xi, Yi). Hence for all i, Xi and Yi have the same
marginals Px and Py , respectively. Moreover, for i 6= j,
we have Xi⊥⊥Yj . If π is a permutation satisfying π(i) 6= i,
we thus haveXi⊥⊥Yπ(i), and the distribution of (Xi, Yπ(i))
must be Px(Xi) Py(Yπ(i)). Therefore, the permuted sam-
ple (xi, yπ(i))

n
i=1 approximately simulates an i.i.d. sample

from Px Py .1

Below, we first discuss a way to extend the use of permu-
tations to the conditional independence setting. Then, we
show how to apply a kernel two-sample test to a permuted
and an unpermuted sample to test for conditional indepen-
dence. We describe how bootstrapping can be used to im-
prove the power of the test. Given the two-sample test, we
describe a kernel-based approach for learning an appropri-
ate permutation.

2.1 PERMUTING FOR CONDITIONAL
INDEPENDENCE

In this paper, for a joint distribution Pxyz over the vari-
ables X , Y , and Z, we are interested in determin-
ing whether X⊥⊥Y | Z, which occurs if and only if
Pxyz = Px|z Py|z Pz . We observe an i.i.d. sample Ω =
{(xi, yi, zi)}ni=1 drawn according to Pxyz . As above, if
we were able to draw an independent sample Ω′ from the
factorized distribution Px|z Py|z Pz , we could use a two-
sample test between Ω and Ω′ to determine whether to
reject the null hypothesis H0 : X⊥⊥Y | Z. Given the
distributions Px|z , Py|z , and Pz , we could sample from
the factorized distribution by first drawing zi ∼ Pz , and
then xi ∼ Px|zi and yi ∼ Py|zi . However, since we are
given only a sample, we must “simulate” a sample from
Px|z Py|z Pz . If the null hypothesis holds, one can consider
each xi and yi in Ω as independently drawn from the condi-
tional distributions Px|zi and Py|zi , respectively. Suppose
for some i 6= j, we find that zi = zj . In that case, we
can proceed analogously to the unconditional case: we can
swap the corresponding values yi and yj , breaking the de-
pendence between X and Y , to obtain a joint observations

1In the finite sample setting, this is only an approximation:
while the permutation removes the dependence betweenX and its
corresponding Y , it introduces a dependence to one of the other Y
variables. In the limit n → ∞, this becomes negligible (Janzing
et al., 2013); moreover, in the limit we could waive the constraint
π(i) 6= i which we do not do in the present work since it is easy
to implement.

(xi, yj , zi) (and, likewise, (xj , yi, zj)) drawn from the dis-
tribution Px|z Py|z Pz . Therefore, if we were able to (non-
trivially) permute every yi value so that the same permu-
tation leaves the values of zi in the sample invariant, then
this would simulate i.i.d. draws from Px|z Py|z Pz . Unfor-
tunately, when Z is continuous, the observed values of Z
in Ω will be almost surely unique. In this case, we must
“approximately” simulate a sample from Px|z Py|z Pz .

The procedure described above can be formalized as fol-
lows. Let the sample be expressed as Ω = (x,y, z), where
x, y, and z denote tuples of length n holding the sample
elements for each of the variables (which might be multi-
variate), with ranges X , Y , and Z . For the moment, we
assume that X , Y , and Z are equipped with addition and
scalar multiplication. When we introduce the kernelization
of the sample in Section 2.2, this assumption holds even
when the sample elements are nonvectorial structured ob-
jects. Let P be a linear transformation, represented as a
matrix with nonnegative entries, that is defined to act on
a sample as in: PΩ , (x,Py, z), where Py is a tuple
whose ith element contains

∑
j Pijyj . To preserve statisti-

cal properties of the sample, we cannot use a general linear
transformation P; it must be a permutation matrix:

Proposition 1. Let T be the set of transformation such that
for any P ∈ T and sample y of size n, mean (Py) =
mean(y) and ‖var(Py)‖HS = ‖var(y)‖HS. Then T is a
set of permutation matrices of size n.2

Essentially, the matrix P must be stochastic to preserve
the mean and orthogonal to preserve the variance, and
these properties combined imply that it is a permutation.
Given that P is a permutation, we additionally require that
Tr(P) = 0, so that no element in the sample y is permuted
with itself (i.e., left unchanged). Otherwise, some depen-
dence between xi and yi might remain. We use P to denote
the set of zero-trace permutations.

Ideally, we would further constrainP so that all P ∈ P sat-
isfy z = Pz; that is, the values of z are invariant under each
permutation P, or equivalently, we only permute the values
of yi that correspond to the same value of zi. In the uncon-
ditional case, we can consider Z to be some constant vari-
able, in which case any permutation is permitted. However,
in the conditional case, this requirement is too restrictive
so that the set of valid permutations is empty because each
value of Z appears only once almost surely in the sample
with continuous Z. Accordingly, we relax the problem to
finding a permutation that enforces z ≈ Pz. In particular,
given some distortion measure δ : Zn×Zn → [0,∞) that
quantifies the discrepancy between permuted and unper-
muted values of Z, we seek to optimize minP∈P δ(z,Pz).
For general classes of distortion measures, this optimiza-

2A proof can be found in the supplementary materi-
als, available at http://engr.case.edu/doran_gary/
publications.html.

http://engr.case.edu/doran_gary/publications.html
http://engr.case.edu/doran_gary/publications.html


tion problem is straightforward to solve. For example,
let d(zi, zj) be any symmetric pairwise distortion measure
(e.g., a distance metric) and δ(z,Pz) =

∑
i d(zi, (Pz)i).

Let D be a matrix of pairwise distances between sample
elements (Dij = d(zi, zj)). Since Pij = 1 if and only if
zi is permuted to zj , δ(z,Pz) =

∑
ij PijDij = Tr(PD)

and the distortion measure can be minimized using:

min
P∈P

Tr(PD). (1)

Relaxing P to the set of doubly stochastic matrices (ma-
trices whose rows and columns sum to one) with zero
trace, the feasible region becomes the convex hull of per-
mutation matrices, by the Birkhoff–von Neumann theorem
(Birkhoff, 1946; von Neumann, 1953), subject to a linear
constraint. Therefore, the simplex algorithm applied to
Equation 1 returns a solution corresponding to a vertex of
the feasible region, which is a permutation. The formula-
tion in Equation 1 gives a general approach to permuting a
sample, where the choice of distance metric d can encode
some assumptions about the properties of the distributions
Px|z or Py|z . Below we discuss using P to construct the
test statistic and possible choices for d.

2.2 TEST STATISTIC AND NULL DISTRIBUTION

After learning an appropriate permutation, a two-sample
test between a permuted and an unpermuted sample can
be used to test the null hypothesis of conditional inde-
pendence. A well-studied kernel-based two-sample test
uses the maximum mean discrepancy (MMD) test statistic
(Gretton et al., 2012a). The MMD employs mean embed-
dings of the two samples into some RKHS. Before describ-
ing the mean embedding, we introduce the notation used
to “kernelize” the sample. Given the ranges X , Y , and Z
of the random variables X , Y , and Z, let kx(·, ·), ky(·, ·),
and kz(·, ·) be positive-definite kernel functions defined on
these spaces (kx : X × X → R, etc.). Corresponding
to each kernel kx is some feature map φx : X → HX
such that kx(x, x′) = 〈φx(x), φx(x′)〉, where HX is the
RKHS or feature space of kx. We use a product of in-
dividual kernels to define the kernel on joint spaces; e.g.,
kxyz

(
(x, y, z), (x′, y′, z′)

)
= kx(x, x′)ky(y, y′)kz(z, z

′)
is a kernel over X ×Y×Z with feature map φx⊗φy⊗φz ,
where ⊗ denotes the tensor product. Given that kx, ky ,
and kz are translation-invariant characteristic kernels, the
product kernel is also characteristic under mild assump-
tions (Sriperumbudur et al., 2010).

By mapping our sample into a feature space as
{(φx(xi), φy(yi), φz(zi)}ni=1, we can treat each sample el-
ement as a vector (which is infinite-dimensional for the
characteristic kernels used below), even when the un-
derlying distribution over X , Y , and Z is over arbi-
trary sets of objects on which kernels are defined. In
matrix notation, we can express the mapped sample as
(Φx(x),Φy(y),Φz(z)), and the permuted sample in the

feature space as PΩ = (Φx(x),PΦy(y),Φz(z)) with the
ith element of PΦy(y) equal to

∑
j Pijφy(yj). The con-

ditions on P in Proposition 1 are still necessary, since the
linear kernel with feature map φy : Y → Y is a special case
to which Proposition 1 applies. In prior work (Sriperum-
budur et al., 2010), mean(Φy(y)) is called the empirical
kernel mean embedding, and is expressed with the nota-
tion µ̂(y) = 1

n

∑
y∈y φy(y). Given the constraints on P,

Φy(Py) = PΦy(y) for any Φy , and the mean embedding
is invariant under P: µ̂(y) = µ̂(Py). The notation µ̂(Ω)
will be used to denote the mean embedding of an entire
sample using the product kernel defined on the joint space.

Given the kernelization of the sample, the test statistic is
computed as follows. The original sample Ω of n ele-
ments is randomly split in half to form the samples Ω(1)

and Ω(2), to ensure independence between the permuted
and unpermuted samples (a condition required by the two-
sample test). Using the formulation in Equation 1, we learn
a permutation that induces conditional independence in the
second subsample Ω(2). Finally, we compute the (biased)
MMD test statistic as follows:

MMD(Ω(1),PΩ(2)) =
∥∥∥µ̂(Ω(1))− µ̂(PΩ(2))

∥∥∥2
H

(2)

= 4
n21

ᵀ(K(1) + K(2) − 2K(12))1.

Here, 1 is a vector of ones of an appropriate size, the ma-
trices K(1) and K(2) are pairwise kernel matrices within
the permuted and unpermuted samples, respectively, and
K(12) is the “cross” kernel matrix between the unpermuted
and permuted samples. Since we use product kernels, the
matrices can be expressed in terms of a Hadamard product
between the original kernel matrices for each variable:

K(1) = K(1)
x �K(1)

y �K(1)
z

K(2) = K(2)
x � (PK(2)

y Pᵀ)�K(2)
z

K(12) = K(12)
x � (K(12)

y Pᵀ)�K(12)
z ,

where (Kx)ij = kx(xi, xj), and likewise for Ky and Kz .

The behavior of the MMD test statistic has been exten-
sively studied in prior work (Gretton et al., 2006, 2009,
2012a), and there are numerous approaches to estimating
the null distribution and computing a p-value for the test
statistic. For example, the null distribution can be esti-
mated via a bootstrapping approach in which (1) Ω(1) and
PΩ(2) are randomly shuffled together and then split into
two again, and then (2) the test statistic is recomputed be-
tween the shuffled samples (Gretton et al., 2009). Steps (1)
and (2) are repeated b times to obtain an empirical estimate
of the null distribution. The null distribution can also be
approximated using a Gamma distribution. This estimate
is computationally more efficient to obtain, but can also be
less accurate in some scenarios (Gretton et al., 2009). As
we are interested in the small-sample case, we choose to
use the more robust bootstrap estimate at the expense of
more computation.



Algorithm 1 KCIPT: Kernel Conditional Independence
Permutation Test
Require: Sample Ω = (x,y, z), Distortion measure δ,

Significant level α, Outer bootstrap iterations B, Inner
bootstrap iterations b, Monte Carlo iterations M

1: for Outer Bootstrap 1 ≤ i ≤ B do
2: Split sample evenly into Ω(1), Ω(2)

3: Find permutation matrix P for Ω(2) using δ to com-
pute D and solving Equation 1.

4: MMD[i]← MMD(Ω(1),PΩ(2))
5: for Inner Bootstrap 1 ≤ j ≤ b do
6: Shuffle, re-split Ω(1), PΩ(2) to Ω′, Ω′′.
7: inner null[i, j]← MMD(Ω′,Ω′′)
8: end for
9: end for

10: statistic← mean1≤i≤B(MMD[i])
11: for Monte Carlo Iteration 1 ≤ k ≤M do
12: for Outer Bootstrap 1 ≤ i ≤ B do
13: r ← random integer(1, b)
14: samples[i]← inner null[i, r]
15: end for
16: outer null[k]← mean1≤i≤B(samples[i])
17: end for
18: p-value← 1− percentile(statistic, outer null)
19: if p-value ≥ α then
20: Fail to RejectH0 (X⊥⊥Y | Z)
21: else
22: RejectH0, Conclude X 6⊥⊥Y | Z
23: end if

A characteristic kernel must be used to ensure that the
MMD test statistic is consistent (convergent to zero if
and only if the two samples are drawn from the same
distribution). A kernel kxyz is said to be characteris-
tic if the corresponding mean map is injective (Sriperum-
budur et al., 2010). Several popular kernels are charac-
teristic, including the Gaussian RBF kernel k(x, x′) =

exp(−‖x− x′‖22 /2σ2), with bandwidth parameter σ.
Given that the RBF kernel is used for the test, there is still a
question of how to select the bandwidth parameter. We set
σ to be the median pairwise distance between sample ele-
ments, which prior work shows to be an effective heuristic
(Gretton et al., 2012a). Other strategies existing for select-
ing σ to improve the power of the test statistic (Sriperum-
budur et al., 2009; Gretton et al., 2012b).

2.3 BOOTSTRAPPING THE TEST STATISTIC

As defined above, the test statistic relies on splitting a sam-
ple randomly in half, which reduces the power of the two-
sample test. However, if we randomly split the sample
many times to compute many test statistics, we can boot-
strap the MMD statistic itself to recover some of the power
lost due to splitting. An overview of the test with bootstrap-
ping is given in Algorithm 1.

Let {(Ω(1)
i ,Ω

(2)
i )}Bi=1 be a set of random splits of the

dataset, where B denotes the number of random splits.
The bootstrapped test statistic is the average of individ-
ual MMD test statistics for each split: MMDboot(Ω) =
1
B

∑B
i=1 MMD(Ω

(1)
i ,PiΩ

(2)
i ), where Pi is the permuta-

tion learned for the ith split. The null distribution of
MMDboot can be estimated via a Monte Carlo simulation
by repeatedly averaging together the draws from each in-
dividual test statistic’s null distribution. Specifically, the
null distribution Ni is first estimated for each test statis-
tic MMDb(Ω

(1)
i ,PiΩ

(2)
i ). Then, M points are drawn from

each of the B null distributions: sij ∼ Ni, for 1 ≤ i ≤ B,
1 ≤ j ≤ M . The points are averaged so that the result-
ing sample { 1

B

∑B
i=1 sij}Mj=1 is used to estimate the null

distribution of MMDboot(Ω).

Since we are combining many tests, any systematic error in
estimating the null distribution will be compounded. Ac-
cordingly, we choose to use the robust bootstrapping ap-
proach described in Section 2.2 with a large number of
draws b to estimate each null distribution Ni. Note that the
statistic bootstrapping procedure (the “outer” bootstrap) is
separate from the bootstrapping used to estimate the null
hypothesis (the “inner” bootstrap). In the first case, a new
permutation is learned for each split to compute the test
statistic. In the second case, the learned permutation for the
given split is left fixed, and the permuted and unpermuted
subsamples are shuffled together randomly to simulate the
null hypothesis. Since each Ni is an empirical estimate us-
ing a set of observed test statistics, we draw from Ni by
sampling with replacement from the underlying set. If de-
sired, the inner bootstrap shown in Algorithm 1 can be re-
placed with some other estimate of the null distribution of
each MMD test statistic.

2.4 LEARNING THE PERMUTATION

Given the description of our test procedure, we now re-
turn to the issue of learning a permutation. Intuitively,
since the test statistic uses an RKHS distance between sam-
ples, we would like our distortion measure to also utilize
the RKHS distance. Therefore, we choose d(zi, zj) =
‖φz(zi)− φz(zj)‖. In fact, we show that minimizing
Equation 1 with respect to the RKHS distortion measure
leads to a consistent test statistic when the distortion con-
verges to zero. That is, we would like for the MMD be-
tween permuted and unpermuted samples to converge to
zero if and only if the null hypothesis H0 : X⊥⊥Y | Z
holds.

Definition 1. A test statistic is asymptotically consistent if
it converges in probability to zero if and only if the null
hypothesis holds.

Theorem 1. Let DRKHS
ij = ‖φz(zi)− φz(zj)‖ be a pair-

wise RKHS distance matrix between Z values in a sam-
ple. The proposed test statistic (Equation 2) is asymptot-



ically consistent if the quantity minP∈P
1
n Tr(PDRKHS)

converges in probability to zero as n→∞.

Proof. Intuitively, minimizing 1
n Tr(PDRKHS) minimizes

a majorant of the MMD between the permuted and un-
permtued joint samples (Py, z) and (y, z). When this
value converges to zero in probability, then so does the
MMD, which implies that the permuted sample embedding
converges to the embedding of the factorized joint distribu-
tion.3

The optimal choice of the distance metric d(zi, zj) should
depend on how Z influences X and Y . Consider an ex-
treme case where all dimensions of Z except Z1 are irrel-
evant to (independent from) X and Y given Z1. We aim
to find the nearby points along Z1, which are not necessar-
ily neighbors when all dimensions are included. In other
words, we should exclude all those irrelevant dimensions
of Z when calculating the distances between zi. An exam-
ple is shown in Figure 2, where Y is some linear function
of only the first component ofZ, plus some Gaussian noise.
Sample elements within the “level sets” of the hyperplane
(indicated in the figure) are approximately exchangeable.

Generally speaking, given prior knowledge about structure
in the relationships between variables, better measures of
distance can be employed when learning the permutation.
For example, a well-studied assumption in causal discovery
is thatX and Y are continuous functions ofZ plus some in-
dependent Gaussian noise (Hoyer et al., 2008). When this
is true, Py|z = N (f(z),Σ), where f is some continuous
function relating Z and Y , and Σ is a covariance matrix. In
this case, Py|zi ≈ Py|zj if f(zi) ≈ f(zj), so it makes sense
to use the distance metric d(zi, zj) = ‖f(zi)− f(zj)‖2
when learning the permutation. Although f is unknown,
it can be learned from the data; e.g., by using Gaussian
Process (GP) regression (Rasmussen and Williams, 2006).
Of course, the consistency of the test statistic when heuris-
tics are used depends upon whether the assumptions made
by the heuristics are satisfied by the underlying joint dis-
tribution. In our experimental results, described below, we
find that the function-based distance heuristic adds power
to the test for synthetic datasets in which X and Y are in
fact noisy functions of Z.

3 RELATED WORK

A previous approach, the conditional HSIC (CHSIC),
uses the Hilbert–Schmidt norm of the conditional cross-
covariance operator, which is a measure of conditional co-
variance of the images of X and Y under functions f and
g from RKHSs corresponding to some kernels defined on
X and Y . When the RKHSs correspond to characteristic
kernels, the operator norm is zero if and only if X⊥⊥Y | Z

3See supplementary materials for the full proof.

Z2
Z 1

Y

Figure 2: If Y is a function of Z plus noise, then many
dimensions of Z might be irrelevant for determining con-
ditional independence. In this example, Y is a noisy func-
tion of Z1, so sample elements within the level sets of the
hyperplane are approximately exchangeable.

(Fukumizu et al., 2008). Since it is unknown how to an-
alytically compute the null distribution of the CHSIC, the
distribution is estimated using a bootstrapping approach.
As described above for the MMD, a null distribution can
be estimated by shuffling and recomputing the test statistic
numerous times. In the conditional case, X and Y should
only be shuffled when the corresponding Z values are near
each other. Therefore, the values of Z are partitioned us-
ing a clustering algorithm, and bootstrap estimates are ob-
tained by permuting Y values only within clusters (Fuku-
mizu et al., 2008). Compared to our approach, the CHSIC
has several disadvantages. The CHSIC requires many per-
mutations to estimate the null distribution, whereas our
approach only requires one carefully chosen permutation
(per outer bootstrap iteration). Since the CHSIC clusters Z
values to generate permutations, the permuted data points
within each cluster have more widely varying values for
Z, causing larger approximation errors. Finally, for high-
dimensional datasets, finding an appropriate clustering al-
gorithm becomes difficult, and the approximation quickly
breaks down.

Other previous approaches to conditional independence
testing use the partial association of regression functions
relating X , Y , and Z (Huang, 2010; Zhang et al., 2011).
In particular, the kernel-based KCIT (Zhang et al., 2011)
is based on the following characterization of conditional
independence: for any f ∈ L2

XZ , and g ∈ L2
Y , define

f̃(X,Z) = f(X,Z) − hf (Z) and g̃(Y,Z) = g(Y ) −
hg(Z), where hf , hg ∈ L2

Z are regression functions of
the values of f and g using only the variable Z. Then
X⊥⊥Y | Z if and only if for all f ∈ L2

XZ , g ∈ L2
Y , and

f̃ , g̃ defined as above, E[f̃ g̃] = 0 (Daudin, 1980). The
KCIT relaxes the spaces of functions L2

XZ , L2
Y , and L2

Z to
be RKHSs corresponding to kernels defined on these vari-
ables. A universal kernel is required so that the RKHS for
Z is dense in corresponding L2

Z space. By contrast, the
HSIC and our approach only require characteristic kernels,
which need not be universal (Sriperumbudur et al., 2010).



4 EMPIRICAL EVALUATION

Our analysis suggests that by using a single permutation to
compute the test statistic, our approach, the kernel condi-
tional independence permutation test (KCIPT) will be more
powerful than the CHSIC, which requires clustering the
values of Z and many permutations in each cluster to es-
timate the null distribution. These permutations become
difficult to find as the dimensionality of Z grows, as shown
in prior work (Zhang et al., 2011). Furthermore, by using
an MMD-based test statistic, the KCIPT can better estimate
the null distribution than the KCIT in scenarios that require
a careful choice of parameters. Finally, the outer bootstrap-
ping procedure should improve the power of the KCIPT.

To empirically support our analysis, we implement KCIPT
in MATLAB,4 and compare it to implementations of
CHSIC and KCIT used in prior work (Zhang et al., 2011).
We use two criteria for performance evaluation, type I er-
ror (the fraction of the time the null hypothesisH0 is incor-
rectly rejected), and power (the fraction of the time H0 is
correctly rejected). Rather than choosing a specific signif-
icance level α at which to evaluate power and type I error,
we record the p-values resulting from each test and analyze
the behavior of the tests as α varies. For KCIPT, we use an
RBF kernel k(x, x′) = exp(−‖x− x′‖22 /2σ2) for each
variable, with bandwidth parameters σx, σy , and σz cho-
sen using the “median” heuristic (Gretton et al., 2012a).
For bootstrapping, we use parameters B = 25, b = 104,
and M = 104. CHSIC and KCIT use the recommended
parameters set in their implementations.

In order to characterize the power and type I error of the
tests, we must evaluate the tests across many samples from
the same underlying distribution. We use synthetic datasets
from prior work for this purpose (Fukumizu et al., 2008;
Zhang et al., 2011). Each dataset has a variant where the
null hypothesis holds, for testing type I error, and where
the null hypothesis does not hold, for testing power. We
perform 300 tests for each condition, for each dataset de-
scribed below.

Post-nonlinear Noise. The first dataset we use generates
X and Y as functions of Z using a post-nonlinear noise
model (Zhang and Hyvärinen, 2009; Zhang et al., 2011).
In this generative process, the dimensionality of the condi-
tioning variable Z grows, but only the first dimension Z1 is
relevant to the conditional independence ofX and Y . Each
of X and Y are determined using G(F (Z1) + E), where
G and F are arbitrary smooth, nonlinear functions and E
is a Gaussian noise variable. All dimensions of Z are i.i.d.
Gaussian random variables. Since X⊥⊥Y | Z by default,
identical Gaussian noise is added to X and Y to produce a
variant of the dataset for which X 6⊥⊥Y | Z. Because only

4The code is available online at http://engr.case.
edu/doran_gary/code.html

one conditioning variable is relevant to the problem, we
expect that at least the KCIT and KCIPT with the function-
distance distortion measure will be robust to increasing di-
mensionality, but that performance will degrade eventually.

Chaotic Times Series. The second dataset we use is a
chaotic time series based on the Hénon map (Hénon, 1976).
The two-dimensional variables X = (X

(1)
t , X

(2)
t ) and

Y = (Y
(1)
t , Y

(2)
t ) are computed using only the values from

the previous time step as follows:

X
(1)
t = 1.4−X(1)

t−1
2

+ 0.3X
(2)
t−1

Y
(1)
t = 1.4−

[
γX

(1)
t−1Y

(1)
t−1 + (1− γ)Y

(1)
t−1

2]
+ 0.3Y

(2)
t−1

X
(2)
t = X

(1)
t−1, Y

(2)
t = Y

(1)
t−1.

The parameter γ controls the effect that previous values of
X have on Y . To increase the difficulty of this task, two
additional independent Gaussian noise variables with zero
mean and standard deviation σ = 0.5 are concatenated to
both X and Y . Here, conditional dependence and inde-
pendence characterizes the causal influence from X to Y
when γ > 0. Namely, in this dataset, Xt+1⊥⊥Yt | Xt, but
Yt+1 6⊥⊥Xt | Yt.
For each underlying joint distribution, we generate the
cumulative density function (CDF) of the p-values obtained
for each test across the 300 random samples. While the
CDFs of the tests’ p-values are useful for understanding
the global behavior of the tests,5 it is more succinct to sum-
marize each curve with a single statistic. In prior work,
the powers and type I errors at a particular, fixed value of
α are used to summarize results (Fukumizu et al., 2008;
Gretton et al., 2012a; Zhang et al., 2011). However, pre-
senting results in this way can be misleading if one of the
tests has an advantage at a particular value of α. Therefore,
we use two statistics to summarize the power and type I
error across values of α. When the test has high power, it
correctly rejects the null hypothesis even when α is small.
Therefore, the area under the CDF, or power curve is close
to 1.0. On the other hand, when the null hypothesis is true,
a well-calibrated test will produce uniformly-distributed p-
values so that the type I error rate is equal to α. In this
case, the CDF is a diagonal line with slope 1. To measure
calibratedness, the Kolmogorov test can be used to quan-
tify the difference between the empirically observed CDF
and that for the uniform distribution. Since sample sizes
are finite and null distributions are only approximately es-
timated, the null hypothesis of perfect calibratedness will
likely be rejected by the Kolmogorov test after enough tests
are performed. However, the relative (log) p-values corre-
sponding to the Kolmogorov test can be used to compare
calibratedness; larger p-values roughly correspond to bet-
ter calibration.

5See the supplementary materials for details.

http://engr.case.edu/doran_gary/code.html
http://engr.case.edu/doran_gary/code.html


1 2 3 4 5

Dimension

0.0

0.2

0.4

0.6

0.8

1.0
A

re
a

U
nd

er
Po

w
er

C
ur

ve

KCIPT (200)
KCIT (200)
CHSIC (200)

KCIPT (400)
KCIT (400)
CHSIC (400)

1 2 3 4 5

Dimension

10−70

10−60

10−50

10−40

10−30

10−20

10−10

100

K
ol

m
og

or
ov

p-
va

lu
e

100 101 1020.75

0.80

0.85

0.90

0.95

1.00

AU
P

C

100 101

Dimension

10−100

10−80

10−60

10−40

10−20

100

K
ol

m
og

or
ov

p-
va

lu
e

Figure 3: (Left) Summarized results for the post-nonlinear noise dataset. These results clearly show how the power of
HSIC decreases as noise is added to the conditioning variable. (Right) A comparison of KCIT and KCIPT for high-
dimensional datasets. The performance of the tests begin to degrade in different ways, with the power of KCIPT falling to
chance levels while the KCIT becomes poorly calibrated between D = 10 and D = 50.

Figure 3 (left) shows results for the post-nonlinear noise
dataset as the dimensionality D of the conditioning vari-
able increases. Since Y is a function of Z, the function-
distance distortion measure is used, as described in Sec-
tion 2.4.6 Gaussian process regression is used to find the
function f relating Z and Y . As observed in prior work
(Zhang et al., 2011), the CHSIC approach is sensitive to
the dimensionality of the conditioning variable, so power
quickly decreases as D increases. With a dataset of size
200, KCIT is slightly more powerful than KCIPT, but the
performance converges as the sample size increases to 400.
Furthermore, the performance of KCIPT is preserved as di-
mensionality increases, since the regression-based distance
effectively serves as dimensionality reduction on the con-
ditioning variable.

Figure 3 (right) shows what happens to both KCIPT and
KCIT as the dimensionality of the dataset continues to in-
crease to D = 50; both tests fail by this point, but in differ-
ent ways. KCIT becomes very poorly calibrated between
D = 10 and D = 50, while the power of KCIPT degrades
around the same dimensionality. We conjecture that the ob-
served behavior is due to the differences in kernel parame-
ter selection for each approach. The kernel values for KCIT
are chosen heuristically depending on dataset size, but the
test is only evaluated on low-dimensional datasets (Zhang
et al., 2011). As dimensionality increases, the heuristic is
less effective, and the test poorly estimates the null distri-
bution. By contrast, the KCIPT uses the median heuristic,
which automatically adjusts the kernel parameter as dataset
size and dimensionality increase. Thus, the null distribu-
tion is correctly estimated, but the test statistic becomes
less powerful on this dataset.

The results for the chaotic time series are shown in Fig-
ure 4. For this test, the RKHS distance is used as the distor-
tion measure to learn the permutation. The behavior of the

6We compare this distortion measure with other choices in the
supplementary materials.
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Figure 4: Results for the chaotic time series. As expected,
the power of these tests increases as the conditional depen-
dence controlled by γ increases. The KCIT is not well-
calibrated on this dataset, and HSIC becomes less well-
calibrated as sample size increases.
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Figure 5: Effects of bootstrapping the test statistic with B
iterations on the post-nonlinear noise dataset with n = 400.
Bootstrapping increases the power of the test, but also de-
creases the calibration when dimensionality D of the con-
ditioning variable increases. The observed effect is likely
due to the approximation errors induced by the permutation
leading to an over-rejection of the null hypothesis.

tests is shown as γ increases. In this noisy chaotic dataset,
conditional dependence is more difficult to detect, and none
of the techniques perform very well when γ is small. Al-
though KCIT has the best performance in terms of power,
it is poorly-calibrated as the sample size increases. In fact,
both the CHSIC and KCIT become less well-calibrated as



sample size increases, suggesting systematic errors in null
distribution estimation. For CHSIC, it appears that there
are difficulties in finding permutations to estimate the null
distribution, and for KCIT, the chaotic nature of the dataset
might violate its assumption that variables are related by
continuous, well-behaved functions.

Using the post-nonlinear noise dataset with n = 400, we
also quantify the extent to which the outer bootstrapping
procedure described in Section 2.3 improves the power of
the test. Figure 5 shows the power and calibration of the
test as the number of bootstraps B increases; B = 1 corre-
sponds to no bootstrapping of the test statistic, and B = 25
is used in the previous experiments. Bootstrapping the test
statistic does in fact increase power for this dataset. How-
ever, when the dimensionality of Z grows, the calibration
of the test decreases. We believe that this behavior is a
result of the approximation error induced by the permuta-
tion; as dimensionality increases, it becomes harder to find
an appropriate permutation with a fixed sample size. How-
ever, we observe in Figure 3 (left) that the other tests also
tend to be poorly calibrated on this dataset as the dimen-
sionality of Z increases. These results do not suggest a
general procedure for selecting B, but they illustrate that
at least for the post-nonlinear noise data, there is a power–
calibration trade-off involved in the use of bootstrapping.

Medical Data. Finally, we explore the application of the
KCIPT to a real-world dataset used in prior work (Fuku-
mizu et al., 2008). The data consists of three variables,
creatinine clearance (C), digoxin clearance (D), and urine
flow (U ), measured on 35 patients. The ground truth, that
D⊥⊥U | C, is known for this dataset. We try to recover
this relationship using the PC algorithm (Spirtes, Glymour,
and Scheines, 2000), with the KCIPT and α = 0.05
used as a test for conditional independence. We choose
B = 10, since it appears to be an effective setting that
reduces the overall computation time (Figure 5). The out-
put of the PC algorithm is the Markov equivalence class
D—C—U , which contains the only causal structures (ei-
ther D ← C ← U , D → C → U , or D ← C → U )
consistent with the ground truth conditional independence
relationship and pairwise dependence relationships, assum-
ing there are no unobserved confounding variables.

5 DISCUSSION

In relation to existing kernel-based conditional indepen-
dence tests, a major advantage of KCIPT observed in our
empirical analysis is its ability to accurately estimate the
null distribution. Hence, we observe that KCIPT is well-
calibrated across the synthetic datasets we study, even un-
der the more extreme scenarios when the dimensional-
ity of the conditioning variable is large or there are com-
plex, nonlinear relationships between variables in the joint
distribution. Our results align with those observed in

prior work, in which permutation-based conditional in-
dependence tests for datasets with discrete values were
found to be well-calibrated with respect to asymptotic tests
(Tsamardinos and Borboudakis, 2010). Additionally, using
a well-calibrated conditional independence test produces
more robust solutions in Bayesian network learning.

The need for conditional independence testing is ubiqui-
tous in the sciences. Unfortunately, performing the test
in practice is known to be very challenging. This work
not only simplifies the problem, but also present a general
framework for conditional independence testing which can
be extended immediately to numerous settings. Thus, there
remain many interesting extensions and questions to study
in future work, such as applications to non-i.i.d. data, dif-
ferent approaches for learning a permutation, and deciding
which variable to permute in the asymmetric test statistic.
Furthermore, we look forward to applying KCIPT to real-
world datasets with more complex conditional dependence
relationships.

6 CONCLUSION

In this work, we propose a new conditional independence
test that employs a permutation to generate an artificial
sample from a joint distribution for which the null hypoth-
esis of the test holds. Effectively, we transform the con-
ditional independence test into a two-sample test problem,
which is easier to solve, well-studied, and scales to high-
dimensional datasets. We use a kernel-based two sample
test between an original sample and a permuted sample,
which share the same distribution if and only if the condi-
tional independence relationship holds. Prior knowledge
about the joint distribution can be incorporated into the
process of finding an appropriate permutation. The result-
ing test has power competitive with existing kernel-based
approaches for conditional independence testing and bet-
ter estimates the null distribution on the datasets used for
evaluation. In future work, we will explore theoretical re-
lationships between our approach and those using partial
association and further investigate the use of our test for
applications in causal discovery.
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